1
|
Sambou ML, Zhao X, Hong T, Fan J, Basnet TB, Zhu M, Wang C, Hang D, Jiang Y, Dai J. Associations Between Sleep Quality and Health Span: A Prospective Cohort Study Based on 328,850 UK Biobank Participants. Front Genet 2021; 12:663449. [PMID: 34211497 PMCID: PMC8239359 DOI: 10.3389/fgene.2021.663449] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To examine the associations between sleep quality and health span using a prospective cohort design based on the UK Biobank (UKB). MATERIALS AND METHODS This longitudinal cohort study enrolled 328,850 participants aged between 37 and 73 years from UKB to examine the associations between sleep quality and risk of terminated health span. End of health span was defined by eight events strongly associated with longevity (cancer, death, congestive heart failure, myocardial infarction, chronic obstructive pulmonary disease, stroke, dementia, and diabetes), and a sleep score was generated according to five sleep behavioral factors (sleep duration, chronotype, sleeplessness, daytime sleepiness, and snoring) to characterize sleep quality. The hazard ratio (HR) and 95% confidence intervals (CIs) were calculated by multivariate-adjusted Cox proportional hazards model. Moreover, we calculated population attributable risk percentage (PAR%) to reflect the public health significance of healthy sleep quality. RESULTS Compared with poor sleep quality, participants with healthy sleep quality had a 15% (HR: 0.85, 95% CI: 0.81-0.88) reduced risk of terminated health span, and those of less-healthy sleep quality had a 12% (HR: 0.88, 95% CI: 0.85-0.92) reduced risk. Linear trend results indicated that the risk of terminated health span decreased by 4% for every additional sleep score. Nearly 15% health span termination events in this cohort would have been prevented if a healthy sleep behavior pattern was adhered to (PAR%: 15.30, 95% CI: 12.58-17.93). CONCLUSION Healthy sleep quality was associated with a reduced risk of premature end of health span, suggesting healthy sleep behavior may extend health span. However, further studies are suggested for confirmation of causality and potential mechanism.
Collapse
Affiliation(s)
- Muhammed Lamin Sambou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongtong Hong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Til Bahadur Basnet
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dong Hang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Gregor S, Saumur TM, Crosby LD, Powers J, Patterson KK. Study Paradigms and Principles Investigated in Motor Learning Research After Stroke: A Scoping Review. Arch Rehabil Res Clin Transl 2021; 3:100111. [PMID: 34179749 PMCID: PMC8211998 DOI: 10.1016/j.arrct.2021.100111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To (1) characterize study paradigms used to investigate motor learning (ML) poststroke and (2) summarize the effects of different ML principles in promoting skill acquisition and retention. Our secondary objective is to evaluate the clinical utility of ML principles on stroke rehabilitation. DATA SOURCES Medline, Excerpta Medica Database, Allied and Complementary Medicine, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Central Register of Controlled Trials were searched from inception on October 24, 2018 and repeated on June 23, 2020. Scopus was searched on January 24, 2019 and July 22, 2020 to identify additional studies. STUDY SELECTION Our search included keywords and concepts to represent stroke and "motor learning. An iterative process was used to generate study selection criteria. Three authors independently completed title, abstract, and full-text screening. DATA EXTRACTION Three reviewers independently completed data extraction. DATA SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension guidelines for scoping reviews were used to guide our synthesis. Thirty-nine studies were included. Study designs were heterogeneous, including variability in tasks practiced, acquisition parameters, and retention intervals. ML principles investigated included practice complexity, feedback, motor imagery, mental practice, action observation, implicit and explicit information, aerobic exercise, and neurostimulation. An additional 2 patient-related factors that influence ML were included: stroke characteristics and sleep. Practice complexity, feedback, and mental practice/action observation most consistently promoted ML, while provision of explicit information and more severe strokes were detrimental to ML. Other factors (ie, sleep, practice structure, aerobic exercise, neurostimulation) had a less clear influence on learning. CONCLUSIONS Improved consistency of reporting in ML studies is needed to improve study comparability and facilitate meta-analyses to better understand the influence of ML principles on learning poststroke. Knowledge of ML principles and patient-related factors that influence ML, with clinical judgment can guide neurologic rehabilitation delivery to improve patient motor outcomes.
