1
|
Kjell J, Svensson M. Advancing Peripheral Nerve Graft Transplantation for Incomplete Spinal Cord Injury Repair. Front Cell Neurosci 2022; 16:885245. [PMID: 35573831 PMCID: PMC9097274 DOI: 10.3389/fncel.2022.885245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerves have a propensity for axon growth and regeneration that the central nervous system lacks (CNS). However, CNS axons can also grow long distances if introduced to a graft harvested from a peripheral nerve (PNGs), which is the rationale for using PNGs as repair strategy for injuries of the spinal cord. From a clinical perspective, PNGs provide interesting possibilities with potential to repair the injured spinal cord. First, there are numerous options to harvest autologous grafts associated with low risk for the patient. Second, a PNG allow axons to grow considerable distances and can, by the surgical procedure, be navigated to specific target sites in the CNS. Furthermore, a PNG provides all necessary biological substrates for myelination of elongating axons. A PNG can thus be suited to bridge axons long distances across an injury site and restore long tracts in incomplete SCI. Experimentally, locomotor functions have been improved transplanting a PNG after incomplete injury. However, we still know little with regard to the formation of new circuitries and functional outcome in association to when, where, and how grafts are inserted into the injured spinal cord, especially for sensory functions. In this perspective, we discuss the advantages of PNG from a clinical and surgical perspective, the need for adding/repairing long tracts, how PNGs are best applied for incomplete injuries, and the unexplored areas we believe are in need of answers.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
- Neurosurgery, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
2
|
Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals (Basel) 2019; 12:ph12020065. [PMID: 31035689 PMCID: PMC6631328 DOI: 10.3390/ph12020065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and social impairments having a huge impact on patients’ lives. The complex and time-dependent SCI pathophysiology has been hampering the development of novel and effective therapies. Current treatment options include surgical interventions, to stabilize and decompress the spinal cord, and rehabilitative care, without providing a cure for these patients. Novel therapies have been developed targeting different stages during trauma. Among them, cell-based therapies hold great potential for tissue regeneration after injury. Neural stem cells (NSCs), which are multipotent cells with inherent differentiation capabilities committed to the neuronal lineage, are especially relevant to promote and reestablish the damaged neuronal spinal tracts. Several studies demonstrate the regenerative effects of NSCs in SCI after transplantation by providing neurotrophic support and restoring synaptic connectivity. Therefore, human clinical trials have already been launched to assess safety in SCI patients. Here, we review NSC-based experimental studies in a SCI context and how are they currently being translated into human clinical trials.
Collapse
Affiliation(s)
- Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Ko CC, Tu TH, Wu JC, Huang WC, Cheng H. Acidic Fibroblast Growth Factor in Spinal Cord Injury. Neurospine 2019; 16:728-738. [PMID: 30653905 PMCID: PMC6944993 DOI: 10.14245/ns.1836216.108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI), with an incidence rate of 246 per million person-years among adults in Taiwan, remains a devastating disease in the modern day. Elderly men with lower socioeconomic status have an even higher risk for SCI. Despite advances made in medicine and technology to date, there are few effective treatments for SCI due to limitations in the regenerative capacity of the adult central nervous system. Experiments and clinical trials have explored neuro-regeneration in human SCI, encompassing cell- and molecule-based therapies. Furthermore, strategies have aimed at restoring connections, including autologous peripheral nerve grafts and biomaterial scaffolds that theoretically promote axonal growth. Most molecule-based therapies target the modulation of inhibitory molecules to promote axonal growth, degrade glial scarring obstacles, and stimulate intrinsic regenerative capacity. Among them, acidic fibroblast growth factor (aFGF) has been investigated for nerve repair; it is mitogenic and pluripotent in nature and could enhance axonal growth and mitigate glial scarring. For more than 2 decades, the authors have conducted multiple trials, including human and animal experiments, using aFGF to repair nerve injuries, including central and peripheral nerves. In these trials, aFGF has shown promise for neural regeneration, and in the future, more trials and applications should investigate aFGF as a neurotrophic factor. Focusing on aFGF, the current review aimed to summarize the historical evolution of the utilization of aFGF in SCI and nerve injuries, to present applications and trials, to summarize briefly its possible mechanisms, and to provide future perspectives.
