1
|
Marinakis NM, Tilemis FN, Veltra D, Svingou M, Sofocleous C, Kekou K, Kosma K, Kampouraki A, Kontse C, Fylaktou I, Sertedaki A, Kanaka-Gantenbein C, Traeger-Synodinos J, Makrythanasis P. Estimating at-risk couple rates across 1000 exome sequencing data cohort for 176 genes and its importance relevance for health policies. Eur J Hum Genet 2024:10.1038/s41431-024-01726-4. [PMID: 39488673 DOI: 10.1038/s41431-024-01726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
The development of high-throughput technologies has enabled Expanded Carrier screening (ECS) as a more comprehensive and extensive approach for high-risk populations. The available methods of ECS are population-targeted gene-panels according to ethnicity, however these panels should be planned according to a real-world data evaluation. In this study, we estimate the frequency of pathogenic variants for autosomal-recessive and X-linked conditions in Exome Sequencing-ES data for a 176 gene panel proposed from ACMG and ACOG in a Greek cohort. ES data from 1000 unrelated individuals was evaluated for pathogenic SNVs and CNVs. Variants were filtered using 5% Minor Frequency Allele (MAF), ClinVar submissions, and classification with ACMG criteria. For the at-risk couple rate, we hypothesized that both parents carried variants in the same gene. It is noted that many common conditions (hemoglobinopathies, SMA, Fragile-X) may escape NGS-based detection as they require alternative methods for optimal detection. Amongst 1000 participants, 32% were heterozygous for at least one disorder and 14% for two or more, whereby 393 unique pathogenic/likely pathogenic heterozygous variants were identified. We calculated that 1.6% of couples have a risk for at least one AR condition, which means that for 85,000 births per year, 1380 couples require genetic counseling. This study provides data confirming that the ACMG/ACOG ECS list of 176 genes is suitable for carrier screening in Greece, and aids counseling prospective parents for residual risk, however it should be supported by appropriate interpretation and reproductive options, as well as ancillary genetic testing methods.
Collapse
Affiliation(s)
- Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Faidon-Nikolaos Tilemis
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Veltra
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Svingou
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Afrodite Kampouraki
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysi Kontse
- Division of Endocrinology, Diabetes and Metabolism, St. Sophia's Children's Hospital, ENDO-ERN Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Irene Fylaktou
- Division of Endocrinology, Diabetes and Metabolism, St. Sophia's Children's Hospital, ENDO-ERN Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, St. Sophia's Children's Hospital, ENDO-ERN Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, St. Sophia's Children's Hospital, ENDO-ERN Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis Makrythanasis
- Laboratory of Medical Genetics, Medical School, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
- Department of Genetic Medicine and Development, Medical School, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Cavaloiu B, Simina IE, Vilciu C, Trăilă IA, Puiu M. Nusinersen Improves Motor Function in Type 2 and 3 Spinal Muscular Atrophy Patients across Time. Biomedicines 2024; 12:1782. [PMID: 39200246 PMCID: PMC11351209 DOI: 10.3390/biomedicines12081782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder primarily caused by mutations in the SMN1 gene, leading to motor neuron degeneration and muscle atrophy, affecting multiple organ systems. Nusinersen treatment targets gene expression and is expected to enhance the motor function of voluntary muscles in the limbs and trunk. Motor skills can be assessed through specific scales like the Revised Upper Limb Module Scale (RULM) and Hammersmith Functional Motor Scale Expanded (HFMSE). This study aims to evaluate the influence of nusinersen on the motor skills of patients with SMA Type 2 and 3 using real-world data collected over 54 months. A prospective longitudinal study was conducted on 37 SMA patients treated with nusinersen, analyzing data with R statistical software. The outcomes revealed significant improvements in motor functions, particularly in SMA Type 3 patients with higher RULM and HFSME scores. Additionally, GEE analysis identified time, type, age, and exon deletions as essential predictors of motor score improvements. The extended observation period is both a major strength and a limitation of this research, as the dropout rates could present challenges in interpretation. Variability in responses, influenced by genetic background, SMA type, and onset age, highlights the need for personalized treatment approaches.
