1
|
Hou M, Li X, Chen F, Tan Z, Han X, Liu J, Zhou J, Shi Y, Zhang J, Lv J, Leng Y. Naringenin alleviates intestinal ischemia/reperfusion injury by inhibiting ferroptosis via targeting YAP/STAT3 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156095. [PMID: 39383632 DOI: 10.1016/j.phymed.2024.156095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) is a significant clinical emergency, and investigating novel therapeutic approaches and understanding their underlying mechanisms is essential for improving patient outcomes. Naringenin (Nar), a flavanone present in tomatoes and citrus fruits, is frequently consumed in the human diet and recognized for having immunomodulatory, anti-inflammatory, and antioxidant properties. Despite Nar being able to alleviate intestinal IRI, the exact molecular mechanisms remain elusive. PURPOSE To investigate Nar's protective properties on intestinal IRI and elucidate the mechanisms, a comprehensive approach that combines network pharmacology analysis with experimental verification in vitro and in vivo was adopted. METHODS The oxygen-glucose deprivation/reoxygenation (OGD/R) model in IEC-6 cells and a murine model of intestinal IRI were used. Nar's effects on intestinal IRI were assessed through histological analysis using H&E staining and tight junction (TJ) protein expression. Ferroptosis-related parameters, including iron levels, superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial morphology, were analyzed. Network pharmacology was utilized to predict the pathways through which Nar exerts its anti-ferroptosis effects. Further mechanistic insights were obtained through si-RNA transfection, YAP inhibitor (verteporfin, VP) treatment, ferroptosis inhibitor (Ferrostatin-1) and ferroptosis inducer (Erastin) application, co-immunoprecipitation (Co-IP) and Western blotting. RESULTS Our results revealed that pretreatment with Nar significantly mitigated intestinal tissue damage and improved gut barrier function, as evidenced by increased TJ proteins (ZO-1 and Occludin). Nar reduced iron, MDA, and ROS, while it increased GSH and SOD levels. Additionally, Nar alleviated mitochondrial damage in mice. Nar treatment increased GPX4 and SLC7A11, while decreasing ACSL4 levels both in vivo and in vitro. Network pharmacology analysis suggested that Nar may target the Hippo signaling pathway. Notably, YAP, a key transcriptional co-activator within the Hippo pathway, was downregulated in intestinal IRI mice and OGD/R-induced IEC-6 cells. Nar pretreatment activated YAP, thereby augmenting anti-ferroptosis effects. The inhibition of YAP activation by VP or YAP knockdown increased p-STAT3 expression, thereby diminishing Nar's efficacy. Co-IP and immunofluorescence studies confirmed the interaction between YAP and STAT3. CONCLUSION This study shows that Nar can inhibit ferroptosis in intestinal IRI via activating YAP, which in turn suppresses STAT3 phosphorylation, thereby unveiling a novel mechanism and supporting Nar's potential to be a promising therapeutic agent for intestinal IRI.
Collapse
Affiliation(s)
- Min Hou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxi Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Zhang Z, Zhang L, Wu P, Tian Y, Wen Y, Xu M, Xu P, Jiang Y, Ma N, Wang Q, Dai W. Study on the Chemical Composition and Anti-Tumor Mechanisms of Clausena lansium Fruit By-Products: Based on LC-MS, Network Pharmacology Analysis, and Protein Target Validation. Foods 2024; 13:3878. [PMID: 39682950 DOI: 10.3390/foods13233878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Clausena lansium (Lour.) Skeels, commonly known as Wampee, are valued for their edible and medicinal qualities, yet their pericarp and seeds are often discarded, resulting in wasted resources. This study investigates the anti-tumor potential of these by-products, focusing on their chemical composition and underlying mechanisms of action. A combination of metabolomics, network pharmacology, molecular docking, and experimental validation was employed in our study. Cytotoxicity screening demonstrated that the pericarp extract exhibited notable anti-tumor effects against MDA-MB-231 breast cancer cells, while the seed extract showed no similar activity. Chemical profiling identified 122 compounds in the pericarp and seeds, with only 26.23% overlap, suggesting that distinct compounds may drive the pericarp's anti-tumor activity. Network pharmacology and molecular docking analyses identified PTGER3, DRD2, and ADORA2A as key targets, with several alkaloids, flavonoids, coumarins, and sesquiterpenes exhibiting strong binding affinities to these proteins. Western blot analysis further validated that the pericarp extract upregulated DRD2 and downregulated ADORA2A, indicating a possible mechanism for its anticancer effects. These findings suggest that Wampee pericarp holds promise as a source of active compounds with therapeutic potential for breast cancer, with implications for its use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ziyue Zhang
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangqian Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Pengfei Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yuan Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yao Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meina Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peihao Xu
