1
|
Zade K, Campbell C, Bach S, Fernandes H, Tropea D. Rett syndrome in Ireland: a demographic study. Orphanet J Rare Dis 2024; 19:34. [PMID: 38291497 PMCID: PMC10829226 DOI: 10.1186/s13023-024-03046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a rare neurodevelopmental condition associated with mutations in the gene coding for the methyl-CpG-binding protein 2 (MECP2). It is primarily observed in girls and affects individuals globally. The understanding of the neurobiology of RTT and patient management has been improved by studies that describe the demographic and clinical presentation of individuals with RTT. However, in Ireland, there is a scarcity of data regarding individuals with RTT, which impedes the ability to fully characterize the Irish RTT population. Together with the Rett Syndrome Association of Ireland (RSAI), we prepared a questionnaire to determine the characteristics of RTT individuals in Ireland. Twenty-five families have participated in the study to date, providing information about demographics, genetics, familial history, clinical features, and regression. RESULTS The results show that Irish individuals with RTT have comparable presentation with respect to individuals in other countries; however, they had a better response to anti-epileptic drugs, and fewer skeletal deformities were reported. Nonetheless, seizures, involuntary movements and regression were more frequently observed in Irish individuals. One of the main findings of this study is the limited genetic information available to individuals to support the clinical diagnosis of RTT. CONCLUSIONS Despite the limited sample size, this study is the first to characterize the RTT population in Ireland and highlights the importance of having a swift access to genetic testing to sharpen the characterization of the phenotype and increase the visibility of Irish individuals in the international RTT community.
Collapse
Affiliation(s)
- Komal Zade
- Department of Psychiatry, School of Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James Hospital, Dublin, D08 W9RT, Ireland
| | - Ciara Campbell
- Department of Psychiatry, School of Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James Hospital, Dublin, D08 W9RT, Ireland
| | - Snow Bach
- Department of Psychiatry, School of Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James Hospital, Dublin, D08 W9RT, Ireland
| | - Hazel Fernandes
- Consultant Child and Adolescent Psychiatrist, Barnet, Enfield and Haringey Mental Health NHS Trust, London, UK
| | - Daniela Tropea
- Department of Psychiatry, School of Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James Hospital, Dublin, D08 W9RT, Ireland.
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity College Dublin, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
2
|
Lee S, Jang SS, Park S, Yoon JG, Kim SY, Lim BC, Chae JH. The extended clinical and genetic spectrum of CTNNB1-related neurodevelopmental disorder. Front Pediatr 2022; 10:960450. [PMID: 35935366 PMCID: PMC9353113 DOI: 10.3389/fped.2022.960450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Loss-of-function mutations of CTNNB1 have been established as the cause of neurodevelopmental disorder with spastic diplegia and visual defects. Although most patients share key phenotypes such as global developmental delay and intellectual disability, patients with CTNNB1-related neurodevelopmental disorder show a broad spectrum of clinical features. METHODS We enrolled 13 Korean patients with CTNNB1-related neurodevelopmental disorder who visited Seoul National University Children's Hospital (5 female and 8 male patients with ages ranging from 4 to 22 years). They were all genetically confirmed as having pathogenic loss-of-function variants in CTNNB1 using trio or singleton whole exome sequencing. Variants called from singleton analyses were confirmed to be de novo through parental Sanger sequencing. RESULTS We identified 11 de novo truncating variants in CTNNB1 in 13 patients, and two pathogenic variants, c.1867C > T (p.Gln623Ter) and c.1420C > T (p.Arg474Ter), found in two unrelated patients, respectively. Five of them were novel pathogenic variants not listed in the ClinVar database. While all patients showed varying degrees of intellectual disability, impaired motor performance, and ophthalmologic problems, none of them had structural brain abnormalities or seizure. In addition, there were three female patients who showed autistic features, such as hand stereotypy, bruxism, and abnormal breathing. A literature review revealed a female predominance of autistic features in CTNNB1-related neurodevelopmental disorder. CONCLUSION This is one of the largest single-center cohorts of CTNNB1-related neurodevelopmental disorder. This study investigated variable clinical features of patients and has expanded the clinical and genetic spectrum of the disease.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Technological Improvements in the Genetic Diagnosis of Rett Syndrome Spectrum Disorders. Int J Mol Sci 2021; 22:ijms221910375. [PMID: 34638716 PMCID: PMC8508637 DOI: 10.3390/ijms221910375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that constitutes the second most common cause of intellectual disability in females worldwide. In the past few years, the advancements in genetic diagnosis brought by next generation sequencing (NGS), have made it possible to identify more than 90 causative genes for RTT and significantly overlapping phenotypes (RTT spectrum disorders). Therefore, the clinical entity known as RTT is evolving towards a spectrum of overlapping phenotypes with great genetic heterogeneity. Hence, simultaneous multiple gene testing and thorough phenotypic characterization are mandatory to achieve a fast and accurate genetic diagnosis. In this review, we revise the evolution of the diagnostic process of RTT spectrum disorders in the past decades, and we discuss the effectiveness of state-of-the-art genetic testing options, such as clinical exome sequencing and whole exome sequencing. Moreover, we introduce recent technological advancements that will very soon contribute to the increase in diagnostic yield in patients with RTT spectrum disorders. Techniques such as whole genome sequencing, integration of data from several “omics”, and mosaicism assessment will provide the tools for the detection and interpretation of genomic variants that will not only increase the diagnostic yield but also widen knowledge about the pathophysiology of these disorders.