Collapse
Affiliation(s)
- Chin-Chu Ko
- Jhong Jheng Spine & Orthopedic Hospital, Kaohsiung, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Cheng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Guercio JR, Kralic JE, Marrotte EJ, James ML. Spinal cord injury pharmacotherapy: Current research & development and competitive commercial landscape as of 2015. J Spinal Cord Med 2019; 42:102-122. [PMID: 29485334 PMCID: PMC6340271 DOI: 10.1080/10790268.2018.1439803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CONTEXT Current treatment of spinal cord injury (SCI) focuses on cord stabilization to prevent further injury, rehabilitation, management of non-motor symptoms, and prevention of complications. Currently, no approved treatments are available, and limited treatment options exist for symptoms and complications associated with chronic SCI. This review describes the pharmacotherapy landscape in SCI from both commercial and research and development (R&D) standpoints through March 2015. METHODS Information about specific compounds has been obtained through drug pipeline monographs in the Pharmaprojects® (Citeline, Inc., New York, New York, USA) drug database (current as of a search on May 30, 2014), websites of individual companies with compounds in development for SCI (current as of March 24, 2015), and a literature search of published R&D studies to validate the Pharmaprojects® source for selected compounds (current as of March 24, 2015). RESULTS Types of studies conducted and outcomes measured in earlier phases of development are described for compounds in clinical development Currently four primary mechanisms are under investigation and may yield promising therapeutic targets: 1) neuronal regeneration; 2) neuroprotection (including anti-inflammation); 3) axonal reconnection; and 4) neuromodulation and signal enhancement. Many other compounds are no longer under investigation for SCI are mentioned; however, in most cases, the reason for terminating their development is not clear. CONCLUSION There is urgent need to develop disease-modifying therapy for SCI, yet the commercial landscape remains small and highly fragmented with a paucity of novel late-stage compounds in R&D.
Collapse
Affiliation(s)
- Jason R. Guercio
- North American Partners in Anesthesiology, New Britain, Connecticuit, USA,Correspondence to: Michael L. James, MD, Associate Professor, Brain Injury Translational Research Center, Duke University DUMC 3094, Durham, NC 27710, USA.
| | - Jason E. Kralic
- Innervate BD Solutions, LLC, Hillsborough, North Carolina, USA
| | - Eric J. Marrotte
- Department of Neurology, Brain Injury Translational Research Center, Duke University, Durham, North Carolina, USA
| | - Michael L. James
- Department of Neurology, Brain Injury Translational Research Center, Duke University, Durham, North Carolina, USA,Department of Anesthesiology, Brain Injury Translational Research Center, Duke University, Durham, North Carolina, USA,Correspondence to: Michael L. James, MD, Associate Professor, Brain Injury Translational Research Center, Duke University DUMC 3094, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Frostell A, Mattsson P, Svensson M. Guiding Device for Precision Grafting of Peripheral Nerves in Complete Thoracic Spinal Cord Injury: Design and Sizing for Clinical Trial. Front Neurol 2018; 9:356. [PMID: 29872421 PMCID: PMC5972322 DOI: 10.3389/fneur.2018.00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
Background In an effort to translate preclinical success in achieving spinal cord regeneration through peripheral nerve grafts, this study details the design and sizing of a guiding device for precision grafting of peripheral nerves for use in a clinical trial in complete (AIS-A) thoracic spinal cord injury (SCI). The device’s design and sizing are compared to a simulation of human spinal cord sizes based on the best available data. Methods Spinal cord segmental sizes were generated by computer simulation based on data from a meta-analysis recently published by our group. Thoracic segments T2–T12 were plotted, and seven elliptical shapes were positioned across the center of the distribution of sizes. Geometrical measures of error-of-fit were calculated. CAD modeling was used to create cranial and caudal interfaces for the human spinal cord, aiming to guide descending white matter tracts to gray matter at the caudal end of the device and ascending white matter tracts to gray matter at the cranial end of the device. The interfaces were compared qualitatively to the simulated spinal cord sizes and gray-to-white matter delineations. Results The mean error-of-fit comparing simulated spinal cord segments T2–T12 to the best elliptical shape was 0.41 and 0.36 mm, and the 95th percentile was found at 1.3 and 0.98 mm for transverse and anteroposterior diameter, respectively. A guiding device design was reached for capturing the majority of corticospinal axons at the cranial end of the device and guiding them obliquely to gray matter at the caudal end of the device. Based on qualitative comparison, the vast majority of spinal cord sizes generated indicate an excellent fit to the device’s interfaces. Conclusion A set of SCI guiding devices of seven sizes can cover the variability of human thoracic spinal cord segments T2–T12 with an acceptable error-of-fit for the elliptical shape as well as guiding channels. The computational framework developed can be used with other medical technologies involving the human spinal cord where exact sizes and positioning are of importance.