Collapse
Affiliation(s)
- Bogdana Cavaloiu
- Faculty of Medicine, Department of Microscopic Morphology, Genetics Discipline, Center of Genomic Medicine, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 2 E. Murgu, Sq., 300041 Timisoara, Romania;
- Department of Radiology, ‘Victor Gomoiu’ Children’s Clinical Hospital, 21 Basarabia Blvd., 022102 Bucharest, Romania
| | - Iulia-Elena Simina
- Department of Genetics, Center of Genomic Medicine, ‘Victor Babeş’ University of Medicine and Pharmacy of Timișoara, 300041 Timisoara, Romania;
| | - Crisanda Vilciu
- Department of Neurology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Neurology Clinic, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Iuliana-Anamaria Trăilă
- Department of Pathology, ‘Pius Brinzeu’ Emergency County Clinical Hospital, 300723 Timisoara, Romania;
| | - Maria Puiu
- Department of Genetics, Center of Genomic Medicine, ‘Victor Babeş’ University of Medicine and Pharmacy of Timișoara, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Ma K, Zhang K, Chen D, Wang C, Abdalla M, Zhang H, Tian R, Liu Y, Song L, Zhang X, Liu F, Liu G, Wang D. Real-world evidence: Risdiplam in a patient with spinal muscular atrophy type I with a novel splicing mutation and one SMN2 copy. Hum Mol Genet 2024; 33:1120-1130. [PMID: 38520738 PMCID: PMC11190614 DOI: 10.1093/hmg/ddae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.
Collapse
Affiliation(s)
- Kai Ma
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
- Department of neurology, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Kaihui Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Defang Chen
- The Office of operation management committee, Central Hospital Affiliated to Shandong First Medical University, Jiefang road NO. 105, Jinan, SD 250022, PR China
| | - Chuan Wang
- Science, Education and Foreign Affairs Section, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Haozheng Zhang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Rujin Tian
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Yang Liu
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
- Ophthalmology department, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Li Song
- Pediatric Hematology and Oncology, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Xinyi Zhang
- Intensive Care Unit, The Second People’s Hospital of Shandong Province, Duanxing west road NO. 4, Jinan, SD 250022, PR China
| | - Fangfang Liu
- Department of Ultrasound, Central Hospital Affiliated to Shandong First Medical University, Jiefang road NO. 105, Jinan, SD 250022, PR China
| | - Guohua Liu
- Ophthalmology department, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| | - Dong Wang
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jingshi road NO. 23976, Jinan, SD 250022, PR China
| |
Collapse
|
4
|
Abd El Mutaleb ANH, Ibrahim FAR, Megahed FAK, Atta A, Ali BA, Omar TEI, Rashad MM. NAIP Gene Deletion and SMN2 Copy Number as Molecular Tools in Predicting the Severity of Spinal Muscular Atrophy. Biochem Genet 2024:10.1007/s10528-023-10657-6. [PMID: 38388850 DOI: 10.1007/s10528-023-10657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024]
Abstract
Spinal muscular atrophy (SMA) is one of the most prevalent autosomal recessive illnesses with type I being the most severe type. Genomic alterations including survival motor neuron (SMN) copy number as well as deletions in SMN and Neuronal Apoptosis Inhibitory Protein (NAIP) are greatly implicated in the emergence of SMA. However, the association of such alterations with the severity of the disease is yet to be investigated. This study was directed to elucidate the molecular assessment of NAIP and SMN genomic alterations as a useful tool in predicting the severity of SMA among patients. This study included 65 SMA pediatric patients (30 type I and 35 type II) and 65 healthy controls. RFLP-PCR was employed to determine the genetic polymorphisms of the SMN1, SMN2, and NAIP genes. In addition, qRT-PCR was used to identify the expression of the SMN1 and SMN2 genes, and serum levels of creatine kinase were measured using a colorimetric method. DNA sequencing was performed on some samples to detect any single nucleotide polymorphisms in SMN1, SMN2, and NAIP genes. All SMA patients had a homozygous deficiency of SMN1 exon 7. The homozygous deficiency of SMN1 exons 7 and 8, with the deletion of NAIP exon 5 was found among the majority of Type I patients. In contrast, patients with the less severe condition (type II) had SMN1 exons 7 and 8 deleted but did not have any deletions in NAIP, additionally; 65.7% of patients had multiple copies of SMN2. Analysis of NAIP deletion alongside assessing SMN2 copy number might enhance the effectiveness of the diagnosis that can predict severity among Spinal Muscular Atrophy patients.
