1
|
Tao Y, Luo J, Tian J, Peng S, Wang H, Cao J, Wen Z, Zhang X. The role of robot-assisted training on rehabilitation outcomes in Parkinson's disease: a systematic review and meta-analysis. Disabil Rehabil 2024; 46:4049-4067. [PMID: 37818694 DOI: 10.1080/09638288.2023.2266178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
PURPOSE The study aims to assess the efficacy of robot-assisted rehabilitation training on upper and lower limb motor function and fatigue in Parkinson's disease (PD), and to explore the best-acting robotic rehabilitation program. METHODS We searched studies in seven databases and the search period was from the build to 30 June 2023. Two researchers independently screened studies and assessed the quality of the studies for data extraction. RESULTS A total of 21 studies were included, 18 studies related to lower limbs rehabilitation and 3 studies related to upper limbs rehabilitation, involving a total of 787 participants. The results showed that robot-assisted rehabilitation significantly improved indicators of lower limb motor function UPDRS Part III (WMD = -3.58, 95% CI = -5.91 to -1.25, p = 0.003) and BBS (WMD = 4.24, 95% CI = 2.88 to 5.54, p < 0.001), as well as non-motor symptoms of fatigue (WMD = -13.39, 95% CI = -17.92 to -8.86, p < 0.001) in PD patients. At the level of upper limb function, there was no statistically significant difference in the outcome measures of PFS (WMD = -0.25, 95% CI = -4.44 to 3.93, p = 0.9) and BBT (WMD = 1.73, 95% CI = -2.85 to 6.33, p = 0.458). CONCLUSION Robot-assisted rehabilitation significantly improved motor function, fatigue, and balance confidence in PD patients, but current evidence doesn't show that intelligent rehabilitation systems improve upper limb function. In particular, robotics combined with virtual reality worked best.
Collapse
Affiliation(s)
- Yanmin Tao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingsong Luo
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Tian
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sihan Peng
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Wang
- Sichuan Nursing Vocational College, Chengdu, China
| | - Jun Cao
- Sichuan Nursing Vocational College, Chengdu, China
| | - Zhifei Wen
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | |
Collapse
|
2
|
Hotz I, Mildner S, Stampfer-Kountchev M, Slamik B, Blättner C, Türtscher E, Kübler F, Höfer C, Panzl J, Rücker M, Brenneis C, Seebacher B. Robot-assisted gait training in patients with various neurological diseases: A mixed methods feasibility study. PLoS One 2024; 19:e0307434. [PMID: 39190743 DOI: 10.1371/journal.pone.0307434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Walking impairment represents a relevant symptom in patients with neurological diseases often compromising social participation. Currently, mixed methods studies on robot-assisted gait training (RAGT) in patients with rare neurological diseases are lacking. This study aimed to explore the feasibility, acceptability, goal attainment and preliminary effects of RAGT in patients with common and rare neurological diseases and understand the intervention context and process. METHODS A mixed-methods feasibility study was conducted at an Austrian rehabilitation centre. Twenty-eight inpatients after stroke in the subacute and chronic phases, with multiple sclerosis, Parkinson's disease, spinal cord injury, spinocerebellar ataxia, acute/chronic inflammatory demyelinating polyneuropathy and motor neuron disease were included. Patients received RAGT for 45 minutes, 4x/week, for 4 weeks. Baseline and post-intervention assessments included gait parameters, walking and balance, and questionnaires. Semi-structured observations were conducted twice during the intervention period and analysed using thematic analysis. Descriptive statistics within the respective disease groups and calculation of effect sizes for the total sample were performed. Triangulation was employed to develop a deeper understanding of the research topic. RESULTS Data from 26 patients (mean age 61.6 years [standard deviation 13.2]) were analysed. RAGT was highly accepted by patients and feasible, indicated by recruitment, retention, and adherence rates of 84.8% (95% confidence interval, CI 0.7-0.9), 92.2% (95% CI 0.7-1.0) and 94.0% (95% CI 91.4-96.2), respectively. Goal attainment was high, and only mild adverse events occurred. Improvements in walking speed (10-Metre Walk Test, effect size r = 0.876), walking distance (6-Minute Walk Test, r = 0.877), functional mobility (Timed Up and Go, r = 0.875), gait distance (r = 0.829) and number of steps (r = 0.834) were observed. Four themes were identified: familiarising with RAGT; enjoyment and acceptance through a trusting therapeutic relationship; actively interacting; and minimising dissatisfaction. DISCUSSION Sufficiently powered randomised controlled trials are needed to validate our results. TRIAL REGISTRATION German Clinical Trials Register, DRKS00027887.