Collapse
|
4
|
Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy 2021; 17:3908-3923. [PMID: 33843443 PMCID: PMC8726670 DOI: 10.1080/15548627.2021.1899669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat β-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders. Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting
Collapse
Affiliation(s)
- Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent So
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Kano K, Yamanaka G, Muramatsu K, Morichi S, Ishida Y, Takamatsu T, Suzuki S, Miyajima T, Nakagawa E, Nishino I, Kawashima H. Beta-propeller protein-associated neurodegeneration presenting Rett-like features: A case report and literature review. Am J Med Genet A 2020; 185:579-583. [PMID: 33251766 DOI: 10.1002/ajmg.a.61993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Several patients with beta-propeller protein-associated neurodegeneration (BPAN)/static encephalopathy with neurodegeneration in adulthood have been reported to present Rett syndrome (RTT)-like features. This report presents an individual with BPAN showing clinical features of RTT. Psychomotor delay and epilepsy onset were noted at 1 year, and regression began at 4 years. Screening of the methyl-CpG binding protein 2 (MECP2) did not show variants. At 22 years, basal ganglia iron deposits were found on magnetic resonance imaging (MRI), and the WD-domain repeat 45 gene (WDR45) variant was identified. Review of the literature showed that BPAN with RTT-like features is associated with more epileptic seizures and less deceleration of head growth, breathing irregularities, and cold extremities than classic RTT with MECP2 variants. These clinical presentations may provide clues for differentiating between these two disorders. However, both WDR45 and MECP2 should be screened in patients presenting a clinical picture of RTT without specific MRI findings of BPAN.
Collapse
Affiliation(s)
- Kanako Kano
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Gaku Yamanaka
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | | | - Shinichiro Morichi
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Yu Ishida
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomoko Takamatsu
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Shinji Suzuki
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tasuku Miyajima
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hisashi Kawashima
- Division of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Adang LA, Pizzino A, Malhotra A, Dubbs H, Williams C, Sherbini O, Anttonen AK, Lesca G, Linnankivi T, Laurencin C, Milh M, Perrine C, Schaaf CP, Poulat AL, Ville D, Hagelstrom T, Perry DL, Taft RJ, Goldstein A, Vossough A, Helbig I, Vanderver A. Phenotypic and Imaging Spectrum Associated With WDR45. Pediatr Neurol 2020; 109:56-62. [PMID: 32387008 PMCID: PMC7387198 DOI: 10.1016/j.pediatrneurol.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/29/2020] [Accepted: 03/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mutations in the X-linked gene WDR45 cause neurodegeneration with brain iron accumulation type 5. Global developmental delay occurs at an early age with slow progression to dystonia, parkinsonism, and dementia due to progressive iron accumulation in the brain. METHODS We present 17 new cases and reviewed 106 reported cases of neurodegeneration with brain iron accumulation type 5. Detailed information related to developmental history and key time to event measures was collected. RESULTS Within this cohort, there were 19 males. Most individuals were molecularly diagnosed by whole-exome testing. Overall 10 novel variants were identified across 11 subjects. All individuals were affected by developmental delay, most prominently in verbal skills. Most individuals experienced a decline in motor and cognitive skills. Although most individuals were affected by seizures, the spectrum ranged from provoked seizures to intractable epilepsy. The imaging findings varied as well, often evolving over time. The classic iron accumulation in the globus pallidus and substantia nigra was noted in half of our cohort and was associated with older age of image acquisition, whereas myelination abnormalities were associated with younger age. CONCLUSIONS WDR45 mutations lead to a progressive and evolving disorder whose diagnosis is often delayed. Developmental delay and seizures predominate in early childhood, followed by a progressive decline of neurological function. There is variable expressivity in the clinical phenotypes of individuals with WDR45 mutations, suggesting that this gene should be considered in the diagnostic evaluation of children with myelination abnormalities, iron deposition, developmental delay, and epilepsy depending on the age at evaluation.