Collapse
Affiliation(s)
| | - Fawziya A R Ibrahim
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt.
| | - Fayed A K Megahed
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed Atta
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Bahy A Ali
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Tarek E I Omar
- Department of Pediatric Neurology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mona M Rashad
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Gil-Rojas Y, Suárez-Obando F, Amaya-Granados D, Prieto-Pinto L, Samacá-Samacá D, Ortiz B, Hernández F. Burden of disease of spinal muscular atrophy linked to chromosome 5q (5q-SMA) in Colombia. Expert Rev Pharmacoecon Outcomes Res 2023:1-12. [PMID: 37096565 DOI: 10.1080/14737167.2023.2206569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE This article estimates the disease burden of 5q-SMA in Colombia by using the Disability-Adjusted Life Years (DALYs) metric. METHODS Epidemiological data were obtained from local databases and medical literature and were adjusted in the DisMod II tool. DALYs were obtained by adding years of life lost due to premature death (YLL) and years lived with disability (YLD). RESULTS The modeled prevalence of 5q-SMA in Colombia was 0.74 per 100,000 population. The fatality rate for all types was 14.1%. The disease burden of 5q-SMA was estimated at 4,421 DALYs (8.6 DALYs/100,000), corresponding to 4,214 (95.3%) YLLs and 207 (4.7%) YLDs. Most of the DALYs were accounted in the 2-17 age group. Of the total burden, 78% correspond to SMA type 1, 18% to type 2, and 4% to type 3. CONCLUSIONS Although 5q-SMA is a rare disease, it is linked to a significant disease burden due to premature mortality and severe sequelae. The estimates shown in this article are important inputs to inform public policy decisions on how to ensure adequate health service provision for patients with 5q-SMA.
Collapse
Affiliation(s)
| | - Fernando Suárez-Obando
- Instituto de Genética Humana, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | - Blair Ortiz
- Universidad de Antioquia, Hospital San Vicente Fundación, Medellín, Colombia
| | | |
Collapse
|
6
|
Okamoto K, Nishio H, Motoki T, Jogamoto T, Aibara K, Kondo Y, Kawamura K, Konishi Y, Tokorodani C, Nishiuchi R, Eguchi M. Changes in the Incidence of Infantile Spinal Muscular Atrophy in Shikoku, Japan between 2011 and 2020. Int J Neonatal Screen 2022; 8:ijns8040052. [PMID: 36278622 PMCID: PMC9590054 DOI: 10.3390/ijns8040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder. Al-though there was no cure for SMA, newly developed therapeutic drugs (nusinersen, onasemnogene abeparvovec, and risdiplam) have been proven effective for the improvement of motor function and prevention of respiratory insufficiency of infants with SMA. Nusinersen was introduced in Japan in 2017 and onasemnogene abeparvovec in 2020. We hypothesized that the introduction of these drugs might influence the incidence of SMA (more precisely, increase the diagnosis rate of SMA) in Japan. To test this hypothesis, we conducted a second epidemiological study of infantile SMA using questionnaires in Shikoku, Japan between October 2021 and February 2022. The incidence of infantile SMA during the period 2016-2020 was 7.08 (95% confidence interval [CI] 2.45-11.71) per 100,000 live births. According to our previous epidemiological study, the incidence of infantile SMA during 2011-2015 was 2.70 (95% CI 0.05-5.35) per 100,000 live births. The increased incidence of infantile SMA suggests that the widespread news in Japan regarding the introduction of therapeutic agents, nusinersen and onasemnogene abeparvovec, raised clinicians' awareness about SMA, leading to increased and earlier diagnosis of SMA in Shikoku.