Collapse
Affiliation(s)
- Sarah Gregor
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Tyler M. Saumur
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Lucas D. Crosby
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Jessica Powers
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
| | - Kara K. Patterson
- KITE, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhao Y, Hu B, Liu Q, Wang Y, Zhao Y, Zhu X. Social support and sleep quality in patients with stroke: The mediating roles of depression and anxiety symptoms. Int J Nurs Pract 2021; 28:e12939. [PMID: 33870617 DOI: 10.1111/ijn.12939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Research has demonstrated that higher social support is associated with better psychological health, quality of life, cognition, activities of daily living and social participation, but the relationship between social support and sleep quality remains unknown. AIMS This study aimed to assess the incidence of poor sleep quality, clarify the relationship between social support and sleep quality amongst stroke patients and determine whether anxiety and depression symptoms mediate this relationship. METHODS We conducted a quantitative, cross-sectional study involving 238 patients with stroke (median age of 61 [range 29-87] years, 68.1% male) recruited from a comprehensive tertiary care hospital between September 2019 and January 2020. A self-administered, structured questionnaire was used for the survey. The mediating effect of anxiety and depression symptoms was assessed using the bootstrap method via Model 4 (parallel mediation) of the SPSS PROCESS macro. RESULTS Results showed that the incidence of poor sleep quality amongst stroke patients was 65%. Mediation analysis showed that social support exerted significant direct effects on sleep quality, and anxiety and depression symptoms mediated the relationship between social support and sleep quality. CONCLUSION Measures should be taken to enhance social support to improve the sleep quality of stroke patients. SUMMARY STATEMENT What is already known about this topic? Patients with stroke have a high rate of sleep disorders, anxiety and depression symptoms. Anxiety and depression symptoms have a negative effect on sleep quality. Social support may be an effective intervention to reduce anxiety and depression symptoms and improve sleep quality amongst stroke patients. What this paper adds? The incidence of poor sleep was high amongst stroke patients. Social support had a direct positive effect on sleep quality. Anxiety and depression symptoms played multiple mediating roles in the relationship between social support and sleep quality. The implications of this paper: Our study adds to the existing literature by clarifying how social support impacts the sleep quality of stroke patients. We suggested improving the sleep quality of stroke patients through enhancing social support and reducing anxiety and depression symptoms, especially in patients with low levels of social support.
Collapse
Affiliation(s)
- Yaling Zhao
- School of Nursing, Department of Medicine, Qingdao University, Qingdao, China
| | - Bo Hu
- Department of Thoracic Surgery, Municipal Hospital, Qingdao, China
| | - Qingwei Liu
- School of Nursing, Department of Medicine, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Nursing, Department of Medicine, Qingdao University, Qingdao, China
| | - Yuxue Zhao
- School of Nursing, Department of Medicine, Qingdao University, Qingdao, China
| | - Xiuli Zhu
- School of Nursing, Department of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Neuroplasticity in Brain Injury: Maximizing Recovery. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2019. [DOI: 10.1007/s40141-019-00242-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Backhaus W, Braass H, Gerloff C, Hummel FC. Can Daytime Napping Assist the Process of Skills Acquisition After Stroke? Front Neurol 2018; 9:1002. [PMID: 30524365 PMCID: PMC6262055 DOI: 10.3389/fneur.2018.01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 01/14/2023] Open
Abstract
Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10-20 min), or (iii) long nap (50-80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains.
Collapse
Affiliation(s)
- Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Hanna Braass
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C. Hummel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
7
|
Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D, Cutler T, Ghiani CA, Shibata S, Block GD, Colwell CS. Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. J Biol Rhythms 2018; 33:535-554. [PMID: 30084274 DOI: 10.1177/0748730418790401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) patients suffer from progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep-wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and excessive fatigue. The BACHD mouse model exhibits many HD core symptoms including circadian dysfunction. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early interventions that improve circadian rhythmicity could benefit HD symptoms and delay disease progression. We evaluated the effects of time-restricted feeding (TRF) on the BACHD mouse model. At 3 months of age, the animals were divided into 2 groups: ad lib and TRF. The TRF-treated BACHD mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle (ZT 15-21) of the period when mice are normally active (ZT 12-24). Following 3 months of treatment (when mice reached the early disease stage), the TRF-treated BACHD mice showed improvements in their locomotor activity and sleep behavioral rhythms. Furthermore, we found improved heart rate variability, suggesting that their autonomic nervous system dysfunction was improved. On a molecular level, TRF altered the phase but not the amplitude of the PER2::LUC rhythms measured in vivo and in vitro. Importantly, treated BACHD mice exhibited improved motor performance compared with untreated BACHD controls, and the motor improvements were correlated with improved circadian output. It is worth emphasizing that HD is a genetically caused disease with no known cure. Lifestyle changes that not only improve the quality of life but also delay disease progression for HD patients are greatly needed. Our study demonstrates the therapeutic potential of circadian-based treatment strategies in a preclinical model of HD.