Collapse
Affiliation(s)
- Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Corresponding author: Laura Adang MD PhD
| | - Amy Pizzino
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alka Malhotra
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Holly Dubbs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine Williams
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna-Kaisa Anttonen
- Folkhälsan Research Center, Helsinki, Finland,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Gaetan Lesca
- Department of Medical genetics, Lyon University Hospital, Bron, France
| | - Tarja Linnankivi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | | | | | - Anne-Lise Poulat
- Department of Pediatric Neurology, Lyon University Hospital, Bron, France
| | - Dorothee Ville
- Department of Pediatric Neurology, Lyon University Hospital, Bron, France
| | - Tanner Hagelstrom
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Denise L. Perry
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Ryan J. Taft
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Amy Goldstein
- Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Sharaf-Eldin WE, Soliman HN, Abdel-Aziz NN, Elbendary HM, Issa MY, Zaki MS. Mutation spectrum in the gene encoding methyl-CpG-binding protein 2 in Egyptian patients with Rett syndrome. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Kaur S, Van Bergen NJ, Gold WA, Eggers S, Lunke S, White SM, Ellaway C, Christodoulou J. Whole exome sequencing reveals a de novo missense variant in EEF1A2 in a Rett syndrome-like patient. Clin Case Rep 2019; 7:2476-2482. [PMID: 31893083 PMCID: PMC6935606 DOI: 10.1002/ccr3.2511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Using whole exome sequencing, we found a pathogenic variant in the EEF1A2 gene in a patient with a Rett syndrome-like (RTT-like) phenotype, further confirming the association between EEF1A2 and Rett syndrome RTT and RTT-like phenotypes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Nicole J. Van Bergen
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Wendy Anne Gold
- Molecular Neurobiology Lab, Kids ResearchWestmead Children's HospitalWestmeadNSWAustralia
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
| | - Stefanie Eggers
- Translational Genomics UnitMurdoch Children's Research InstituteParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Sebastian Lunke
- Translational Genomics UnitMurdoch Children's Research InstituteParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Susan M. White
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Carolyn Ellaway
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
- Genetic Metabolic Disorders ServiceSydney Children's Hospital NetworkSydneyNSWAustralia
| | - John Christodoulou
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| |
Collapse
|
9
|
Heimer G, van Woerden GM, Barel O, Marek-Yagel D, Kol N, Munting JB, Borghei M, Atawneh OM, Nissenkorn A, Rechavi G, Anikster Y, Elgersma Y, Kushner SA, Ben Zeev B. Netrin-G2 dysfunction causes a Rett-like phenotype with areflexia. Hum Mutat 2019; 41:476-486. [PMID: 31692205 DOI: 10.1002/humu.23945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
Abstract
We describe the underlying genetic cause of a novel Rett-like phenotype accompanied by areflexia in three methyl-CpG-binding protein 2-negative individuals from two unrelated families. Discovery analysis was performed using whole-exome sequencing followed by Sanger sequencing for validation and segregation. Functional studies using short-hairpin RNA for targeted gene knockdown were implemented by the transfection of mouse cultured primary hippocampal neurons and in vivo by in utero electroporation. All patients shared a common homozygous frameshift mutation (chr9:135073515, c.376dupT, p.(Ser126PhefsTer241)) in netrin-G2 (NTNG2, NM_032536.3) with predicted nonsense-mediated decay. The mutation fully segregated with the disease in both families. The knockdown of either NTNG2 or the related netrin-G family member NTNG1 resulted in severe neurodevelopmental defects of neuronal morphology and migration. While NTNG1 has previously been linked to a Rett syndrome (RTT)-like phenotype, this is the first description of a RTT-like phenotype caused by NTNG2 mutation. Netrin-G proteins have been shown to be required for proper axonal guidance during early brain development and involved in N-methyl- d-aspartate-mediated synaptic transmission. Our results demonstrating that knockdown of murine NTNG2 causes severe impairments of neuronal morphology and cortical migration are consistent with those of RTT animal models and the shared neurodevelopmental phenotypes between the individuals described here and typical RTT patients.