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Comprehensive Experimental Teaching Center of Traditional Chinese Medicine, Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527500, China
| | - Ying Jiang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Comprehensive Experimental Teaching Center of Traditional Chinese Medicine, Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527500, China
| |
Collapse
|
3
|
Yi H, Zhang M, Miao J, Mu L, Hu C. Potential mechanisms of Shenmai injection against POCD based on network pharmacology and molecular docking. Int J Neurosci 2024; 134:931-942. [PMID: 36604848 DOI: 10.1080/00207454.2023.2165922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND As the population ages, the number of patients with postoperative cognitive dysfunction increases. This study aims to investigate the mechanisms of Shenmai injection as a therapeutic strategy for postoperative cognitive dysfunction using a network pharmacology approach. METHODS Shenmai injection and its targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Postoperative cognitive dysfunction-associated protein targets were identified using the GeneCards and DisGeNET databases. Subsequently, a protein-protein interaction network was constructed using the String database. For treating postoperative cognitive dysfunction, the core targets of Shenmai injection were identified through topological analysis, followed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses performed for annotation. Molecular docking was performed on the screened core targets and components. RESULTS One hundred and eighty-two related targets of Shenmai injection in treating postoperative cognitive dysfunction were identified. Eleven active ingredients in Shenmai injection were detected to have a close connection with postoperative cognitive dysfunction-related targets. Additionally, Gene Ontology analysis revealed 10 biological processes, 10 cellular components and 10 molecular functions. The Kyoto Encyclopedia of Genes and Genomes analysis identified 20 signaling pathways. The docking results indicated five active ingredients from Shenmai injection can fit in the binding pockets of all three candidate targets. CONCLUSIONS Thus, the present work systematically explored the anti-postoperative cognitive dysfunction mechanism of potential targets and signaling pathways of Shenmai injection. These results provide an important reference for subsequent basic research on postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Honggang Yi
- Department of Urology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Mengdie Zhang
- Department of Neurolog, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| | - Jiang Miao
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Lvfan Mu
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Congli Hu
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Wu B, Li C, Luo X, Kan H, Li Y, Zhang Y, Rao X, Zhao P, Liu Y. Identification of Key Hypolipidemic Components and Exploration of the Potential Mechanism of Total Flavonoids from Rosa sterilis Based on Network Pharmacology, Molecular Docking, and Zebrafish Experiment. Curr Issues Mol Biol 2024; 46:5131-5146. [PMID: 38920980 PMCID: PMC11201594 DOI: 10.3390/cimb46060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Hyperlipidemia is a prevalent chronic metabolic disease that severely affects human health. Currently, commonly used clinical therapeutic drugs are prone to drug dependence and toxic side effects. Dietary intervention for treating chronic metabolic diseases has received widespread attention. Rosa sterilis is a characteristic fruit tree in China whose fruits are rich in flavonoids, which have been shown to have a therapeutic effect on hyperlipidemia; however, their exact molecular mechanism of action remains unclear. Therefore, this study aimed to investigate the therapeutic effects of R. sterilis total flavonoid extract (RS) on hyperlipidemia and its possible mechanisms. A hyperlipidemic zebrafish model was established using egg yolk powder and then treated with RS to observe changes in the integral optical density in the tail vessels. Network pharmacology and molecular docking were used to investigate the potential mechanism of action of RS for the treatment of hyperlipidemia. The results showed that RS exhibited favorable hypolipidemic effects on zebrafish in the concentration range of 3.0-30.0 μg/mL in a dose-dependent manner. Topological and molecular docking analyses identified HSP90AA1, PPARA, and MMP9 as key targets for hypolipidemic effects, which were exerted mainly through lipolytic regulation of adipocytes and lipids; pathway analysis revealed enrichment in atherosclerosis, chemical carcinogenic-receptor activation pathways in cancers, and proteoglycans in prostate cancer and other cancers. Mover, chinensinaphthol possessed higher content and better target binding ability, which suggested that chinensinaphthol might be an important component of RS with hypolipidemic active function. These findings provide a direction for further research on RS interventions for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Boxiao Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Churan Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Xulu Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (Y.L.)