Collapse
Affiliation(s)
- Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Mattsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine and Sarcoma Tumors, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Hu W, Liu D, Zhang Y, Shen Z, Gu T, Gu X, Gu J. Neurological function following intra-neural injection of fluorescent neuronal tracers in rats. Neural Regen Res 2014; 8:1253-61. [PMID: 25206419 PMCID: PMC4107650 DOI: 10.3969/j.issn.1673-5374.2013.14.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022] Open
Abstract
Fluorescent neuronal tracers should not be toxic to the nervous system when used in long-term labeling. Previous studies have addressed tracer toxicity, but whether tracers injected into an intact nerve result in functional impairment remains to be elucidated. In the present study, we examined the functions of motor, sensory and autonomic nerves following the application of 5% Fluoro-Gold, 4% True Blue and 10% Fluoro-Ruby (5 μL) to rat tibial nerves via pressure injection. A set of evaluation methods including walking track analysis, plantar test and laser Doppler perfusion imaging was used to determine the action of the fluorescent neuronal tracers. Additionally, nerve pathology and ratio of muscle wet weight were also observed. Results showed that injection of Fluoro-Gold significantly resulted in loss of motor nerve function, lower plantar sensibility, increasing blood flow volume and higher neurogenic vasodilatation. Myelinated nerve fiber degeneration, unclear boundaries in nerve fibers and high retrograde labeling efficacy were observed in the Fluoro-Gold group. The True Blue group also showed obvious neurogenic vasodilatation, but less severe loss of motor function and degeneration, and fewer labeled motor neurons were found compared with the Fluoro-Gold group. No anomalies of motor and sensory nerve function and no myelinated nerve fiber degeneration were observed in the Fluoro-Ruby group. Experimental findings indicate that Fluoro-Gold tracing could lead to significant functional impairment of motor, sensory and autonomic nerves, while functional impairment was less severe following True Blue tracing. Fluoro-Ruby injection appears to have no effect on neurological function.
Collapse
Affiliation(s)
- Wen Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China ; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dan Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China ; Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yanping Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China ; Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Zhongyi Shen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China ; School of Medicine, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Tianwen Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China ; School of Medicine, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiaosong Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China ; Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jianhui Gu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
7
|
Abstract
The corticospinal tract (CST) is a major descending pathway contributing to the control of voluntary movement in mammals. During the last decades anatomical and electrophysiological studies have demonstrated significant reorganization in the CST after spinal cord injury (SCI) in animals and humans. In animal models of SCI, anatomical evidence showed corticospinal sprouts rostral and caudal to the lesion and their integration into intraspinal axonal circuits. Electrophysiological data suggested that indirect connections from the primary motor cortex to forelimb motoneurons, via brainstem nuclei and spinal cord interneurons, or direct connections from slow uninjured corticospinal axons, might contribute to the control of movement after a CST injury. In humans with SCI, post mortem spinal cord tissue revealed anatomical changes in the CST some of which were similar but others markedly different from those found in animal models of SCI. Human electrophysiological studies have provided ample evidence for corticospinal reorganization after SCI that may contribute to functional recovery. Together these studies have revealed a large plastic capacity of the CST after SCI. There is also a limited understanding of the relationship between anatomical and electrophysiological changes in the CST and control of movement after SCI. Increasing our knowledge of the role of CST plasticity in functional restoration after SCI may support the development of more effective repair strategies.
Collapse
Affiliation(s)
- Martin Oudega
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 4074 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|