Collapse
Affiliation(s)
- Gali Heimer
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,The Pinchas Borenstein Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Dina Marek-Yagel
- Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitzan Kol
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Johannes B Munting
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Minoeshka Borghei
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Andreea Nissenkorn
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Rechavi
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel.,Wohl Institute for Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Yair Anikster
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Vidal S, Xiol C, Pascual-Alonso A, O'Callaghan M, Pineda M, Armstrong J. Genetic Landscape of Rett Syndrome Spectrum: Improvements and Challenges. Int J Mol Sci 2019; 20:ijms20163925. [PMID: 31409060 PMCID: PMC6719047 DOI: 10.3390/ijms20163925] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes of intellectual disability in females. More than fifty years after the first publication on Rett syndrome, and almost two decades since the first report linking RTT to the MECP2 gene, the research community's effort is focused on obtaining a better understanding of the genetics and the complex biology of RTT and Rett-like phenotypes without MECP2 mutations. Herein, we review the current molecular genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap with other genetic disorders and document the swift evolution of the techniques and methodologies employed. This review also underlines the clinical and genetic heterogeneity of the Rett syndrome spectrum and provides an overview of the RTT-related genes described to date, many of which are involved in epigenetic gene regulation, neurotransmitter action or RNA transcription/translation. Finally, it discusses the importance of including both phenotypic and genetic diagnosis to provide proper genetic counselling from a patient's perspective and the appropriate treatment.
Collapse
Affiliation(s)
- Silvia Vidal
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Clara Xiol
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Ainhoa Pascual-Alonso
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - M O'Callaghan
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Neurology Service, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Mercè Pineda
- Sant Joan de Déu Research Foundation, 08950 Barcelona, Spain
| | - Judith Armstrong
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain.
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, 08950 Barcelona, Spain.
| |
Collapse
|
11
|
Pathogenic Variants in STXBP1 and in Genes for GABAa Receptor Subunities Cause Atypical Rett/Rett-like Phenotypes. Int J Mol Sci 2019; 20:ijms20153621. [PMID: 31344879 PMCID: PMC6696386 DOI: 10.3390/ijms20153621] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder, affecting 1 in 10,000 girls. Intellectual disability, loss of speech and hand skills with stereotypies, seizures and ataxia are recurrent features. Stringent diagnostic criteria distinguish classical Rett, caused by a MECP2 pathogenic variant in 95% of cases, from atypical girls, 40-73% carrying MECP2 variants, and rarely CDKL5 and FOXG1 alterations. A large fraction of atypical and RTT-like patients remain without genetic cause. Next Generation Sequencing (NGS) targeted to multigene panels/Whole Exome Sequencing (WES) in 137 girls suspected for RTT led to the identification of a de novo variant in STXBP1 gene in four atypical RTT and two RTT-like girls. De novo pathogenic variants-one in GABRB2 and, for first time, one in GABRG2-were disclosed in classic and atypical RTT patients. Interestingly, the GABRG2 variant occurred at low rate percentage in blood and buccal swabs, reinforcing the relevance of mosaicism in neurological disorders. We confirm the role of STXBP1 in atypical RTT/RTT-like patients if early psychomotor delay and epilepsy before 2 years of age are observed, indicating its inclusion in the RTT diagnostic panel. Lastly, we report pathogenic variants in Gamma-aminobutyric acid-A (GABAa) receptors as a cause of atypical/classic RTT phenotype, in accordance with the deregulation of GABAergic pathway observed in MECP2 defective in vitro and in vivo models.