Collapse
Affiliation(s)
- Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan
- Correspondence: ; Tel.: +81-898-32-7111
| | - Hisahide Nishio
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takahiro Motoki
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Japan
| | - Toshihiro Jogamoto
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Japan
| | - Kaori Aibara
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Japan
- Department of Pediatrics, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama 790-8524, Japan
| | - Yoichi Kondo
- Department of Pediatrics, Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama 790-8524, Japan
| | - Kentaro Kawamura
- Toseikai Healthcare Corporation, Life-Long Care Clinic for Disabled People, 14-3-10 Maeda 4 jo, Teine-ku, Sapporo 006-0814, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikedo, Miki-cho, Kita 761-0701, Japan
| | - Chiho Tokorodani
- Department of Pediatrics, Kochi Health Sciences Center, 2125-1 Ike, Kochi 781-8555, Japan
| | - Ritsuo Nishiuchi
- Department of Pediatrics, Kochi Health Sciences Center, 2125-1 Ike, Kochi 781-8555, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Japan
| |
Collapse
|
7
|
Li S, Han X, Xu Y, Chang C, Gao L, Li J, Lu Y, Mao A, Wang Y. Comprehensive Analysis of Spinal Muscular Atrophy: SMN1 Copy Number, Intragenic Mutation, and 2 + 0 Carrier Analysis by Third-Generation Sequencing. J Mol Diagn 2022; 24:1009-1020. [PMID: 35659528 DOI: 10.1016/j.jmoldx.2022.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
Population-wide carrier screening for spinal muscular atrophy (SMA) is recommended by the American College of Medical Genetics and Genomics. However, the methods used currently mainly focus on SMN1 copy number and fail to identify carriers with pathogenic intragenic mutations and silent (2 + 0) carriers. We developed a method termed comprehensive analysis of SMA (CASMA) based on long-range PCR and third-generation sequencing of full-length and downstream regions of SMN1/2. The sensitivity and specificity of CASMA to detect SMA carriers with one copy of SMN1 were 100% (n = 101) and 99.2% (n = 236), respectively. CASMA confirmed three SMN1 intragenic mutations and pinpointed an inframe mutation c.661_666del to SMN2, which was misreported to SMN1 by allele-specific long-range nested PCR plus Sanger sequencing. CASMA also correctly predicted 8 of 16 samples (50%) with SMN1 duplication alleles. CASMA was expected to increase the detection rate of SMA carriers from 91% to 98% and decrease the residual risk ratio from 1:415 to 1:1868 after negative results of two SMN1 copies in the Chinese population. CASMA presents a comprehensive approach for identifying SMN1 and SMN2 copy number, intragenic mutations, and potential silent carriers that significantly reduces the residual risk ratio in SMA carrier screening and has great clinical utility.
Collapse
Affiliation(s)
- Shuyuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Han
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxin Chang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Berry Genomics Corporation, Beijing, China
| | - Yulin Lu
- Berry Genomics Corporation, Beijing, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China.
| | - Yanlin Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Sarv S, Kahre T, Vaidla E, Pajusalu S, Muru K, Põder H, Gross-Paju K, Ütt S, Žordania R, Talvik I, Õiglane-Shlik E, Muhu K, Õunap K. The Birth Prevalence of Spinal Muscular Atrophy: A Population Specific Approach in Estonia. Front Genet 2022; 12:796862. [PMID: 35003227 PMCID: PMC8729775 DOI: 10.3389/fgene.2021.796862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Rare diseases are an important population health issue and many promising therapies have been developed in recent years. In light of novel genetic treatments expected to significantly improve spinal muscular atrophy (SMA) patients' quality of life and the urgent need for SMA newborn screening (NBS), new epidemiological data were needed to implement SMA NBS in Estonia. Objective: We aimed to describe the birth prevalence of SMA in the years 1996-2020 and to compare the results with previously published data. Methods: We retrospectively analyzed clinical and laboratory data of SMA patients referred to the Department of Clinical Genetics of Tartu University Hospital and its branch in Tallinn. Results: Fifty-seven patients were molecularly diagnosed with SMA. SMA birth prevalence was 1 per 8,286 (95% CI 1 per 6,130-11,494) in Estonia. Patients were classified as SMA type 0 (1.8%), SMA I (43.9%), SMA II (22.8%), SMA III (29.8%), and SMA IV (1.8%). Two patients were compound heterozygotes with an SMN1 deletion in trans with a novel single nucleotide variant NM_000344.3:c.410dup, p.(Asn137Lysfs*11). SMN2 copy number was assessed in 51 patients. Conclusion: In Estonia, the birth prevalence of SMA is similar to the median birth prevalence in Europe. This study gathered valuable information on the current epidemiology of SMA, which can guide the implementation of spinal muscular atrophy to the newborn screening program in Estonia.
