1
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
2
|
Bigelow MD, Kouzani AZ. Neural stimulation systems for the control of refractory epilepsy: a review. J Neuroeng Rehabil 2019; 16:126. [PMID: 31665058 PMCID: PMC6820988 DOI: 10.1186/s12984-019-0605-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Epilepsy affects nearly 1% of the world's population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.
Collapse
Affiliation(s)
- Matthew D Bigelow
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
3
|
Epilepsy and Neuromodulation-Randomized Controlled Trials. Brain Sci 2018; 8:brainsci8040069. [PMID: 29670050 PMCID: PMC5924405 DOI: 10.3390/brainsci8040069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022] Open
Abstract
Neuromodulation is a treatment strategy that is increasingly being utilized in those suffering from drug-resistant epilepsy who are not appropriate for resective surgery. The number of double-blinded RCTs demonstrating the efficacy of neurostimulation in persons with epilepsy is increasing. Although reductions in seizure frequency is common in these trials, obtaining seizure freedom is rare. Invasive neuromodulation procedures (DBS, VNS, and RNS) have been approved as therapeutic measures. However, further investigations are necessary to delineate effective targeting, minimize side effects that are related to chronic implantation and to improve the cost effectiveness of these devices. The RCTs of non-invasive modes of neuromodulation whilst showing much promise (tDCS, eTNS, rTMS), require larger powered studies as well as studies that focus at better targeting techniques. We provide a review of double-blinded randomized clinical trials that have been conducted for neuromodulation in epilepsy.
Collapse
|
4
|
Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil 2017; 14:79. [PMID: 28800738 PMCID: PMC5553781 DOI: 10.1186/s12984-017-0295-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/04/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Millions of patients around the world are affected by neurological and psychiatric disorders. Deep brain stimulation (DBS) is a device-based therapy that could have fewer side-effects and higher efficiencies in drug-resistant patients compared to other therapeutic options such as pharmacological approaches. Thus far, several efforts have been made to incorporate a feedback loop into DBS devices to make them operate in a closed-loop manner. METHODS This paper presents a comprehensive investigation into the existing research-based and commercial closed-loop DBS devices. It describes a brief history of closed-loop DBS techniques, biomarkers and algorithms used for closing the feedback loop, components of the current research-based and commercial closed-loop DBS devices, and advancements and challenges in this field of research. This review also includes a comparison of the closed-loop DBS devices and provides the future directions of this area of research. RESULTS Although we are in the early stages of the closed-loop DBS approach, there have been fruitful efforts in design and development of closed-loop DBS devices. To date, only one commercial closed-loop DBS device has been manufactured. However, this system does not have an intelligent and patient dependent control algorithm. A closed-loop DBS device requires a control algorithm to learn and optimize the stimulation parameters according to the brain clinical state. CONCLUSIONS The promising clinical effects of open-loop DBS have been demonstrated, indicating DBS as a pioneer technology and treatment option to serve neurological patients. However, like other commercial devices, DBS needs to be automated and modernized.
Collapse
Affiliation(s)
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
5
|
Zippo AG, Romanelli P, Torres Martinez NR, Caramenti GC, Benabid AL, Biella GEM. A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis). Front Syst Neurosci 2015; 9:73. [PMID: 26029061 PMCID: PMC4429233 DOI: 10.3389/fnsys.2015.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 02/03/2023] Open
Abstract
Artificial brain-machine interfaces (BMIs) represent a prospective step forward supporting or replacing faulty brain functions. So far, several obstacles, such as the energy supply, the portability and the biocompatibility, have been limiting their effective translation in advanced experimental or clinical applications. In this work, a novel 16 channel chronically implantable epicortical grid has been proposed. It provides wireless transmission of cortical recordings and stimulations, with induction current recharge. The grid has been chronically implanted in a non-human primate (Macaca fascicularis) and placed over the somato-motor cortex such that 13 electrodes recorded or stimulated the primary motor cortex and three the primary somatosensory cortex, in the deeply anaesthetized animal. Cortical sensory and motor recordings and stimulations have been performed within 3 months from the implant. In detail, by delivering motor cortex epicortical single spot stimulations (1-8 V, 1-10 Hz, 500 ms, biphasic waves), we analyzed the motor topographic precision, evidenced by tunable finger or arm movements of the anesthetized animal. The responses to light mechanical peripheral sensory stimuli (blocks of 100 stimuli, each single stimulus being <1 ms and interblock intervals of 1.5-4 s) have been analyzed. We found 150-250 ms delayed cortical responses from fast finger touches, often spread to nearby motor stations. We also evaluated the grid electrical stimulus interference with somatotopic natural tactile sensory processing showing no suppressing interference with sensory stimulus detection. In conclusion, we propose a chronically implantable epicortical grid which can accommodate most of current technological restrictions, representing an acceptable candidate for BMI experimental and clinical uses.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, National Research Council Segrate, Italy
| | | | - Napoleon R Torres Martinez
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Laboratoire d' Électronique des Technologies de l'Information, CLINATEC Grenoble, France
| | | | - Alim L Benabid
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Laboratoire d' Électronique des Technologies de l'Information, CLINATEC Grenoble, France
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, National Research Council Segrate, Italy
| |
Collapse
|
6
|
[Treatment of epilepsy: peripheral and central stimulation techniques]. DER NERVENARZT 2013; 84:517-28; quiz 529. [PMID: 23525589 DOI: 10.1007/s00115-013-3749-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficacy of electrical stimulation in the treatment of epileptic seizures was demonstrated experimentally even in the 1970s. Clinical studies have proven the efficacy of vagus nerve stimulation and in recent years also of stimulation of the trigeminal nerve, the anterior nucleus of the thalamus and of the epileptic focus in treating focal epilepsy. Mechanisms of action depend on the stimulation site and parameters and include activation of endogenous antiepileptic nuclei, modulation of propagation of epileptic activity and suppression of ictal activity at the site of generation. Based on available data the tolerability of peripheral and central brain stimulation appears to be good but experiences from wider clinical use are still lacking.
