1
|
Schiff AF, Deines D, Jensen ET, O'Connell N, Perry CJ, Shaltout HA, Washburn LK, South AM. Duration of Simultaneous Exposure to High-Risk and Lower-Risk Nephrotoxic Antimicrobials in the Neonatal Intensive Care Unit (NICU) and Future Adolescent Kidney Health. J Pediatr 2024; 264:113730. [PMID: 37722552 PMCID: PMC10873056 DOI: 10.1016/j.jpeds.2023.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE To determine whether greater duration of simultaneous exposure to antimicrobials with high nephrotoxicity risk combined with lower-risk antimicrobials (simultaneous exposure) in the neonatal intensive care unit (NICU) is associated with worse later kidney health in adolescents born preterm with very low birth weight (VLBW). STUDY DESIGN Prospective cohort study of participants born preterm with VLBW (<1500 g) as singletons between January 1, 1992, and June 30, 1996. We defined simultaneous exposure as a high-risk antimicrobial, such as vancomycin, administered with a lower-risk antimicrobial on the same date in the NICU. Outcomes were serum creatinine, estimated glomerular filtration rate (eGFR), and first-morning urine albumin-creatinine ratio (ACR) at age 14 years. We fit multivariable linear regression models with days of simultaneous exposure and days of nonsimultaneous exposure as main effects, adjusting for gestational age, birth weight, and birth weight z-score. RESULTS Of the 147 out of 177 participants who had exposure data, 97% received simultaneous antimicrobials for mean duration 7.2 days (SD 5.6). No participant had eGFR <90 ml/min/1.73 m2. The mean ACR was 15.2 mg/g (SD 38.7) and 7% had albuminuria (ACR >30 mg/g). Each day of simultaneous exposure was associated only with a 1.04-mg/g higher ACR (95% CI 1.01 to 1.06). CONCLUSIONS Despite frequent simultaneous exposure to high-risk combined with lower-risk nephrotoxic antimicrobials in the NICU, there were no clinically relevant associations with worse kidney health identified in adolescence. Although future studies are needed, these findings may provide reassurance in a population thought to be at increased risk of chronic kidney disease.
Collapse
Affiliation(s)
- Andrew F Schiff
- Department of Pediatrics, Section of Neonatology, Wake Forest University School of Medicine, Winston Salem, NC
| | - Danielle Deines
- University of Otago School of Medicine, Dunedin, New Zealand
| | - Elizabeth T Jensen
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston Salem, NC
| | - Nathaniel O'Connell
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC
| | - Courtney J Perry
- Department of Physician Assistant Studies, Wake Forest University School of Medicine, Winston Salem, NC
| | - Hossam A Shaltout
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC; Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Lisa K Washburn
- Department of Pediatrics, Section of Neonatology, Wake Forest University School of Medicine, Winston Salem, NC
| | - Andrew M South
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston Salem, NC; Department of Pediatrics, Section of Nephrology, Wake Forest University School of Medicine, Winston Salem, NC.
| |
Collapse
|
2
|
Joerger T, Hayes M, Stinson C, Mikhail I, Downes KJ. Incidence of Antimicrobial-Associated Acute Kidney Injury in Children: A Structured Review. Paediatr Drugs 2024; 26:59-70. [PMID: 38093147 PMCID: PMC10983053 DOI: 10.1007/s40272-023-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Acute kidney injury (AKI) is a commonly reported adverse effect of administration of antimicrobials. While AKI can be associated with poorer outcomes, there is little information available to understand rates of AKI in children exposed to various antimicrobials. We performed a structured review using the PubMed and Embase databases. Articles were included if they provided an AKI definition in patients who were < 19 years of age receiving an antimicrobial and reported the frequency of AKI. Author-defined AKI rates were calculated for each study and mean pooled estimates for each antimicrobial were derived from among all study participants. Pooled estimates were also derived for those studies that reported AKI according to pRIFLE (pediatric risk, injury, failure, loss, end stage criteria), AKIN (acute kidney injury network), or KDIGO (kidney disease improving global outcomes) creatinine criteria. A total of 122 studies evaluating 28 antimicrobials met the inclusion criteria. Vancomycin was the most commonly studied drug: 11,514 courses across 44 included studies. Among the 27,285 antimicrobial exposures, the overall AKI rate was 13.2% (range 0-42.1% by drug), but the rate of AKI varied widely across studies (range 0-68.8%). Cidofovir (42.1%) and conventional amphotericin B (37.0%) had the highest pooled rates of author-defined AKI. Eighty-one studies used pRIFLE, AKIN, or KDIGO AKI criteria and the pooled rates of AKI were similar to author-defined AKI rates. In conclusion, antimicrobial-associated AKI is reported to occur frequently in children, but the rates of AKI varies widely across studies and drugs. Most published studies examined hospitalized patients and heterogeneity in study populations and in author definitions of AKI are barriers to a comparison of nephrotoxicity risk among antimicrobials in children.
