1
|
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 2023; 17:1095259. [PMID: 36816852 PMCID: PMC9936196 DOI: 10.3389/fncel.2023.1095259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Ryan M. Dorrian,
| | | | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Furlan JC, Pakosh M, Craven BC, Popovic MR. Insights on the Potential Mechanisms of Action of Functional Electrical Stimulation Therapy in Combination With Task-Specific Training: A Scoping Review. Neuromodulation 2022; 25:1280-1288. [PMID: 34031937 DOI: 10.1111/ner.13403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This scoping review was undertaken to synthetize and appraise the literature on the potential mechanisms of action of functional electrical stimulation therapy in combination with task-specific training (FEST + TST) in the rehabilitation following stroke, spinal cord injury, traumatic brain injury, or multiple sclerosis. MATERIALS AND METHODS The literature search was performed using multiple databases (including APA, PsycInfo, Medline, PubMed, EMBASE, CCRCT, and Cochrane Database of Systematic Reviews) from 1946 to June 2020. The literature search used the following terms: (spinal cord injury, paraplegia, tetraplegia, quadriplegia, stroke, multiple sclerosis, traumatic brain injury, or acquired brain injury) AND (functional electrical stimulation or FES). The search included clinical and preclinical studies without limits to language. RESULTS Of the 8209 titles retrieved from the primary search, 57 publications fulfilled the inclusion and exclusion criteria for this scoping review. While most publications were clinical studies (n = 50), there were only seven preclinical studies using animal models. The results of this review suggest that FEST + TST can result in multiple effects on different elements from the muscle to the cerebral cortex. However, most studies were focused on the muscle changes after FEST + TST. CONCLUSIONS The results of this scoping review suggest that FEST + TST can result in multiple effects on different elements of the neuromuscular system, while most research studies were focused on the muscle changes after FEST + TST. Despite the efficacy of the FEST + TST in the neurorehabilitation after CNS injury or disease, the results of this review underline an important knowledge gap with regards to the actual mechanism of action of FEST + TST.
Collapse
Affiliation(s)
- Julio Cesar Furlan
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada; Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; KITE - Research Institute, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
| | - Maureen Pakosh
- Library & Information Services, Rumsey Cardiac Centre Library, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Beverley Catharine Craven
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, ON, Canada; Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; KITE - Research Institute, University Health Network, Toronto, ON, Canada
| | - Milos Radomir Popovic
- KITE - Research Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Lewis MJ, Jeffery ND, Olby NJ. Ambulation in Dogs With Absent Pain Perception After Acute Thoracolumbar Spinal Cord Injury. Front Vet Sci 2020; 7:560. [PMID: 33062648 PMCID: PMC7479830 DOI: 10.3389/fvets.2020.00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute thoracolumbar spinal cord injury (SCI) is common in dogs frequently secondary to intervertebral disc herniation. Following severe injury, some dogs never regain sensory function to the pelvic limbs or tail and are designated chronically "deep pain negative." Despite this, a subset of these dogs develop spontaneous motor recovery over time including some that recover sufficient function in their pelvic limbs to walk independently without assistance or weight support. This type of ambulation is commonly known as "spinal walking" and can take up to a year or more to develop. This review provides a comparative overview of locomotion and explores the physiology of locomotor recovery after severe SCI in dogs. We discuss the mechanisms by which post-injury plasticity and coordination between circuitry contained within the spinal cord, peripheral sensory feedback, and residual or recovered supraspinal connections might combine to underpin spinal walking. The clinical characteristics of spinal walking are outlined including what is known about the role of patient or injury features such as lesion location, timeframe post-injury, body size, and spasticity. The relationship between the emergence of spinal walking and electrodiagnostic and magnetic resonance imaging findings are also discussed. Finally, we review possible ways to predict or facilitate recovery of walking in chronically deep pain negative dogs. Improved understanding of the mechanisms of gait generation and plasticity of the surviving tissue after injury might pave the way for further treatment options and enhanced outcomes in severely injured dogs.
