1
|
Fernandes MB, Valizadeh N, Alabsi HS, Quadri SA, Tesh RA, Bucklin AA, Sun H, Jain A, Brenner LN, Ye E, Ge W, Collens SI, Lin S, Das S, Robbins GK, Zafar SF, Mukerji SS, Westover MB. Classification of neurologic outcomes from medical notes using natural language processing. EXPERT SYSTEMS WITH APPLICATIONS 2023; 214:119171. [PMID: 36865787 PMCID: PMC9974159 DOI: 10.1016/j.eswa.2022.119171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurologic disability level at hospital discharge is an important outcome in many clinical research studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor intensive manual review of clinical notes in the electronic health record (EHR). To overcome this challenge, we set out to develop a natural language processing (NLP) approach that automatically reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger scale neurologic outcomes studies. We obtained 7314 notes from 3632 patients hospitalized at two large Boston hospitals between January 2012 and June 2020, including discharge summaries (3485), occupational therapy (1472) and physical therapy (2357) notes. Fourteen clinical experts reviewed notes to assign scores on the Glasgow Outcome Scale (GOS) with 4 classes, namely 'good recovery', 'moderate disability', 'severe disability', and 'death' and on the Modified Rankin Scale (mRS), with 7 classes, namely 'no symptoms', 'no significant disability', 'slight disability', 'moderate disability', 'moderately severe disability', 'severe disability', and 'death'. For 428 patients' notes, 2 experts scored the cases generating interrater reliability estimates for GOS and mRS. After preprocessing and extracting features from the notes, we trained a multiclass logistic regression model using LASSO regularization and 5-fold cross validation for hyperparameter tuning. The model performed well on the test set, achieving a micro average area under the receiver operating characteristic and F-score of 0.94 (95% CI 0.93-0.95) and 0.77 (0.75-0.80) for GOS, and 0.90 (0.89-0.91) and 0.59 (0.57-0.62) for mRS, respectively. Our work demonstrates that an NLP algorithm can accurately assign neurologic outcomes based on free text clinical notes. This algorithm increases the scale of research on neurological outcomes that is possible with EHR data.
Collapse
Affiliation(s)
- Marta B. Fernandes
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Navid Valizadeh
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Haitham S. Alabsi
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Syed A. Quadri
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Ryan A. Tesh
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Abigail A. Bucklin
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Haoqi Sun
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Aayushee Jain
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Laura N. Brenner
- Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, MGH, Boston, MA, United States
- Division of General Internal Medicine, MGH, Boston, MA, United States
| | - Elissa Ye
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Wendong Ge
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
| | - Sarah I. Collens
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
| | - Stacie Lin
- Harvard Medical School, Boston, MA, United States
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Gregory K. Robbins
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, MGH, Boston, MA, United States
| | - Sahar F. Zafar
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Shibani S. Mukerji
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, MGH, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital (MGH), Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Clinical Data Animation Center (CDAC), MGH, Boston, MA, United States
- McCance Center for Brain Health, MGH, Boston, MA, United States
| |
Collapse
|
2
|
Uthman OA, Court R, Enderby J, Al-Khudairy L, Nduka C, Mistry H, Melendez-Torres GJ, Taylor-Phillips S, Clarke A. Increasing comprehensiveness and reducing workload in a systematic review of complex interventions using automated machine learning. Health Technol Assess 2022:10.3310/UDIR6682. [PMID: 36562494 PMCID: PMC10068584 DOI: 10.3310/udir6682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND As part of our ongoing systematic review of complex interventions for the primary prevention of cardiovascular diseases, we have developed and evaluated automated machine-learning classifiers for title and abstract screening. The aim was to develop a high-performing algorithm comparable to human screening. METHODS We followed a three-phase process to develop and test an automated machine learning-based classifier for screening potential studies on interventions for primary prevention of cardiovascular disease. We labelled a total of 16,611 articles during the first phase of the project. In the second phase, we used the labelled articles to develop a machine learning-based classifier. After that, we examined the performance of the classifiers in correctly labelling the papers. We evaluated the performance of the five deep-learning models [i.e. parallel convolutional neural network ( CNN ), stacked CNN , parallel-stacked CNN , recurrent neural network ( RNN ) and CNN-RNN]. The models were evaluated using recall, precision and work saved over sampling at no less than 95% recall. RESULTS We labelled a total of 16,611 articles, of which 676 (4.0%) were tagged as 'relevant' and 15,935 (96%) were tagged as 'irrelevant'. The recall ranged from 51.9% to 96.6%. The precision ranged from 64.6% to 99.1%. The work saved over sampling ranged from 8.9% to as high as 92.1%. The best-performing model was parallel CNN , yielding a 96.4% recall, as well as 99.1% precision, and a potential workload reduction of 89.9%. FUTURE WORK AND LIMITATIONS We used words from the title and the abstract only. More work needs to be done to look into possible changes in performance, such as adding features such as full document text. The approach might also not be able to be used for other complex systematic reviews on different topics. CONCLUSION Our study shows that machine learning has the potential to significantly aid the labour-intensive screening of abstracts in systematic reviews of complex interventions. Future research should concentrate on enhancing the classifier system and determining how it can be integrated into the systematic review workflow. FUNDING This project was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in Health Technology Assessment. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