Collapse
|
12
|
Operto FF, Mazza R, Pastorino GMG, Verrotti A, Coppola G. Epilepsy and genetic in Rett syndrome: A review. Brain Behav 2019; 9:e01250. [PMID: 30929312 PMCID: PMC6520293 DOI: 10.1002/brb3.1250] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that primarily affects girls, with an incidence of 1:10,000-20,000. The diagnosis is based on clinical features: an initial period of apparently normal development (ages 6-12 months) followed by a rapid decline with regression of acquired motor skills, loss of spoken language and purposeful hand use, onset of hand stereotypes, abnormal gait, and growth failure. The course of the disease, in its classical form, is characterized by four stages. Three different atypical variants of the disease have been defined. Epilepsy has been reported in 60%-80% of patients with RTT; it differs among the various phenotypes and genotypes and its severity is an important contributor to the clinical severity of the disease. METHODS In this manuscript we reviewed literature on RTT, focusing on the different genetic entities, the correlation genotype-phenotype, and the peculiar epileptic phenotype associated to each of them. RESULTS Mutations in MECP2 gene, located on Xq28, account for 95% of typical RTT cases and 73.2% of atypical RTT. CDKL5 and FOXG1 are other genes identified as causative genes in atypical forms of RTT. In the last few years, a lot of new genes have been identified as causative genes for RTT phenotype. CONCLUSIONS Recognizing clinical and EEG patterns in different RTT variants may be useful in diagnosis and management of these patients.
Collapse
Affiliation(s)
- Francesca Felicia Operto
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Roberta Mazza
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila, Coppito, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Fisciano, Italy
| |
Collapse
|
13
|
Alexandrou A, Papaevripidou I, Alexandrou IM, Theodosiou A, Evangelidou P, Kousoulidou L, Tanteles G, Christophidou‐Anastasiadou V, Sismani C. De novo mosaic MECP2 mutation in a female with Rett syndrome. Clin Case Rep 2019; 7:366-370. [PMID: 30847208 PMCID: PMC6389470 DOI: 10.1002/ccr3.1985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
We describe a female with Rett syndrome carrying a rare de novo mosaic nonsense mutation on MECP2 gene, with random X-chromosome inactivation. Rett syndrome severity in females depends on mosaicism level and tissue specificity, X-chromosome inactivation, epigenetics and environment. Rett syndrome should be considered in both males and females.
Collapse
Affiliation(s)
- Angelos Alexandrou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Ioanna Maria Alexandrou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Athina Theodosiou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Paola Evangelidou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Ludmila Kousoulidou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - George Tanteles
- Department of Clinical GeneticsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Violetta Christophidou‐Anastasiadou
- Department of Clinical GeneticsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Archbishop Makarios III Medical CentreNicosiaCyprus
| | - Carolina Sismani
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- The Cyprus School of Molecular MedicineNicosiaCyprus
| |
Collapse
|
14
|
Henriksen MW, Ravn K, Paus B, von Tetzchner S, Skjeldal OH. De novo mutations in SCN1A are associated with classic Rett syndrome: a case report. BMC MEDICAL GENETICS 2018; 19:184. [PMID: 30305042 PMCID: PMC6180591 DOI: 10.1186/s12881-018-0700-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
Background Rett syndrome (RTT) is a neurodevelopmental disorder. In more than 95% of females with classic RTT a pathogenic mutation in MECP2 has been identified. This leaves a small fraction of classic cases with other genetic causes. So far, there has not been reported any other gene that may account for the majority of these cases. Case presentation We describe two females who fulfill the diagnostic criteria for classic RTT, with pathogenic de novo mutations in SCN1A, which usually leads to Dravet syndrome. The developmental history and clinical features of these two females fits well with RTT, but they do have an unusual epileptic profile with early onset of seizures. Investigation of mRNA from one of the females showed a significantly reduced level of MECP2 mRNA. Conclusions To our knowledge, this is the first report suggesting that SCN1A mutations could account for a proportion of the females with classic RTT without MECP2 mutations. As a consequence of these findings SCN1A should be considered in the molecular routine screening in MECP2-negative individuals with RTT and early onset epilepsy.