Collapse
Affiliation(s)
- Isabella Hotz
- Department of Rehabilitation Science, Clinic for Rehabilitation Münster, Münster, Austria
| | - Sarah Mildner
- Department of Rehabilitation Science, Clinic for Rehabilitation Münster, Münster, Austria
| | | | - Bianca Slamik
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Christoph Blättner
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Elisabeth Türtscher
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Franziska Kübler
- Department of Rehabilitation Science, Clinic for Rehabilitation Münster, Münster, Austria
| | - Clemens Höfer
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Johanna Panzl
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Michael Rücker
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Christian Brenneis
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
- Karl Landsteiner Institute of Interdisciplinary Rehabilitation Research, Münster, Austria
| | - Barbara Seebacher
- Department of Rehabilitation Science, Clinic for Rehabilitation Münster, Münster, Austria
- Karl Landsteiner Institute of Interdisciplinary Rehabilitation Research, Münster, Austria
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Fortunati M, Febbi M, Negro M, Gennaro F, D’Antona G, Crisafulli O. Lower-Limb Exoskeletons for Gait Training in Parkinson's Disease: The State of the Art and Future Perspectives. Healthcare (Basel) 2024; 12:1636. [PMID: 39201194 PMCID: PMC11353983 DOI: 10.3390/healthcare12161636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Gait dysfunction (GD) is a common impairment of Parkinson's disease (PD), which negatively impacts patients' quality of life. Among the most recent rehabilitation technologies, a lower-limb powered exoskeleton (LLEXO) arises as a useful instrument for gait training in several neurological conditions, including PD. However, some questions relating to methods of use, achievable results, and usefulness compared to traditional rehabilitation methodologies still require clear answers. Therefore, in this review, we aim to summarise and analyse all the studies that have applied an LLEXO to train gait in PD patients. Literature research on PubMed and Scopus retrieved five articles, comprising 46 PD participants stable on medications (age: 71.7 ± 3.7 years, 24 males, Hoehn and Yahr: 2.1 ± 0.6). Compared to traditional rehabilitation, low-profile lower-limb exoskeleton (lp-LLEXO) training brought major improvements towards walking capacity and gait speed, while there are no clear major benefits regarding the dual-task gait cost index and freezing of gait symptoms. Importantly, the results suggest that lp-LLEXO training is more beneficial for patients with an intermediate-to-severe level of disease severity (Hoehn and Yahr > 2.5). This review could provide a novel framework for implementing LLEXO in clinical practise, highlighting its benefits and limitations towards gait training.
Collapse
Affiliation(s)
- Matteo Fortunati
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| | - Massimiliano Febbi
- Department of Industrial Engineering, University of Tor Vergata, 00133 Rome, Italy
- Laboratory for Rehabilitation, Medicine and Sport (LARM), 00133 Rome, Italy
| | - Massimo Negro
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| | - Federico Gennaro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Giuseppe D’Antona
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Oscar Crisafulli
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058 Voghera, Italy
| |
Collapse
|
4
|
Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, Jacob M, Reddy PH, Sehar U. Artificial intelligence in Parkinson's disease: Early detection and diagnostic advancements. Ageing Res Rev 2024; 99:102410. [PMID: 38972602 DOI: 10.1016/j.arr.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, globally affecting men and women at an exponentially growing rate, with currently no cure. Disease progression starts when dopaminergic neurons begin to die. In PD, the loss of neurotransmitter, dopamine is responsible for the overall communication of neural cells throughout the body. Clinical symptoms of PD are slowness of movement, involuntary muscular contractions, speech & writing changes, lessened automatic movement, and chronic tremors in the body. PD occurs in both familial and sporadic forms and modifiable and non-modifiable risk factors and socioeconomic conditions cause PD. Early detectable diagnostics and treatments have been developed in the last several decades. However, we still do not have precise early detectable biomarkers and therapeutic agents/drugs that prevent and/or delay the disease process. Recently, artificial intelligence (AI) science and machine learning tools have been promising in identifying early detectable markers with a greater rate of accuracy compared to past forms of treatment and diagnostic processes. Artificial intelligence refers to the intelligence exhibited by machines or software, distinct from the intelligence observed in humans that is based on neural networks in a form and can be used to diagnose the longevity and disease severity of disease. The term Machine Learning or Neural Networks is a blanket term used to identify an emerging technology that is created to work in the way of a "human brain" using many intertwined neurons to achieve the same level of raw intelligence as that of a brain. These processes have been used for neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease, to assess the severity of the patient's condition. In the current article, we discuss the prevalence and incidence of PD, and currently available diagnostic biomarkers and therapeutic strategies. We also highlighted currently available artificial intelligence science and machine learning tools and their applications to detect disease and develop therapeutic interventions.
