1
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
3
|
Melnikova L, Molodina V, Georgiev P, Golovnin A. Development of a New Model System to Study Long-Distance Interactions Supported by Architectural Proteins. Int J Mol Sci 2024; 25:4617. [PMID: 38731837 PMCID: PMC11083095 DOI: 10.3390/ijms25094617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems. Drosophila became the first model organism in which architectural proteins that determine the activity of insulators were described. In Drosophila, one of the best-studied DNA-binding architectural proteins, Su(Hw), forms a complex with Mod(mdg4)-67.2 and CP190 proteins. Using a combination of CRISPR/Cas9 genome editing and attP-dependent integration technologies, we created a model system in which the promoters and enhancers of two reporter genes are separated by 28 kb. In this case, enhancers effectively stimulate reporter gene promoters in cis and trans only in the presence of artificial Su(Hw) binding sites (SBS), in both constructs. The expression of the mutant Su(Hw) protein, which cannot interact with CP190, and the mutation inactivating Mod(mdg4)-67.2, lead to the complete loss or significant weakening of enhancer-promoter interactions, respectively. The results indicate that the new model system effectively identifies the role of individual subunits of architectural protein complexes in forming and maintaining specific long-distance interactions in the D. melanogaster model.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia;
| |
Collapse
|
4
|
Melnikova LS, Molodina VV, Georgiev PG, Golovnin AK. Role of Mod(mdg4)-67.2 Protein in Interactions between Su(Hw)-Dependent Complexes and Their Recruitment to Chromatin. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:626-636. [PMID: 38831500 DOI: 10.1134/s0006297924040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 06/05/2024]
Abstract
Su(Hw) belongs to the class of proteins that organize chromosome architecture, determine promoter activity, and participate in formation of the boundaries/insulators between the regulatory domains. This protein contains a cluster of 12 zinc fingers of the C2H2 type, some of which are responsible for binding to the consensus site. The Su(Hw) protein forms complex with the Mod(mdg4)-67.2 and the CP190 proteins, where the last one binds to all known Drosophila insulators. To further study functioning of the Su(Hw)-dependent complexes, we used the previously described su(Hw)E8 mutation with inactive seventh zinc finger, which produces mutant protein that cannot bind to the consensus site. The present work shows that the Su(Hw)E8 protein continues to directly interact with the CP190 and Mod(mdg4)-67.2 proteins. Through interaction with Mod(mdg4)-67.2, the Su(Hw)E8 protein can be recruited into the Su(Hw)-dependent complexes formed on chromatin and enhance their insulator activity. Our results demonstrate that the Su(Hw) dependent complexes without bound DNA can be recruited to the Su(Hw) binding sites through the specific protein-protein interactions that are stabilized by Mod(mdg4)-67.2.
Collapse
Affiliation(s)
- Larisa S Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Varvara V Molodina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Pavel G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anton K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
5
|
Kamalyan S, Kyrchanova O, Klimenko N, Babosha V, Vasileva Y, Belova E, Fursenko D, Maksimenko O, Georgiev P. The N-terminal dimerization domains of human and Drosophila CTCF have similar functionality. Epigenetics Chromatin 2024; 17:9. [PMID: 38561749 PMCID: PMC10983669 DOI: 10.1186/s13072-024-00534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.
Collapse
Affiliation(s)
- Sofia Kamalyan
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Yulia Vasileva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Elena Belova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Dariya Fursenko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia.
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow, 119334, Russia.
| |
Collapse
|
6
|
Tikhonova E, Revel-Muroz A, Georgiev P, Maksimenko O. Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in Drosophila. Open Biol 2024; 14:230270. [PMID: 38471568 DOI: 10.1098/rsob.230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The Drosophila male-specific lethal (MSL) complex binds to the male X chromosome to activate transcription. It comprises five proteins (MSL1, MSL2, MSL3, male absent on the first (MOF), and maleless (MLE)) and two long noncoding RNAs (lncRNAs; roX1 and roX2). The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. MSL2 is expressed only in males and interacts with the N-terminal zinc finger of the transcription factor chromatin-linked adapter for MSL proteins (CLAMP), which is important for the specific recruitment of the MSL complex to the male X chromosome. Here, we found that MLE's unstructured C-terminal region interacts with the sixth zinc-finger domain of CLAMP. In vitro, 4-5 zinc fingers are critical for the specific DNA-binding of CLAMP with GA repeats, which constitute the core motif at the high affinity binding sites for MSL proteins. Deleting the CLAMP binding region in MLE decreases the association of MSL proteins with the male X chromosome and increases male lethality. These results suggest that interactions of unstructured regions in MSL2 and MLE with CLAMP zinc finger domains are important for the specific recruitment of the MSL complex to the male X chromosome.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
7
|
Melnikova L, Molodina V, Babosha V, Kostyuchenko M, Georgiev P, Golovnin A. The MADF-BESS Protein CP60 Is Recruited to Insulators via CP190 and Has Redundant Functions in Drosophila. Int J Mol Sci 2023; 24:15029. [PMID: 37834476 PMCID: PMC10573801 DOI: 10.3390/ijms241915029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize. In this study, we show that the conserved CP60 region adjacent to MADF is responsible for interacting with CP190. In contrast to the well-characterized MADF-BESS transcriptional activator Adf-1, CP60 is recruited to most chromatin sites through its interaction with CP190, and the MADF domain is likely involved in protein-protein interactions but not in DNA binding. The deletion of the Map60 gene showed that CP60 is not an essential protein, despite the strong and ubiquitous expression of CP60 at all stages of Drosophila development. Although CP60 is a stable component of the Su(Hw) insulator complex, the inactivation of CP60 does not affect the enhancer-blocking activity of the Su(Hw)-dependent gypsy insulator. Overall, our results indicate that CP60 has an important but redundant function in transcriptional regulation as a partner of the CP190 protein.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Varvara Molodina
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Margarita Kostyuchenko
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia (P.G.)