Collapse
Affiliation(s)
- Siiri Sarv
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Eve Vaidla
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Haide Põder
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Katrin Gross-Paju
- Centre for Neurological Diseases, West-Tallinn Central Hospital, Tallinn, Estonia.,Department of Health Technologies, eMed Lab, TalTech, Tallinn, Estonia
| | - Sandra Ütt
- Centre for Neurological Diseases, West-Tallinn Central Hospital, Tallinn, Estonia
| | - Riina Žordania
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Inga Talvik
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Eve Õiglane-Shlik
- Children's Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kristina Muhu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
9
|
Kimizu T, Ida S, Okamoto K, Awano H, Niba ETE, Wijaya YOS, Okazaki S, Shimomura H, Lee T, Tominaga K, Nabatame S, Saito T, Hamazaki T, Sakai N, Saito K, Shintaku H, Nozu K, Takeshima Y, Iijima K, Nishio H, Shinohara M. Spinal Muscular Atrophy: Diagnosis, Incidence, and Newborn Screening in Japan. Int J Neonatal Screen 2021; 7:ijns7030045. [PMID: 34287247 PMCID: PMC8293226 DOI: 10.3390/ijns7030045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder that causes degeneration of anterior horn cells in the human spinal cord and subsequent loss of motor neurons. The severe form of SMA is among the genetic diseases with the highest infant mortality. Although SMA has been considered incurable, newly developed drugs-nusinersen and onasemnogene abeparvovec-improve the life prognoses and motor functions of affected infants. To maximize the efficacy of these drugs, treatments should be started at the pre-symptomatic stage of SMA. Thus, newborn screening for SMA is now strongly recommended. Herein, we provide some data based on our experience of SMA diagnosis by genetic testing in Japan. A total of 515 patients suspected of having SMA or another lower motor neuron disease were tested. Among these patients, 228 were diagnosed as having SMA with survival motor neuron 1 (SMN1) deletion. We analyzed the distribution of clinical subtypes and ages at genetic testing in the SMN1-deleted patients, and estimated the SMA incidence based on data from Osaka and Hyogo prefectures, Japan. Our data showed that confirmed diagnosis by genetic testing was notably delayed, and the estimated incidence was 1 in 30,000-40,000 live births, which seemed notably lower than in other countries. These findings suggest that many diagnosis-delayed or undiagnosed cases may be present in Japan. To prevent this, newborn screening programs for SMA (SMA-NBS) need to be implemented in all Japanese prefectures. In this article, we also introduce our pilot study for SMA-NBS in Osaka Prefecture.
Collapse
Affiliation(s)
- Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, 840 Murodocho, Izumi 594-1101, Japan;
| | - Shinobu Ida
- Department of Gastroenterology and Endocrinology, Osaka Women’s and Children’s Hospital, 840 Murodocho, Izumi 594-1101, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishiicho, Imabari 794-0006, Japan;
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (H.A.); (K.N.); (K.I.)
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| | - Shin Okazaki
- Department of Pediatric Neurology, Children’s Medical Center, Osaka City General Hospital, 2-13-22 Miyakojimahondori, Osaka 534-0021, Japan;
| | - Hideki Shimomura
- Department of Pediatrics, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.S.); (T.L.); (Y.T.)
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.S.); (T.L.); (Y.T.)
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan; (K.T.); (S.N.)
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan; (K.T.); (S.N.)
| | - Toshio Saito
- Division of Child Neurology, Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Takashi Hamazaki
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (T.H.); (H.S.)
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan;
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women’s Medical University, 8-1 Kawadacho, Tokyo 162-0054, Japan;
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Osaka 545-8585, Japan; (T.H.); (H.S.)
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (H.A.); (K.N.); (K.I.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (H.S.); (T.L.); (Y.T.)
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (H.A.); (K.N.); (K.I.)
- Hyogo Prefectural Kobe Children’s Hospital, 1-6-7 Minatojima Minamimachi, Kobe 650-0047, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
- Faculty of Medical Rehabilitation, Kobe Gakuin University, 518 Arise Ikawadani-cho, Kobe 651-2180, Japan
- Correspondence: ; Tel.: +81-789-745-073
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan; (E.T.E.N.); (Y.O.S.W.); (M.S.)
| |
Collapse
|