Collapse
Affiliation(s)
- Aananya Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Lubbock High School, Lubbock, TX 79401, USA.
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Frenship High School, Lubbock, TX 79382, USA.
| | - Ricardo Isaiah Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; University of South Florida, Tampa, FL 33620, USA.
| | - Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department pf Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
5
|
Raciti L, Raciti G, Ammendolia A, de Sire A, Onesta MP, Calabrò RS. Improving Spasticity by Using Botulin Toxin: An Overview Focusing on Combined Approaches. Brain Sci 2024; 14:631. [PMID: 39061372 PMCID: PMC11274891 DOI: 10.3390/brainsci14070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Spasticity is a very common sign in the neurological field. It can be defined as "a motor disorder marked by a velocity-dependent increase in muscle tone or tonic stretch reflexes" associated with hypertonia. It leads to a high risk of limb deformities and pain that prejudices residual motor function, impairing quality of life". The treatment of spasticity depends on its severity and its location and, in general, it is based on rehabilitation, oral therapies (the gamma-aminobutyric acid b agonist baclofen) and injectable medications (i.e., botulin toxins, acting on polysynaptic reflex mechanisms). The botulin toxin type A (BoNT-A) injection has been effectively used to improve different types of spasticity. However, when BoNT-A is not sufficient, a combination of nonpharmacological approaches could be attempted. Therefore, additional intervention, such as conventional physical therapy by itself or further combined with robotic gait training, may be needed. Indeed, it has been shown that combination of BoNT-A and robotics has a positive effect on activity level and upper limb function in patients with stroke, including those in the chronic phase. The aim of this review is to evaluate the efficacy of pharmacological or nonpharmacological treatment in combination with BoNT-A injections on spasticity. The combined therapy of BoNT with conventional or adjunct activities or robot-assisted training, especially with end-effectors, is a valid tool to improve patients' performance and outcomes. The combined strategies might rise the toxin's effect, lowering its dosages of botulinum and reducing side effects and costs.
Collapse
Affiliation(s)
- Loredana Raciti
- Unità Spinale Unipolare, AO Cannizzaro, 98102 Catania, Italy; (L.R.); (M.P.O.)
| | - Gianfranco Raciti
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Maria Pia Onesta
- Unità Spinale Unipolare, AO Cannizzaro, 98102 Catania, Italy; (L.R.); (M.P.O.)
| | | |
Collapse
|
6
|
Baroni A, Lamberti N, Gandolfi M, Rimondini M, Bertagnolo V, Grassilli S, Zerbinati L, Manfredini F, Straudi S. Traditional versus progressive robot-assisted gait training in people with multiple sclerosis and severe gait disability: study protocol for the PROGR-EX randomised controlled trial. BMJ Open Sport Exerc Med 2024; 10:e002039. [PMID: 38779575 PMCID: PMC11110587 DOI: 10.1136/bmjsem-2024-002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Gait disorders are the most frequent symptoms associated to multiple sclerosis (MS). Robot-assisted gait training (RAGT) in people with MS (PwMS) has been proposed as a possible effective treatment option for severe motor disability without significant superiority when compared to intensive overground gait training (OGT). Furthermore, RAGT at high intensity may enhance fatigue and spasticity. This study aims to evaluate the effects of a low-intensity RAGT at progressively increasing intensity compared to conventional RAGT and OGT in PwMS and moderate to severe walking impairment. 24 PwMS will be recruited and assigned to one of the three treatment groups: low-intensity RAGT at progressively increasing intensity, conventional RAGT and OGT. All participants will receive 3-weekly treatment sessions of 3 hours each for 4 weeks. In the first 2 hours of treatment, all participants will receive a rehabilitation programme based on stretching exercises, muscle strengthening and educational interventions. During the last hour, subjects will undergo specific gait training according to the assignment group. Outcomes will be assessed before and after treatment and at 3-month follow-up. The primary outcome is walking speed. Secondary outcomes include mobility and balance, psychological measures, muscle oxygen consumption, electrical and haemodynamic brain activity, urinary biomarkers, usability, and acceptability of robotic devices for motor rehabilitation. The results of this study will provide a safe, affordable and non-operator-dependent, intervention for PwMS. Results in terms of functional, psychological, neurophysiological and biological outcomes will confirm our hypothesis. The study's trial registration number: NCT06381440.