| | - Huan Kan
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Yonghe Li
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (X.L.); (Y.L.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 362021, China;
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Yun Liu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| |
Collapse
|
5
|
Wu B, Li C, Kan H, Zhang Y, Rao X, Liu Y, Zhao P. Hypolipidemic and Antithrombotic Effect of 6'- O-Caffeoylarbutin from Vaccinium dunalianum Based on Zebrafish Model, Network Pharmacology, and Molecular Docking. Molecules 2024; 29:780. [PMID: 38398534 PMCID: PMC10893483 DOI: 10.3390/molecules29040780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccinium dunalianum leaf buds make one of the most commonly used herbal teas of the Yi people in China, which is used to treat articular rheumatism, relax tendons, and stimulates blood circulation in the body. In addition, 6'-O-caffeoylarbutin (CA) is a standardized extract of V. dunalianum, which has been found in dried leaf buds, reaching levels of up to 31.76%. Because of the uncommon phenomenon, it is suggested that CA may have a potential therapeutic role in hyperlipidemia and thrombosis. This study was designed to study the efficacy of CA on treating hyperlipidemia and thrombosis and the possible mechanisms behind these effects. Hyperlipidemia and thrombosis zebrafish models were treated with CA to observe variations of the integrated optical density within the vessels and the intensity of erythrocyte staining within the hearts. The possible mechanisms were explored using network pharmacology and molecular docking. The results demonstrate that CA exhibits an excellent hypolipidemic effect on zebrafish at concentrations ranging from 3.0 to 30.0 μg/mL and shows thrombosis inhibitory activity in zebrafish at a concentration of 30.0 μg/mL, with an inhibition rate of 44%. Moreover, network pharmacological research shows that MMP9, RELA, MMP2, PRKCA, HSP90AA1, and APP are major targets of CA for therapy of hyperlipidemia and thrombosis, and may relate to pathways in cancer, chemical carcinogenesis-receptor activation, estrogen signaling pathway, and the AGE-RAGE signaling pathway in diabetic complications.
Collapse
Affiliation(s)
- Boxiao Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Churan Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650224, China;
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China;
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (B.W.); (C.L.); (H.K.)
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
6
|
Zhu Z, Liu Y, Zeng J, Ren S, Wei L, Wang F, Sun X, Huang Y, Jiang H, Sui X, Jin W, Jin L, Sun X. Diosbulbin C, a novel active ingredient in Dioscorea bulbifera L. extract, inhibits lung cancer cell proliferation by inducing G0/G1 phase cell cycle arrest. BMC Complement Med Ther 2023; 23:436. [PMID: 38049779 PMCID: PMC10694954 DOI: 10.1186/s12906-023-04245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Despite the critical progress of non-small cell lung cancer (NSCLC) therapeutic approaches, the clinical outcomes remain considerably poor. The requirement of developing novel therapeutic interventions is still urgent. In this study, we showed for the first time that diosbulbin C, a natural diterpene lactone component extracted from traditional Chinese medicine Dioscorea bulbifera L., possesses high anticancer activity in NSCLC. METHODS A549 and NCI-H1299 cells were used. The inhibitory effects of the diosbulbin C on NSCLC cell proliferation were evaluated using cytotoxicity, clone formation, EdU assay, and flow cytometry. Network pharmacology methods were used to explore the targets through which the diosbulbin C inhibited NSCLC cell proliferation. Molecular docking, qRT-PCR, and western blotting were used to validate the molecular targets and regulated molecules of diosbulbin C in NSCLC. RESULTS Diosbulbin C treatment in NSCLC cells results in a remarkable reduction in cell proliferation and induces significant G0/G1 phase cell cycle arrest. AKT1, DHFR, and TYMS were identified as the potential targets of diosbulbin C. Diosbulbin C may inhibit NSCLC cell proliferation by downregulating the expression/activation of AKT, DHFR, and TYMS. In addition, diosbulbin C was predicted to exhibit high drug-likeness properties with good water solubility and intestinal absorption, highlighting its potential value in the discovery and development of anti-lung cancer drugs. CONCLUSIONS Diosbulbin C induces cell cycle arrest and inhibits the proliferation of NSCLC cells, possibly by downregulating the expression/activation of AKT, DHFR, and TYMS.