Collapse
Affiliation(s)
- Torsten Joerger
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Molly Hayes
- Center for Healthcare Quality and Analytics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Stinson
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Ibram Mikhail
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Kevin J Downes
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Zhang M, Lang B, Li H, Huang L, Zeng L, Jia ZJ, Cheng G, Zhu Y, Zhang L. Incidence and risk factors of drug-induced kidney injury in children: a systematic review and meta-analysis. Eur J Clin Pharmacol 2023; 79:1595-1606. [PMID: 37787852 DOI: 10.1007/s00228-023-03573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE To comprehensively summarize the incidence and risk factors of drug-induced kidney injury (DIKI) in children. METHODS We systematically searched seven databases from inception to November 2022. Two independent reviewers selected studies, extracted data, and assessed the risk of bias. Meta-analyses were conducted to quantify the incidence and risk factors of DIKI in children. RESULTS A total of 69 studies comprising 195,894 pediatric patients were included. Overall, the incidence of DIKI in children was 18.2% (95%CI: 16.4%-20.1%). The incidence of DIKI in critically ill children (19.6%, 95%CI: 15.9%-23.3%) was higher than that in non-critically ill children (16.1%, 95%CI: 12.9%-19.4%). Moreover, the risk factors for DIKI in children were intensive care unit (ICU) admission (OR = 1.59, 95% CI: 1.42-1.78, P = 0.000), treatment days (OR = 1.04, 95% CI: 1.03-1.05, P = 0.000), surgical intervention (OR = 1.43, 95% CI: 1.00-2.02, P = 0.048), infection (OR = 2.30, 95% CI: 1.44-3.66, P = 0.000), patent ductus arteriosus (OR = 4.78, 95% CI: 1.82-12.57, P = 0.002), chronic kidney disease (OR = 2.78, 95% CI: 1.92-4.02, P = 0.000), combination with antibacterial agents (OR = 1.98, 95% CI: 1.54-2.55, P = 0.000), diuretics (OR = 1.97, 95% CI: 1.51-2.56, P = 0.000), combination with antiviral agents (OR = 1.50, 95% CI: 1.11-2.04, P = 0.008), combination with non-steroidal anti-inflammatory drugs (OR = 1.79, 95% CI: 1.40-2.28, P = 0.000), and combination with immunosuppressive agents (OR = 2.84, 95% CI: 1.47-5.47, P = 0.002). CONCLUSION The incidence of DIKI in children is high, especially in critically ill children. Identifying high-risk groups and determining safer treatments is critical to reducing the incidence of DIKI in children. In clinical practice, clinicians should adjust medication regimens for high-risk pediatric groups, such as ICU admission, some underlying diseases, combination with nephrotoxic drugs, etc., and regularly evaluate kidney function throughout treatment.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bingchen Lang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Liang Huang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Linan Zeng
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhi-Jun Jia
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Guo Cheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Sichuan University, Chengdu, China
| | - Yu Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China.
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China.
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Tang BH, Zhang JY, Allegaert K, Hao GX, Yao BF, Leroux S, Thomson AH, Yu Z, Gao F, Zheng Y, Zhou Y, Capparelli EV, Biran V, Simon N, Meibohm B, Lo YL, Marques R, Peris JE, Lutsar I, Saito J, Jacqz-Aigrain E, van den Anker J, Wu YE, Zhao W. Use of Machine Learning for Dosage Individualization of Vancomycin in Neonates. Clin Pharmacokinet 2023; 62:1105-1116. [PMID: 37300630 DOI: 10.1007/s40262-023-01265-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE High variability in vancomycin exposure in neonates requires advanced individualized dosing regimens. Achieving steady-state trough concentration (C0) and steady-state area-under-curve (AUC0-24) targets is important to optimize treatment. The objective was to evaluate whether machine learning (ML) can be used to predict these treatment targets to calculate optimal individual dosing regimens under intermittent administration conditions. METHODS C0 were retrieved from a large neonatal vancomycin dataset. Individual estimates of AUC0-24 were obtained from Bayesian post hoc estimation. Various ML algorithms were used for model building to C0 and AUC0-24. An external dataset was used for predictive performance evaluation. RESULTS Before starting treatment, C0 can be predicted a priori using the Catboost-based C0-ML model combined with dosing regimen and nine covariates. External validation results showed a 42.5% improvement in prediction accuracy by using the ML model compared with the population pharmacokinetic model. The virtual trial showed that using the ML optimized dose; 80.3% of the virtual neonates achieved the pharmacodynamic target (C0 in the range of 10-20 mg/L), much higher than the international standard dose (37.7-61.5%). Once therapeutic drug monitoring (TDM) measurements (C0) in patients have been obtained, AUC0-24 can be further predicted using the Catboost-based AUC-ML model combined with C0 and nine covariates. External validation results showed that the AUC-ML model can achieve an prediction accuracy of 80.3%. CONCLUSION C0-based and AUC0-24-based ML models were developed accurately and precisely. These can be used for individual dose recommendations of vancomycin in neonates before treatment and dose revision after the first TDM result is obtained, respectively.
Collapse
Affiliation(s)
- Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, the Netherlands
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Alison H Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ze Yu
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Fei Gao
- Beijing Medicinovo Technology Co. Ltd., Beijing, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Edmund V Capparelli
- Pediatric Pharmacology and Drug Discovery, University of California, San Diego, CA, USA
| | - Valerie Biran
- Neonatal Intensive Care Unit, Hospital Robert Debre, Paris, France
| | - Nicolas Simon
- Service de Pharmacologie Clinique, CAP-TV, Aix Marseille Univ, APHM, INSERM, IRD, SESSTIM, Hop Sainte Marguerite, Marseille, France
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Remedios Marques
- Department of Pharmacy Services, La Fe Hospital, Valencia, Spain
| | - Jose-Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, Valencia, Spain
| | - Irja Lutsar
- Institute of Medical Microbiology, University of Tartu, Tartu, Estonia
| | - Jumpei Saito
- Department of Pharmacy, National Children's Hospital National Center for Child Health and Development, Tokyo, Japan
| | - Evelyne Jacqz-Aigrain
- Department of Pediatric Pharmacology and Pharmacogenetics, Hospital Robert Debre, APHP, Paris, France
- Clinical Investigation Center CIC1426, Hôpital Robert Debré, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - John van den Anker
- Division of Clinical Pharmacology, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China.
| |
Collapse
|