Collapse
Affiliation(s)
- Andrea Baroni
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, Verona University, Verona, Italy
| | - Michela Rimondini
- Department of Neurosciences, Biomedicine and Movement Sciences, Verona University, Verona, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, Ferrara University, Ferrara, Italy
| | - Silvia Grassilli
- Department of Environment and Prevention Sciences, Ferrara University, Ferrara, Italy
| | - Luigi Zerbinati
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
7
|
Wu K, Pan HH, Lin CH. Robotic exoskeletons and total knee arthroplasty: The future of knee rehabilitation and replacement - A meta-analysis. Medicine (Baltimore) 2024; 103:e37876. [PMID: 38669435 PMCID: PMC11049723 DOI: 10.1097/md.0000000000037876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE Exoskeletons can play a crucial role in post-TKA rehabilitation by accelerating recovery, improving mobility, and reducing further injury risk. This meta-analysis evaluated the effectiveness of exoskeletons in post-total knee replacement (TKR) rehabilitation. DESIGN Comprehensive searches were conducted on PubMed, OVID Medline, Cochrane Collaboration Library, and Embase (period: database inception to March 2023). Randomized controlled trials enrolling patients who underwent TKR and studies examining the effect of robot-assisted rehabilitation on physical function and pain outcomes were eligible for inclusion. Eight studies (302 patients) were thus included. RESULTS Exoskeletons significantly improved active range of motion (ROM) (SMD: 10.98, 95% confidence interval (CI): 7.81-14.16, P < .001), passive ROM (SMD: 4.11, 95% CI: 1.02-7.20, P = .009), Hospital for Special Surgery scores (SMD: 7.78, 95% CI: 5.87-9.68, P < .00001), and hospital stay length (SMD: -3.19, 95% CI: -4 to -2.38, P < .00001) compared with conventional rehabilitation. Active and passive ROM improvements suggest that exoskeletons aid knee function restoration and mobility post-TKR, whereas Hospital for Special Surgery score improvements support exoskeleton use in TKR rehabilitation. A shorter hospital stay was an important finding which could potentially reduce healthcare costs and improve outcomes. CONCLUSION Despite the inclusion of a limited number of studies, our findings suggest that exoskeletons can enhance post-TKR rehabilitation outcomes and improve quality of life. Robot-assisted rehabilitation may be effective following TKR. Further research should confirm these findings.