| | - Rachel Court
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Jodie Enderby
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Chidozie Nduka
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Hema Mistry
- Warwick Medical School, University of Warwick, Coventry, UK
| | - G J Melendez-Torres
- Peninsula Technology Assessment Group (PenTAG), College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
3
|
Short WD, Olutoye OO, Padon BW, Parikh UM, Colchado D, Vangapandu H, Shams S, Chi T, Jung JP, Balaji S. Advances in non-invasive biosensing measures to monitor wound healing progression. Front Bioeng Biotechnol 2022; 10:952198. [PMID: 36213059 PMCID: PMC9539744 DOI: 10.3389/fbioe.2022.952198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed.
Collapse
Affiliation(s)
- Walker D. Short
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Oluyinka O. Olutoye
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Benjamin W. Padon
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Umang M. Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Daniel Colchado
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Hima Vangapandu
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
| | - Shayan Shams
- Department of Applied Data Science, San Jose State University, San Jose, CA, United States
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, United States
| | - Taiyun Chi
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Swathi Balaji,
| |
Collapse
|
4
|
Sousa S, Kern R. How to keep text private? A systematic review of deep learning methods for privacy-preserving natural language processing. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractDeep learning (DL) models for natural language processing (NLP) tasks often handle private data, demanding protection against breaches and disclosures. Data protection laws, such as the European Union’s General Data Protection Regulation (GDPR), thereby enforce the need for privacy. Although many privacy-preserving NLP methods have been proposed in recent years, no categories to organize them have been introduced yet, making it hard to follow the progress of the literature. To close this gap, this article systematically reviews over sixty DL methods for privacy-preserving NLP published between 2016 and 2020, covering theoretical foundations, privacy-enhancing technologies, and analysis of their suitability for real-world scenarios. First, we introduce a novel taxonomy for classifying the existing methods into three categories: data safeguarding methods, trusted methods, and verification methods. Second, we present an extensive summary of privacy threats, datasets for applications, and metrics for privacy evaluation. Third, throughout the review, we describe privacy issues in the NLP pipeline in a holistic view. Further, we discuss open challenges in privacy-preserving NLP regarding data traceability, computation overhead, dataset size, the prevalence of human biases in embeddings, and the privacy-utility tradeoff. Finally, this review presents future research directions to guide successive research and development of privacy-preserving NLP models.
Collapse
|
5
|
Røst TB, Slaughter L, Nytrø Ø, Muller AE, Vist GE. Using neural networks to support high-quality evidence mapping. BMC Bioinformatics 2021; 22:496. [PMID: 34674636 PMCID: PMC8529368 DOI: 10.1186/s12859-021-04396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background The Living Evidence Map Project at the Norwegian Institute of Public Health (NIPH) gives an updated overview of research results and publications. As part of NIPH’s mandate to inform evidence-based infection prevention, control and treatment, a large group of experts are continously monitoring, assessing, coding and summarising new COVID-19 publications. Screening tools, coding practice and workflow are incrementally improved, but remain largely manual. Results This paper describes how deep learning methods have been employed to learn classification and coding from the steadily growing NIPH COVID-19 dashboard data, so as to aid manual classification, screening and preprocessing of the rapidly growing influx of new papers on the subject. Our main objective is to make manual screening scalable through semi-automation, while ensuring high-quality Evidence Map content. Conclusions We report early results on classifying publication topic and type from titles and abstracts, showing that even simple neural network architectures and text representations can yield acceptable performance.
Collapse
Affiliation(s)
- Thomas B Røst
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Laura Slaughter
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Øystein Nytrø
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ashley E Muller
- Reviews and Health Technology Assessments, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Gunn E Vist
- Reviews and Health Technology Assessments, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| |
Collapse
|