1
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Brolin KA, Bäckström D, Wallenius J, Gan-Or Z, Puschmann A, Hansson O, Swanberg M. Is GBA1 T369M not a risk factor for Parkinson's disease in the Swedish population? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304347. [PMID: 38559109 PMCID: PMC10980128 DOI: 10.1101/2024.03.15.24304347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Variants in GBA1 are important genetic risk factors in Parkinson's disease (PD). GBA1 T369M has been linked to an ~80% increased PD risk but the reports are conflicting and the relevance of GBA1 variants in different populations varies. A lack of association between T369M and PD in the Swedish population was recently reported but needs further validation. We therefore investigated T369M in 1,808 PD patients and 2,183 controls and our results support that T369M is not a risk factor for PD in the Swedish population.
Collapse
Affiliation(s)
- Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, EC1M 6BQ, London, UK
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Joel Wallenius
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Ziv Gan-Or
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Clinical Research Unit, The Neuro (Montreal Neurological Institute-Hospital), Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Andreas Puschmann
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- SciLifeLab National Research Infrastructure, Lund University, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Sequeros CB, Hansen TF, Westergaard D, Louloudis I, Kalamajski S, Röder T, Rohde PD, Schwinn M, Clemmensen LH, Didriksen M, Nyegaard M, Hjalgrim H, Nielsen KR, Bruun MT, Ostrowski SR, Erikstrup C, Mikkelsen S, Sørensen E, Pedersen OBV, Brunak S, Banasik K, Giordano GN. A genome-wide association study of social trust in 33,882 Danish blood donors. Sci Rep 2024; 14:1402. [PMID: 38228779 PMCID: PMC10792163 DOI: 10.1038/s41598-024-51636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Social trust is a heritable trait that has been linked with physical health and longevity. In this study, we performed genome-wide association studies of self-reported social trust in n = 33,882 Danish blood donors. We observed genome-wide and local evidence of genetic similarity with other brain-related phenotypes and estimated the single nucleotide polymorphism-based heritability of trust to be 6% (95% confidence interval = (2.1, 9.9)). In our discovery cohort (n = 25,819), we identified one significantly associated locus (lead variant: rs12776883) in an intronic enhancer region of PLPP4, a gene highly expressed in brain, kidneys, and testes. However, we could not replicate the signal in an independent set of donors who were phenotyped a year later (n = 8063). In the subsequent meta-analysis, we found a second significantly associated variant (rs71543507) in an intergenic enhancer region. Overall, our work confirms that social trust is heritable, and provides an initial look into the genetic factors that influence it.
Collapse
Affiliation(s)
- Celia Burgos Sequeros
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - David Westergaard
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
- Department of Gynecology and Obstetrics, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Ioannis Louloudis
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Kalamajski
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, CRC, Lund University Diabetes Centre, Malmö, Sweden
| | - Timo Röder
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Duun Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Line Harder Clemmensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maria Didriksen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mette Nyegaard
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Gistrup, Denmark
| | - Henrik Hjalgrim
- The Danish Cancer Institute, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaspar René Nielsen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Mie Topholm Bruun
- Clinical Immunology Research Unit, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ole Birger Vestager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Søren Brunak
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Gynecology and Obstetrics, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark.
| | - Giuseppe Nicola Giordano
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, CRC, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
4
|
Rao SC, Li Y, Lapin B, Pattipati S, Ghosh Galvelis K, Naito A, Gutierrez N, Leal TP, Salim A, Salles PA, De Leon M, Mata IF. Association of women-specific health factors in the severity of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:86. [PMID: 37277346 PMCID: PMC10241917 DOI: 10.1038/s41531-023-00524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Parkinson's disease (PD) is an age-related neurological disorder known for the observational differences in its risk, progression, and severity between men and women. While estrogen has been considered to be a protective factor in the development of PD, there is little known about the role that fluctuations in hormones and immune responses from sex-specific health experiences have in the disease's development and severity. We sought to identify women-specific health experiences associated with PD severity, after adjusting for known PD factors, by developing and distributing a women-specific questionnaire across the United States and creating multivariable models for PD severity. We created a questionnaire that addresses women's specific experiences and their PD clinical history and deployed it through The Parkinson's Foundation: PD Generation. To determine the association between women-specific health factors and PD severity, we constructed multivariable logistic regression models based on the MDS-UPDRS scale and the participants' questionnaire responses, genetics, and clinical data. For our initial launch in November 2021, we had 304 complete responses from PD GENEration. Univariate and multivariate logistic modeling found significant associations between major depressive disorder, perinatal depression, natural childbirth, LRRK2 genotype, B12 deficiency, total hysterectomy, and increased PD severity. This study is a nationally available questionnaire for women's health and PD. It shifts the paradigm in understanding PD etiology and acknowledging how sex-specific experiences may contribute to PD severity. In addition, the work in this study sets the foundation for future research to investigate the factors behind sex differences in PD.
Collapse
Affiliation(s)
- Shilpa C Rao
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yadi Li
- Center for Outcomes Research and Evaluation, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Brittany Lapin
- Center for Outcomes Research and Evaluation, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Sreya Pattipati
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Amira Salim
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Philippe A Salles
- Center for Movement Disorders CETRAM, University of Santiago de Chile, Santiago, Chile
| | - Maria De Leon
- DefeatParkinsons, Houston, TX, USA
- De Leon Enterprises, Houston, TX, USA
| | - Ignacio F Mata
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
5
|
A nationwide study of the incidence, prevalence and mortality of Parkinson's disease in the Norwegian population. NPJ Parkinsons Dis 2022; 8:19. [PMID: 35236852 PMCID: PMC8891365 DOI: 10.1038/s41531-022-00280-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/12/2022] [Indexed: 01/19/2023] Open
Abstract
Epidemiological studies of Parkinson's disease (PD) show variable and partially conflicting findings with regard to incidence, prevalence, and mortality. These differences are commonly attributed to technical and methodological factors, including small sample sizes, differences in diagnostic practices, and population heterogeneity. We leveraged the Norwegian Prescription Database, a population-based registry of drug prescriptions dispensed from Norwegian pharmacies to assess the incidence, prevalence, and mortality of PD in Norway. The diagnosis of PD was defined based on the prescription of dopaminergic drugs for the indication of PD over a continuous time. During 2004-2017, 12,229 males and 9831 females met our definition for PD diagnosis. PD prevalence increased over the observation period, with larger changes observed in the older age groups. Incidence and prevalence of PD increased with age, peaking at 85 years. The male/female prevalence ratio was 1.5 across all ages, whereas the incidence ratio increased with age, from 1.4 in those 60 years, to 2.03 among those >90 years. While PD mortality was generally higher than that of the general population, mortality odds ratios decreased with age, approaching 1.0 among individuals >90 years old. When adjusted for the sex-specific mortality of the general population, the mortality among females with PD was equal to or higher than the mortality among males with PD. Our findings demonstrate that the epidemiological features of PD, including sex-differences, are age and time-period dependent and indicate that sex differences in PD mortality are unlikely to stem from disease-specific negative impact of survival in males.
Collapse
|