Collapse
Affiliation(s)
- Karl Wu
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Materials and Textiles, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Hsiang Hung Pan
- Department of Education, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Chun Hung Lin
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| |
Collapse
|
8
|
Lee DH, Woo BS, Park YH, Lee JH. General Treatments Promoting Independent Living in Parkinson's Patients and Physical Therapy Approaches for Improving Gait-A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:711. [PMID: 38792894 PMCID: PMC11123276 DOI: 10.3390/medicina60050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
This study delves into the multifaceted approaches to treating Parkinson's disease (PD), a neurodegenerative disorder primarily affecting motor function but also manifesting in a variety of symptoms that vary greatly among individuals. The complexity of PD symptoms necessitates a comprehensive treatment strategy that integrates surgical interventions, pharmacotherapy, and physical therapy to tailor to the unique needs of each patient. Surgical options, such as deep brain stimulation (DBS), have been pivotal for patients not responding adequately to medication, offering significant symptom relief. Pharmacotherapy remains a cornerstone of PD management, utilizing drugs like levodopa, dopamine agonists, and others to manage symptoms and, in some cases, slow down disease progression. However, these treatments often lead to complications over time, such as motor fluctuations and dyskinesias, highlighting the need for precise dosage adjustments and sometimes combination therapies to optimize patient outcomes. Physical therapy plays a critical role in addressing the motor symptoms of PD, including bradykinesia, muscle rigidity, tremors, postural instability, and akinesia. PT techniques are tailored to improve mobility, balance, strength, and overall quality of life. Strategies such as gait and balance training, strengthening exercises, stretching, and functional training are employed to mitigate symptoms and enhance functional independence. Specialized approaches like proprioceptive neuromuscular facilitation (PNF), the Bobath concept, and the use of assistive devices are also integral to the rehabilitation process, aimed at improving patients' ability to perform daily activities and reducing the risk of falls. Innovations in technology have introduced robotic-assisted gait training (RAGT) and other assistive devices, offering new possibilities for patient care. These tools provide targeted support and feedback, allowing for more intensive and personalized rehabilitation sessions. Despite these advancements, high costs and accessibility issues remain challenges that need addressing. The inclusion of exercise and activity beyond structured PT sessions is encouraged, with evidence suggesting that regular physical activity can have neuroprotective effects, potentially slowing disease progression. Activities such as treadmill walking, cycling, and aquatic exercises not only improve physical symptoms but also contribute to emotional well-being and social interactions. In conclusion, treating PD requires a holistic approach that combines medical, surgical, and therapeutic strategies. While there is no cure, the goal is to maximize patients' functional abilities and quality of life through personalized treatment plans. This integrated approach, along with ongoing research and development of new therapies, offers hope for improving the management of PD and the lives of those affected by this challenging disease.
Collapse
Affiliation(s)
- Dae-Hwan Lee
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Bong-Sik Woo
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Yong-Hwa Park
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Jung-Ho Lee
- Department of Physical Therapy, University of Kyungdong, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Zhang T, Meng DT, Lyu DY, Fang BY. The Efficacy of Wearable Cueing Devices on Gait and Motor Function in Parkinson Disease: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch Phys Med Rehabil 2024; 105:369-380. [PMID: 37532166 DOI: 10.1016/j.apmr.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE To summarize the efficacy of wearable cueing devices for improving gait and motor function of patients with Parkinson disease (PWP). DATA SOURCES PubMed, Embase, and Cochrane CENTRAL databases were searched for papers published in English, from inception to October 23, 2022. STUDY SELECTION Randomized controlled trials focusing on the effects of wearable cueing devices on gait and motor function in PWP were included. DATA EXTRACTION Two reviewers independently selected articles and extracted the data. The Cochrane Bias Risk Assessment Tool was used to assess risk of bias and the Grading of Recommendations Assessment, Development and Evaluation was used to evaluate the quality of evidence. DATA SYNTHESIS Seven randomized controlled trials with 167 PWP were included in the meta-analysis. Significant effect of wearable cueing devices on walking speed (mean difference [MD]=0.07 m/s, 95% confidence interval [CI]: [0.05, 0.09], P<.00001) was detected; however, after sensitivity analysis, no significant overall effect on walking speed was noted (MD=0.04 m/s, 95% CI: [-0.03, 0.12], P=.25). No significant improvements were found in stride length (MD=0.06 m, 95% CI: [0.00, 0.13], P=.05), the Unified Parkinson's Disease Rating Scale-III score (MD=-0.61, 95% CI: [-4.10, 2.88], P=.73), Freezing of Gait Questionnaire score (MD=-0.83, 95% CI: [-2.98, 1.33], P=.45), or double support time (MD=-0.91, 95% CI: [-3.09, 1.26], P=.41). Evidence was evaluated as low quality. CONCLUSIONS Wearable cueing devices may result in an immediate improvement on walking speed; however, there is no evidence that their use results in a significant improvement in other gait or motor functions.