Collapse
Affiliation(s)
- Zhiyu Zhu
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yanfen Liu
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jiangping Zeng
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Shuyi Ren
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lu Wei
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Fei Wang
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Haiyang Jiang
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xinbing Sui
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Weiwei Jin
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Lijun Jin
- Department of Traditional Chinese Medicine, Hangzhou Shangcheng District People's Hospital, Hangzhou, China.
| | - Xueni Sun
- School of Pharmacy, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
7
|
Li J, Liu X, Li J, Han D, Li Y, Ge P. Mechanism of andrographis paniculata on lung cancer by network pharmacology and molecular docking. Technol Health Care 2023:THC220698. [PMID: 36641698 DOI: 10.3233/thc-220698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been widely recognized and accepted worldwide to provide favorable therapeutic effects for cancer patients. As Andrographis paniculata has an anti-tumor effect, it might inhibit lung cancer. OBJECTIVE The drug targets and related pathways involved in the action of Andrographis paniculata against lung cancer were predicted using network pharmacology, and its mechanism was further explored at the molecular level. METHODS This work selected the effective components and targets of Andrographis paniculata against the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Targets related to lung cancer were searched for in the GEO database (accession number GSE136043). The volcanic and thermal maps of differential expression genes were produced using the software R. Then, the target genes were analyzed by GO and KEGG analysis using the software R. This also utilized the AutoDock tool to study the molecular docking of the active component structures downloaded from the PubChem database and the key target structures downloaded from the PDB database, and the docking results were visualized using the software PyMol. RESULTS The results of molecular docking show that wogonin, Mono-O-methylwightin, Deoxycamptothecine, andrographidine F_qt, Quercetin tetramethyl (3',4',5,7) ether, 14-deoxyandrographolide, andrographolide-19-β-D-glucoside_qt and 14-deoxy-11-oxo-andrographolide were potential active components, while AKT1, MAPK14, RELA and NCOA1 were key targets. CONCLUSION This study showed the main candidate components, targets, and pathways involved in the action of Andrographis paniculata against lung cancer.
Collapse
Affiliation(s)
- Jiaxin Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaonan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiaxin Li
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Dongwei Han
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Li
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pengling Ge
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
The Hypolipidemic Effect of Hawthorn Leaf Flavonoids through Modulating Lipid Metabolism and Gut Microbiota in Hyperlipidemic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3033311. [PMID: 36425260 PMCID: PMC9681556 DOI: 10.1155/2022/3033311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Objective. The purpose of this study was to explore the potential mechanisms of the lipid-regulating effects and the effect on modulating the gut microbiota of hawthorn leaf flavonoids (HLF) in the high-fat diet-induced hyperlipidemic rats. Methods. The hypolipidemic effect of HLF was investigated in the high-fat diet-induced hyperlipidemic rats. The action targets of HLF in the treatment of hyperlipidemia were predicted by network pharmacology and KEGG enrichment bubble diagram, which were verified by the test of western blotting. Meanwhile, we used 16S rRNA sequencing to evaluate the effects of HLF on the microbes. Results. The results of animal experiments showed that HLF could reduce the body weight and regulate the levels of serum lipid in high-fat diet (HFD) rats. Meanwhile, for the related targets of cholesterol metabolism, HLF could significantly upregulate the expression of LDLR, NR1H3, and ABCG5/ABCG8; reduce the expression of PCSK9; and increase the level of CYP7A1 in the intestinal tissue, whereas cholesterol biosynthetic protein expressions including HMGCR and SCAP were lowered by HLF. In addition, HLF increased the activities of plasma SOD, CAT, and GSH-Px and decreased the levels of Casp 1, NLRP3, IL-1β, IL-18, and TNF-α, improving the degree of hepatocyte steatosis and inflammatory infiltration of rats. Notably, HLF significantly regulated the relative abundance of major bacteria such as g_Lactobacillus, g_Anaerostipes, g_[Eubacterium]_hallii_group, g_Fusicatenibacter, g_Akkermansia, and g_Collinsella. Synchronously, we found that HLF could regulate the disorder of plasma HEPC and TFR levels caused by HFD. Conclusion. This study demonstrates that HLF can regulate metabolic hyperlipidemia syndromes and modulate the relative abundance of major bacteria, which illustrated that it might be associated with the modulation of gut microbiota composition and metabolites.