Collapse
Affiliation(s)
- Melissa J Lewis
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas a & M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
4
|
Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019; 16:143. [PMID: 31744520 PMCID: PMC6862792 DOI: 10.1186/s12984-019-0614-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Cheong Leung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.,The KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA.,TIRR Memorial Hermann Research Center, Houston, 77030, TX, USA
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Gómez-Soriano J, Serrano-Muñoz D, Bravo-Esteban E, Avendaño-Coy J, Ávila-Martin G, Galán-Arriero I, Taylor J. Afferent stimulation inhibits abnormal cutaneous reflex activity in patients with spinal cord injury spasticity syndrome. NeuroRehabilitation 2018; 43:135-146. [PMID: 30040758 DOI: 10.3233/nre-172404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Tibialis Anterior (TA) cutaneous reflex (CR) activity evoked following cutaneous stimulation of the plantar (Pl) surface (Pl-TA CR) has demonstrated hyperreflexia and damage of inhibitory mechanisms in subjects with spinal cord injury (SCI) and spasticity. OBJECTIVES To modulate Pl-TA CR and Soleus H-reflex activity with transcutaneous electrical nerve stimulation (TENS) and vibratory stimulation of the plantar pad during rest and controlled isometric plantarflexion. METHODS Non-injured subjects (n = 11) and individuals with incomplete SCI with (n = 14) and without spasticity (n = 14) were recruited. The effect of TENS and vibratory stimuli on Pl-TA CR and soleus H-reflex activity were assessed during rest and controlled ramp-and-hold plantarflexion. RESULTS Vibration failed to inhibit H-reflex activity during rest or plantarflexoin following SCI compared to healthy subjects. In contrast, vibration-induced inhibition of Pl-TA CR was specifically detected in SCI spastic subjects during both rest and the hold phase of plantarflexion. TENS inhibited Pl-TA CR activity in the SCI spasticity group only during hold plantarflexion. CONCLUSIONS Plantar vibratory stimuli inhibited the pl-TA CR, but not the H reflex, during rest and controlled movement in SCI spastic subjects. Assessment of Pl-TA CR modulation should contribute to the development of modality-specific sensory stimuli programmes for the neurorehabilitation of SCI spasticity.
Collapse
Affiliation(s)
- Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, Castilla La Mancha University, Toledo, Spain.,Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Elisabeth Bravo-Esteban
- Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, Castilla La Mancha University, Toledo, Spain
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, Castilla La Mancha University, Toledo, Spain
| | - Gerardo Ávila-Martin
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Iriana Galán-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain.,Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Buckinghamshire Healthcare Trust, NHS, Aylesbury, UK.,Harris Manchester College, Oxford University, UK
| |
Collapse
|
6
|
Piazza S, Torricelli D, Gómez-Soriano J, Serrano-Muñoz D, Ávila-Martín G, Galán-Arriero I, Pons JL, Taylor J. Assessing sensorimotor excitability after spinal cord injury: a reflex testing method based on cycling with afferent stimulation. Med Biol Eng Comput 2018; 56:1425-1434. [PMID: 29340899 DOI: 10.1007/s11517-018-1787-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Several studies have examined spinal reflex modulation during leg cycling in healthy and spinal cord injury (SCI) subjects. However, the effect of cutaneous plantar afferent input on spinal excitability during leg cycling after SCI has not been characterised. The aim of the study was to test the feasibility of using controlled leg cycling in combination with plantar cutaneous electrical stimulation (ES) cycling to assess lower limb spinal sensorimotor excitability in subjects with motor complete or incomplete SCI. Spinal sensorimotor excitability was estimated by measuring cutaneomuscular-conditioned soleus H-reflex activity. Reflex excitability was tested before and after a 10-min ES cycling session in 13 non-injured subjects, 6 subjects with motor incomplete SCI (iSCI) who had moderately impaired gait function, 4 subjects with motor iSCI who had severely impaired gait function, and 5 subjects with motor complete SCI (cSCI). No modulation of soleus H-reflex with plantar cutaneous stimuli was observed after either iSCI or cSCI when compared to non-injured subjects. However, after ES cycling, reflex excitability significantly increased in subjects with iSCI and moderately impaired gait function. ES cycling facilitated spinal sensorimotor excitability only in subjects with motor iSCI with residual gait function. Increased spinal excitability induced with a combination of exercise and afferent stimulation could be adopted with diagnostic and prognostic purposes to reveal the activity-based neurorehabilitation profile of individual subjects with motor iSCI. TRIAL REGISTRATION ISRCTN 26172500 ; retrospectively registered on 15 July 2016 Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain. .,Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, University of Castilla-La Mancha, 45072, Toledo, Spain.
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - Gerardo Ávila-Martín
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - Iriana Galán-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain.,Tecnológico de Monterrey, Monterrey, Mexico
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain.,Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury, HP21 8AL, UK.,Harris Manchester College, University of Oxford, Oxford, OX1 3TD, UK
| |
Collapse
|