Collapse
Affiliation(s)
- Tian Zhang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - De-Tao Meng
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Di-Yang Lyu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Bo-Yan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Parsaei M, Amanollahi M, TaghaviZanjani F, Khanmohammadi S, Jameie M, Naser Moghadasi A. Effects of non-pharmacological interventions on gait and balance of persons with Multiple Sclerosis: A narrative review. Mult Scler Relat Disord 2024; 82:105415. [PMID: 38211505 DOI: 10.1016/j.msard.2023.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) is among the most common reasons for disability in young adults. Mobility impairment, primarily related to gait and balance, is ranked as the preeminent concern among persons with MS (PwMS). Gait and balance dysfunction can directly affect the quality of life and activities of daily life in PwMS, hence the importance of effective treatment strategies. Previous studies have demonstrated the positive effect of various non-pharmacological rehabilitation methods, including physiotherapy and electrical stimulation, on gait and mobility in PwMS. Non-pharmacological methods can be tailored to the individual needs and abilities of each patient, allowing healthcare providers to create personalized training programs. Furthermore, these methods typically result in minimal or no side effects. PURPOSE This review provides a comprehensive overview of an array of non-pharmacological treatment approaches aimed at enhancing ambulatory performance in PwMS. METHODS We performed a narrative review of the original papers available in PubMed, investigating the effects of different nonmedical approaches on the gait and balance performance of the PwMS. Reviewed treatment approaches include "exercise, physical rehabilitation, dual-task (DT) rehabilitation, robot-assisted rehabilitation, virtual reality-assisted rehabilitation, game training, electrical stimulation devices, auditory stimulation, visual feedback, and shoe insoles". RESULTS AND CONCLUSIONS Eighty articles were meticulously reviewed. Our study highlights the positive effects of non-pharmacological interventions on patients' quality of life, reducing disability, fatigue, and muscle spasticity. While some methods, including exercise and physiotherapy, showed substantial promise, further research is needed to evaluate whether visual biofeedback and auditory stimulation are preferable over conventional approaches. Additionally, approaches such as functional electrical stimulation, non-invasive brain stimulation, and shoe insoles demonstrate substantial short-term benefits, prompting further investigation into their long-term effects. Non-pharmacological interventions can serve as a valuable complement to medication-based approaches.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Maternal, Fetal, and Neonatal Research Center, Family Health Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Artoni F, Cometa A, Dalise S, Azzollini V, Micera S, Chisari C. Cortico-muscular connectivity is modulated by passive and active Lokomat-assisted Gait. Sci Rep 2023; 13:21618. [PMID: 38062035 PMCID: PMC10703891 DOI: 10.1038/s41598-023-48072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The effects of robotic-assisted gait (RAG) training, besides conventional therapy, on neuroplasticity mechanisms and cortical integration in locomotion are still uncertain. To advance our knowledge on the matter, we determined the involvement of motor cortical areas in the control of muscle activity in healthy subjects, during RAG with Lokomat, both with maximal guidance force (100 GF-passive RAG) and without guidance force (0 GF-active RAG) as customary in rehabilitation treatments. We applied a novel cortico-muscular connectivity estimation procedure, based on Partial Directed Coherence, to jointly study source localized EEG and EMG activity during rest (standing) and active/passive RAG. We found greater cortico-cortical connectivity, with higher path length and tendency toward segregation during rest than in both RAG conditions, for all frequency bands except for delta. We also found higher cortico-muscular connectivity in distal muscles during swing (0 GF), and stance (100 GF), highlighting the importance of direct supraspinal control to maintain balance, even when gait is supported by a robotic exoskeleton. Source-localized connectivity shows that this control is driven mainly by the parietal and frontal lobes. The involvement of many cortical areas also in passive RAG (100 GF) justifies the use of the 100 GF RAG training for neurorehabilitation, with the aim of enhancing cortical-muscle connections and driving neural plasticity in neurological patients.
Collapse
Affiliation(s)
- Fiorenzo Artoni
- Department of Clinical Neurosciences, University of Genève, Faculty of Medicine, 1211, Geneva, Switzerland.