Collapse
Affiliation(s)
- Mari Wold Henriksen
- Department of Neurology, Vestre Viken Hospital Trust, Drammen Hospital, P.O. Box 800, 3004, Drammen, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway.
| | - Kirstine Ravn
- Department of Clinical Genetics, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
| | - Benedicte Paus
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, P.O. Box 4950, 0424, Oslo, Norway
| | - Stephen von Tetzchner
- Department of Psychology, University of Oslo, P.O. Box 1094, Blindern, 0317, Oslo, Norway
| | - Ola H Skjeldal
- Gillberg Neuropsychiatric Centre, Sahlgrenska University of Gothenburg, Kungsgatan 12, 41119, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
(1) This study describes the good evolution of a 6-year-old girl genetically diagnosed (R106X) with Rett syndrome (RTT), after having been treated with IGF-I, melatonin (MT), blackcurrant extracts (BC) and rehabilitated for 6 months. (2) The patient stopped normal development in the first year of age. The patient showed short stature and weight and fulfilled the main criteria for typical RTT. Despite her young age, there was pubic hair (Tanner II), very high plasma testosterone, and low levels of plasma gonadotrophins. There were no adrenal enzymatic deficits, and abdominal ultrasound studies were normal. The treatment consisted of IGF-I (0.04 mg/kg/day, 5 days/week, subcutaneous (sc)) for 3 months and then 15 days of rest, MT (50 mg/day, orally, without interruption) and neurorehabilitation. A new blood test, after 3 months of treatment, was absolutely normal and the pubic hair disappeared (Tanner I). Then, a new treatment was started with IGF-I, MT, and BC for another 3 months. In this period, the degree of pubertal development increased to Tanner III (pubic level), without a known cause. (3) The treatment followed led to clear improvements in most of the initial abnormalities, perhaps due to the neurotrophic effect of IGF-I, the antioxidant effects of MT and BC, and the cerebral increase in the cyclic glycine-proline (cGP) achieved with administration of BC. (4) A continuous treatment with IGF-I, MT, and BC appears to be useful in RTT.
Collapse
|
16
|
Singh J, Santosh P. Key issues in Rett syndrome: emotional, behavioural and autonomic dysregulation (EBAD) - a target for clinical trials. Orphanet J Rare Dis 2018; 13:128. [PMID: 30064458 PMCID: PMC6069816 DOI: 10.1186/s13023-018-0873-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/10/2018] [Indexed: 02/02/2023] Open
Abstract
Complex neurodevelopmental disorders need multi-disciplinary treatment approaches for optimal care. The clinical effectiveness of treatments is limited in patients with rare genetic syndromes with multisystem morbidity. Emotional and behavioural dysregulation is common across many neurodevelopmental disorders. It can manifest in children across multiple diagnostic groups, including those on the autism spectrum and in rare genetic syndromes such as Rett Syndrome (RTT). There is, however a remarkable scarcity in the literature on the impact of the autonomic component on emotional and behavioural regulation in these disorders, and on the longer-term outcomes on disorder burden.RTT is a debilitating and often life-threatening disorder involving multiple overlapping physiological systems. Autonomic dysregulation otherwise known as dysautonomia is a cardinal feature of RTT characterised by an imbalance between the sympathetic and parasympathetic arms of the autonomic nervous system. Unlocking the autonomic component of emotional and behavioural dysregulation would be central in reducing the impairment seen in patients with RTT. In this vein, Emotional, Behavioural and Autonomic Dysregulation (EBAD) would be a useful construct to target for treatment which could mitigate burden and improve the quality of life of patients.RTT can be considered as a congenital dysautonomia and because EBAD can give rise to impairments occurring in multiple overlapping physiological systems, understanding these physiological responses arising out of EBAD would be a critical part to consider when planning treatment strategies and improving clinical outcomes in these patients. Biometric guided pharmacological and bio-feedback therapy for the behavioural and emotional aspects of the disorder offers an attracting perspective to manage EBAD in these patients. This can also allow for the stratification of patients into clinical trials and could ultimately help streamline the patient care pathway for optimal outcomes.The objectives of this review are to emphasise the key issues relating to the management of EBAD in patients with RTT, appraise clinical trials done in RTT from the perspective of autonomic physiology and to discuss the potential of EBAD as a target for clinical trials.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|