Hanaoka C, Pichika R, Dayanidhi S, Jayabalan P. Serum metabolomics after exercise in ambulatory individuals with cerebral palsy.
Dev Med Child Neurol 2024. [PMID:
39431769 DOI:
10.1111/dmcn.16105]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
AIM
To evaluate whether serum metabolomics differ between ambulatory individuals with cerebral palsy (CP) compared with individuals with typical development and whether functional capacity is associated with metabolite abundance.
METHOD
Thirty-eight adolescents and young adults were enrolled (CP: n = 19; typical development: n = 19). After functional capacity testing (10-meter walk, sit-to-stand, and peak knee flexion/extension torques), blood was drawn. Targeted serum metabolomics on hydrophilic metabolites were performed by high-performance liquid chromatography coupled with high-resolution and tandem mass spectrometry. Metabolite dimensionality reduction, pathway analysis, fold change, and t-tests evaluated changes in metabolite abundance. Associations were tested between functional measures and metabolite abundance.
RESULTS
Individuals with CP had a significant increase in the abundance of essential amino acids, catabolic products of protein metabolism, and tricarboxylic acid cycle substrates, such as valine, tryptophan, kynurenic acid, and pyruvate (p < 0.05). Importantly, the abundance of numerous metabolites was only highly associated with functional capacity in individuals with CP such that greater abundance was associated with greater capacity, but not in those with typical development.
INTERPRETATION
Our findings show clear increases in serum metabolites in individuals with CP, which are associated with functional capacity for movement. The altered metabolite profile measured after exercise might reflect increased energy production needed for movement. Appropriate nutritional intake during exercise might be needed given increased energy requirements.
Collapse