- Ago Neurotechnologies Sàrl, 1201, Geneva, Switzerland.
| | - Andrea Cometa
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- University School for Advanced Studies IUSS Pavia, 27100, Pavia, Italy
| | - Stefania Dalise
- Unit of Neurorehabilitation, Pisa University Hospital, Pisa, Italy
| | - Valentina Azzollini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
- Translational Neural Engineering Laboratory (TNE), École Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Pisa University Hospital, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Pollet J, Buraschi R, Ranica G, Pancera S, Anastasi D, Fazio R, Monteleone S, Lena E, Floridi V, Zucchini F, Falso MV. The Effect of Personalized Shoe Insoles on Parkinson's Disease Subjects: A Triple-Blind Randomized Controlled Trial. J Clin Med 2023; 12:7204. [PMID: 38068255 PMCID: PMC10707212 DOI: 10.3390/jcm12237204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 04/19/2024] Open
Abstract
Subjects with Parkinson's Disease (PD) display different motor and non-motor symptoms. Different therapies have been shown to be effective, such as plantar foot stimulation, which has proved to be effective for motor symptoms. Different stimulation methods were proposed and tested through specific devices, or insoles. Our aim was to assess the effect of a newly designed custom-made insole called PRO-STEP compared with a flat sham insole on subjects with PD. Subjects were randomized 1:1 into two arms and were asked to wear PRO-STEP or sham insoles for at least 6 h per day for 10 weeks. Participants were evaluated at four timepoints. Forty-two subjects were randomly assigned to the PRO-STEP (EG) or sham group (SG). The comparison of the EG and SG without and with insoles (T0-T1) did not show significant differences in the TUG time and in the 10MWT gait parameters. At T1, T2, and T3 TUG time, BBS, SF12-MC, and SF12-PC did not show significant differences. The satisfaction level with the PRO-STEP or sham insoles was high in both groups. PD patients were satisfied with PRO-STEP insoles; however, plantar foot stimulation is not effective from a functional perspective. Future studies should consider possible modifications to the proposed stimulation to improve its effectiveness in patients with PD.
Collapse
Affiliation(s)
- Joel Pollet
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | - Riccardo Buraschi
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | - Giorgia Ranica
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | - Simone Pancera
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | - Denise Anastasi
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | | | | | - Eleonora Lena
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | - Valeria Floridi
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| | | | - Maurizio Vincenzo Falso
- IRCCS Fondazione Don Carlo Gnocchi, 20162 Milan, Italy; (J.P.); (R.B.); (S.P.); (D.A.); (E.L.); (V.F.); (M.V.F.)
| |
Collapse
|
13
|
LaMarca A, Tse I, Keysor J. Rehabilitation Technologies for Chronic Conditions: Will We Sink or Swim? Healthcare (Basel) 2023; 11:2751. [PMID: 37893825 PMCID: PMC10606667 DOI: 10.3390/healthcare11202751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Chronic conditions such as stroke, Parkinson's disease, spinal cord injury, multiple sclerosis, vestibular disorders, chronic pain, arthritis, diabetes, chronic obstructive pulmonary disease (COPD), and heart disease are leading causes of disability among middle-aged and older adults. While evidence-based treatment can optimize clinical outcomes, few people with chronic conditions engage in the recommended levels of exercise for clinical improvement and successful management of their condition. Rehabilitation technologies that can augment therapeutic care-i.e., exoskeletons, virtual/augmented reality, and remote monitoring-offer the opportunity to bring evidence-based rehabilitation into homes. Successful integration of rehabilitation techniques at home could help recovery and access and foster long term self-management. However, widespread uptake of technology in rehabilitation is still limited, leaving many technologies developed but not adopted. METHODS In this narrative review, clinical need, efficacy, and obstacles and suggestions for implementation are discussed. The use of three technologies is reviewed in the management of the most prevalent chronic diseases that utilize rehabilitation services, including common neurological, musculoskeletal, metabolic, pulmonary, and cardiac conditions. The technologies are (i) exoskeletons, (ii) virtual and augmented reality, and (iii) remote monitoring. RESULTS Effectiveness evidence backing the use of technology in rehabilitation is growing but remains limited by high heterogeneity, lack of long-term outcomes, and lack of adoption outcomes. CONCLUSION While rehabilitation technologies bring opportunities to bridge the gap between clinics and homes, there are many challenges with adoption. Hybrid effectiveness and implementation trials are a possible path to successful technology development and adoption.