Collapse
|
7
|
Owen JA, Barreto E, Cressman JR. Controlling seizure-like events by perturbing ion concentration dynamics with periodic stimulation. PLoS One 2013; 8:e73820. [PMID: 24066075 PMCID: PMC3774776 DOI: 10.1371/journal.pone.0073820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022] Open
Abstract
We investigate the effects of adding periodic stimulation to a generic, conductance-based neuron model that includes ion concentration dynamics of sodium and potassium. Under conditions of high extracellular potassium, the model exhibits repeating, spontaneous, seizure-like bursting events associated with slow modulation of the ion concentrations local to the neuron. We show that for a range of parameter values, depolarizing and hyperpolarizing periodic stimulation pulses (including frequencies lower than 4 Hz) can stop the spontaneous bursting by interacting with the ion concentration dynamics. Stimulation can also control the magnitude of evoked responses to modeled physiological inputs. We develop an understanding of the nonlinear dynamics of this system by a timescale separation procedure that identifies effective nullclines in the ion concentration parameter space. Our results suggest that the manipulation of ion concentration dynamics via external or endogenous stimulation may play an important role in neuronal excitability, seizure dynamics, and control.
Collapse
Affiliation(s)
- Jeremy A. Owen
- King’s College, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Barreto
- School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - John R. Cressman
- School of Physics, Astronomy, and Computational Sciences and The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| |
Collapse
|
8
|
Toibaro L, Pereyra M, Pastorino J, Smigliani A, Ocariz F, Ortmann G, Galardi MM, Gori MB, Kochen S. Effect of Unilateral Low-Frequency Stimulation of Hippocampus on Rapid Kindling—Induced Seizure Development in Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.32022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Kuhn J, Gründler TOJ, Lenartz D, Sturm V, Klosterkötter J, Huff W. Deep brain stimulation for psychiatric disorders. DEUTSCHES ARZTEBLATT INTERNATIONAL 2010; 107:105-13. [PMID: 20221269 DOI: 10.3238/arztebl.2010.0105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 08/27/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS), an established treatment for some movement disorders, is now being used experimentally to treat psychiatric disorders as well. In a number of recently published case series, DBS yielded an impressive therapeutic benefit in patients with medically intractable psychiatric diseases. METHODS This review of the use of DBS to treat psychiatric disorders is based on literature retrieved from a selective Pubmed search for relevant keywords, reference works on the topic, and the authors' own research. RESULTS Studies have been performed on the use of DBS to treat medically intractable obsessive-compulsive disorder, depressive disorders, and Tourette syndrome. The case numbers in the cited publications were small, yet at least some of them involved a methodologically sound investigation. Thus, in some studies, the strength of the effect was controlled with a double-blinded interval in which the stimulation was turned off. In general, the primary symptoms were found to improve markedly, by 35% to 70%, although not all patients responded to the treatment. Adverse effects of DBS were very rare in most studies and could usually be reversed by changing the stimulation parameters. CONCLUSIONS The results of DBS for psychiatric disorders that have been published to date are encouraging. They open up a new perspective in the treatment of otherwise intractable disorders. Nonetheless, the efficacy, mechanism of action, and adverse effects of DBS for this indication still need to be further studied in methodologically adequate trials that meet the highest ethical standard.
Collapse
Affiliation(s)
- Jens Kuhn
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität zu Köln, Germany.
| | | | | | | | | | | |
Collapse
|