Collapse
Affiliation(s)
- Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Dawn H Loh
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Huei-Bin Wang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Yu Tahara
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Dika Kuljis
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Tamara Cutler
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Cristina A Ghiani
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Shigenobu Shibata
- Waseda Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Gene D Block
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
8
|
Heim S, Klann J, Schattka KI, Bauhoff S, Borcherding G, Nosbüsch N, Struth L, Binkofski FC, Werner CJ. A Nap But Not Rest or Activity Consolidates Language Learning. Front Psychol 2017; 8:665. [PMID: 28559856 PMCID: PMC5432759 DOI: 10.3389/fpsyg.2017.00665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that a period of sleep after a motor learning task is a relevant factor for memory consolidation. However, it is yet open whether this also holds true for language-related learning. Therefore, the present study compared the short- and long-term effects of a daytime nap, rest, or an activity task after vocabulary learning on learning outcome. Thirty healthy subjects were divided into three treatment groups. Each group received a pseudo-word learning task in which pictures of monsters were associated with unique pseudo-word names. At the end of the learning block a first test was administered. Then, one group went for a 90-min nap, one for a waking rest period, and one for a resting session with interfering activity at the end during which a new set of monster names was to be learned. After this block, all groups performed a first re-test of the names that they initially learned. On the morning of the following day, a second re-test was administered to all groups. The nap group showed significant improvement from test to re-test and a stable performance onto the second re-test. In contrast, the rest and the interference groups showed decline in performance from test to re-test, with persistently low performance at re-test 2. The 3 (GROUP) × 3 (TIME) ANOVA revealed a significant interaction, indicating that the type of activity (nap/rest/interfering action) after initial learning actually had an influence on the memory outcome. These data are discussed with respect to translation to clinical settings with suggestions for improvement of intervention outcome after speech-language therapy if it is followed by a nap rather than interfering activity.
Collapse
Affiliation(s)
- Stefan Heim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen UniversityAachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1)Jülich, Germany
| | - Juliane Klann
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
- SRH University of Applied Health Sciences GeraGera, Germany
| | - Kerstin I. Schattka
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Sonja Bauhoff
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Gesa Borcherding
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Nicole Nosbüsch
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Linda Struth
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Ferdinand C. Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany
| | - Cornelius J. Werner
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
9
|
Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron 2017; 94:19-36. [PMID: 28384471 PMCID: PMC5810920 DOI: 10.1016/j.neuron.2017.02.004] [Citation(s) in RCA: 646] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
10
|
Backhaus W, Braass H, Renné T, Gerloff C, Hummel FC. Motor Performance Is not Enhanced by Daytime Naps in Older Adults. Front Aging Neurosci 2016; 8:125. [PMID: 27303292 PMCID: PMC4886106 DOI: 10.3389/fnagi.2016.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
The impact of sleep on motor learning in the aging brain was investigated using an experimental diurnal nap setup. As the brain ages several components of learning as well as motor performance change. In addition, aging is also related to sleep architectural changes. This combination of slowed learning processes and impaired sleep behavior raises the question of whether sleep can enhance learning and specifically performance of procedural tasks in healthy, older adults. Previous research was able to show sleep-dependent consolidation overnight for numerous tasks in young adults. Some of these study findings can also be replicated for older adults. This study aims to clarify whether sleep-dependent consolidation can also be found during shorter periods of diurnal sleep. The impact of midday naps on motor consolidation was analyzed by comparing procedural learning using a sequence and a motor adaptation task, in a crossover fashion in healthy, non-sleep deprived, older adults randomly subjected to wake (45 min), short nap (10–20 min sleep) or long nap (50–70 min sleep) conditions. Older adults exhibited learning gains, these were not found to be sleep-dependent in either task. The results suggest that daytime naps do not have an impact on performance and motor learning in an aging population.
Collapse
Affiliation(s)
- Winifried Backhaus
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Hanna Braass
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-EppendorfHamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska InstitutetStockholm, Sweden
| | - Christian Gerloff
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Friedhelm C Hummel
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-EppendorfHamburg, Germany; University Sleep Medicine Center Hamburg, University Medical Center Hamburg-Eppendorf and Agaplesion HospitalHamburg, Germany
| |
Collapse
|