Collapse
Affiliation(s)
- Amber LaMarca
- Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA 02129, USA;
| | - Ivy Tse
- Doctor of Physical Therapy Program, MGH Institute of Health Professions, Boston, MA 02129, USA
| | - Julie Keysor
- School of Health Care Leadership, MGH Institute of Health Professions, Boston, MA 02129, USA
| |
Collapse
|
14
|
RONCONI G, FERRARA PE, NEGRINI F. Lights and shadows of robotic rehabilitation in neurological disorders. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2023. [DOI: 10.23736/s0393-3660.22.04943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Turolla A, Kiper P, Mazzarotto D, Cecchi F, Colucci M, D'Avenio G, Facciorusso S, Gatti R, Giansanti D, Iosa M, Bonaiuti D, Boldrini P, Mazzoleni S, Posteraro F, Benanti P, Castelli E, Draicchio F, Falabella V, Galeri S, Gimigliano F, Grigioni M, Mazzon S, Morone G, Petrarca M, Picelli A, Senatore M, Turchetti G, Molteni F. Reference theories and future perspectives on robot-assisted rehabilitation in people with neurological conditions: A scoping review and recommendations from the Italian Consensus Conference on Robotics in Neurorehabilitation (CICERONE). NeuroRehabilitation 2022; 51:681-691. [PMID: 36530100 DOI: 10.3233/nre-220160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Robot-based treatments are developing in neurorehabilitation settings. Recently, the Italian National Health Systems recognized robot-based rehabilitation as a refundable service. Thus, the Italian neurorehabilitation community promoted a national consensus on this topic. OBJECTIVE To conceptualize undisclosed perspectives for research and applications of robotics for neurorehabilitation, based on a qualitative synthesis of reference theoretical models. METHODS A scoping review was carried out based on a specific question from the consensus Jury. A foreground search strategy was developed on theoretical models (context) of robot-based rehabilitation (exposure), in neurological patients (population). PubMed and EMBASE® databases were searched and studies on theoretical models of motor control, neurobiology of recovery, human-robot interaction and economic sustainability were included, while experimental studies not aimed to investigate theoretical frameworks, or considering prosthetics, were excluded. RESULTS Overall, 3699 records were screened and finally 9 papers included according to inclusion and exclusion criteria. According to the population investigated, structured information on theoretical models and indications for future research was summarized in a synoptic table. CONCLUSION The main indication from the Italian consensus on robotics in neurorehabilitation is the priority to design research studies aimed to investigate the role of robotic and electromechanical devices in promoting neuroplasticity.
Collapse
Affiliation(s)
- Andrea Turolla
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Division of Occupational Medicine, IRCCS Policlinico Sant'Orsola-Malpighi, Bologna, Italy
| | | | - Deborah Mazzarotto
- Medicina Fisica e Riabilitazione, ULSS 4 Veneto Orientale, San Donà di Piave, Italy
| | - Francesca Cecchi
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Florence, Italy
- IRCSS Fondazione Don Carlo Gnocchi, Firenze, Italy
| | | | - Giuseppe D'Avenio
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | | | - Roberto Gatti
- Humanitas University, Department of Biomedical Sciences, via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center - IRCCS, Milan, Italy
| | - Daniele Giansanti
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Marco Iosa
- Department of Psychology, Sapienza Università di Roma, Rome, Italy
- Smart Lab, IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Paolo Boldrini
- Italian Society of Physical and Rehabilitation Medicine (SIMFER), Rome, Italy
| | - Stefano Mazzoleni
- Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Federico Posteraro
- Department of Rehabilitation, AUSL Toscana Nord Ovest - Camaiore, Versilia Hospital, Lucca, Italy
| | | | - Enrico Castelli
- Department of Neurorehabilitation and Robotics, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Draicchio
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Vincenzo Falabella
- Italian Federation of Persons with Spinal Cord Injuries (FAIP Onlus), Rome, Italy
| | | | - Francesca Gimigliano
- Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mauro Grigioni
- National Center for Innovative Technologies in Public Health, Italian National Institute of Health, Rome, Italy
| | - Stefano Mazzon
- Rehabilitation Unit, ULSS (Local Health Authority) Euganea, Camposampiero Hospital, Padua, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- San Raffaele Institute of Sulmona, Sulmona, Italy
| | - Maurizio Petrarca
- Movement Analysis and Robotics Laboratory (MARlab), IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Senatore
- Associazione Italiana dei Terapisti Occupazionali (AITO), Rome, Italy
| | | | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Lecco, Italy
| |
Collapse
|