Collapse
|
9
|
Exploring the composition of Syringa reticulata subsp. amurensis seed and its underlying mechanism against chronic bronchitis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Du L, Wang Q, Ji S, Sun Y, Huang W, Zhang Y, Li S, Yan S, Jin H. Metabolomic and Microbial Remodeling by Shanmei Capsule Improves Hyperlipidemia in High Fat Food-Induced Mice. Front Cell Infect Microbiol 2022; 12:729940. [PMID: 35573781 PMCID: PMC9094705 DOI: 10.3389/fcimb.2022.729940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia refers to a chronic disease caused by systemic metabolic disorder, and its pathophysiology is very complex. Shanmei capsule (SM) is a famous preparation with a long tradition of use for anti-hyperlipidemia treatment in China. However, the regulation mechanism of SM on hyperlipidemia has not been elucidated so far. In this study, a combination of UPLC-Q-TOF/MS techniques and 16S rDNA gene sequencing was performed to investigate the effects of SM treatment on plasma metabolism-mediated change and intestinal homeostasis. The results indicated that SM potently ameliorated high-fat diet-induced glucose and lipid metabolic disorders and reduced the histopathological injury. Pathway analysis indicated that alterations of differential metabolites were mainly involved in glycerophospholipid metabolism, linolenic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism. These changes were accompanied by a significant perturbation of intestinal microbiota characterized by marked increased microbial richness and changed microbiota composition. There were many genera illustrating strong correlations with hyperlipidemia-related markers (e.g., weight gains, GLU, and total cholesterol), including the Lachnospiraceae NK4A136 group and the Lachnospiraceae NK4B4 group. Overall, this study initially confirmed that hyperlipidemia is associated with metabolic disturbance and intestinal microbiota disorders, and SM can be employed to help decrease hyperlipidemia risk, including improving the abnormal metabolic profile and maintaining the gut microbial environment.
Collapse
Affiliation(s)
- Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjing Huang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yiping Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shikai Yan, ; Huizi Jin,
| |
Collapse
|
11
|
Wang ZY, Xiong H, Duan LY, Wang CF, Du YL, Hong X, Zha HH, Pan HF. UPLC-Q-TOF-MS based metabolomics study of hawthorn leaves in different geographical regions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5458-5466. [PMID: 34734931 DOI: 10.1039/d1ay01150b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The quality evaluation of hawthorn leaves in different geographical regions derived from the dried leaves of Crataegus pinnatifida Bge. Var. Major N.E.Br. or Crataegus pinnatifida Bge., a common blood-activating and stasis-eliminating traditional Chinese medicine, has hardly been reported. In this study, the chemical comparison of 40 batches of hawthorn leaf samples collected from Hebei, Liaoning, Shandong and Shanxi Provinces was performed using an ultra-high performance liquid chromatography with electrospray ionization-tandem mass spectrometry-based metabolic profile and pattern recognition analysis approach. A total of 233 compounds were determined. Among them, 40 compounds were selected as potential metabolites responsible for the differential clustering, and the differential metabolite-based evaluation model was applied to well distinguish the origin of seven batches of hawthorn leaves sold on the market. Further analysis of the KEGG pathway showed that five core metabolites containing flavonoids and lignins were mainly involved in flavonoid biosynthesis, flavone and flavonol biosynthesis, and stilbenoid, diarylheptanoid and gingerol biosynthesis. Taking the content of flavonoids, core markers, as the evaluation basis, it was found that the quality of hawthorn leaves in Hebei and Liaoning was better. The study provides a reference for the rational utilization of hawthorn leaves, and highlights that the metabolomics-driven analysis method is more suitable for the quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Hui Xiong
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Li-Ying Duan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Chen-Feng Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Yi-Long Du
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Xia Hong
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| | - Hai-Hong Zha
- SCIEX, Analytical Instrument Trading Co., Ltd, Shanghai, 200335, PR China
| | - Hai-Feng Pan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde 067000, Hebei, China.
| |
Collapse
|