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia; (L.M.)
| |
Collapse
|
8
|
Kyrchanova O, Sokolov V, Tikhonov M, Manukyan G, Schedl P, Georgiev P. Transcriptional Readthrough Interrupts Boundary Function in Drosophila. Int J Mol Sci 2023; 24:11368. [PMID: 37511131 PMCID: PMC10379149 DOI: 10.3390/ijms241411368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In higher eukaryotes, distance enhancer-promoter interactions are organized by topologically associated domains, tethering elements, and chromatin insulators/boundaries. While insulators/boundaries play a central role in chromosome organization, the mechanisms regulating their functions are largely unknown. In the studies reported here, we have taken advantage of the well-characterized Drosophila bithorax complex (BX-C) to study one potential mechanism for controlling boundary function. The regulatory domains of BX-C are flanked by boundaries, which block crosstalk with their neighboring domains and also support long-distance interactions between the regulatory domains and their target gene. As many lncRNAs have been found in BX-C, we asked whether readthrough transcription (RT) can impact boundary function. For this purpose, we took advantage of two BX-C boundary replacement platforms, Fab-7attP50 and F2attP, in which the Fab-7 and Fub boundaries, respectively, are deleted and replaced with an attP site. We introduced boundary elements, promoters, and polyadenylation signals arranged in different combinations and then assayed for boundary function. Our results show that RT can interfere with boundary activity. Since lncRNAs represent a significant fraction of Pol II transcripts in multicellular eukaryotes, it is therefore possible that RT may be a widely used mechanism to alter boundary function and regulation of gene expression.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Maxim Tikhonov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Galya Manukyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| |
Collapse
|
9
|
Del Moral-Morales A, Salgado-Albarrán M, Sánchez-Pérez Y, Wenke NK, Baumbach J, Soto-Reyes E. CTCF and Its Multi-Partner Network for Chromatin Regulation. Cells 2023; 12:1357. [PMID: 37408191 DOI: 10.3390/cells12101357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Architectural proteins are essential epigenetic regulators that play a critical role in organizing chromatin and controlling gene expression. CTCF (CCCTC-binding factor) is a key architectural protein responsible for maintaining the intricate 3D structure of chromatin. Because of its multivalent properties and plasticity to bind various sequences, CTCF is similar to a Swiss knife for genome organization. Despite the importance of this protein, its mechanisms of action are not fully elucidated. It has been hypothesized that its versatility is achieved through interaction with multiple partners, forming a complex network that regulates chromatin folding within the nucleus. In this review, we delve into CTCF's interactions with other molecules involved in epigenetic processes, particularly histone and DNA demethylases, as well as several long non-coding RNAs (lncRNAs) that are able to recruit CTCF. Our review highlights the importance of CTCF partners to shed light on chromatin regulation and pave the way for future exploration of the mechanisms that enable the finely-tuned role of CTCF as a master regulator of chromatin.
Collapse
Affiliation(s)
- Aylin Del Moral-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City 05348, Mexico
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
| | - Marisol Salgado-Albarrán
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City 05348, Mexico
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Nina Kerstin Wenke
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, D-22607 Hamburg, Germany
- Computational BioMedicine Lab., University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City 05348, Mexico
| |
Collapse
|
10
|
Mao A, Chen C, Portillo-Ledesma S, Schlick T. Effect of Single-Residue Mutations on CTCF Binding to DNA: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:ijms24076395. [PMID: 37047368 PMCID: PMC10094706 DOI: 10.3390/ijms24076395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
In humans and other eukaryotes, DNA is condensed into chromatin fibers that are further wound into chromosomes. This organization allows regulatory elements in the genome, often distant from each other in the linear DNA, to interact and facilitate gene expression through regions known as topologically associating domains (TADs). CCCTC–binding factor (CTCF) is one of the major components of TAD formation and is responsible for recruiting a partner protein, cohesin, to perform loop extrusion and facilitate proper gene expression within TADs. Because single-residue CTCF mutations have been linked to the development of a variety of cancers in humans, we aim to better understand how these mutations affect the CTCF structure and its interaction with DNA. To this end, we compare all-atom molecular dynamics simulations of a wildtype CTCF–DNA complex to those of eight different cancer-linked CTCF mutant sequences. We find that most mutants have lower binding energies compared to the wildtype protein, leading to the formation of less stable complexes. Depending on the type and position of the mutation, this loss of stability can be attributed to major changes in the electrostatic potential, loss of hydrogen bonds between the CTCF and DNA, and/or destabilization of specific zinc fingers. Interestingly, certain mutations in specific fingers can affect the interaction with the DNA of other fingers, explaining why mere single mutations can impair CTCF function. Overall, these results shed mechanistic insights into experimental observations and further underscore CTCF’s importance in the regulation of chromatin architecture and gene expression.
Collapse
Affiliation(s)
- Albert Mao
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; (A.M.); (C.C.); (S.P.-L.)
| | - Carrie Chen
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; (A.M.); (C.C.); (S.P.-L.)
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; (A.M.); (C.C.); (S.P.-L.)
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; (A.M.); (C.C.); (S.P.-L.)
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
- Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA
- Correspondence:
| |
Collapse
|
11
|
Kyrchanova O, Sokolov V, Tikhonov M, Schedl P, Georgiev P. Transcriptional read through interrupts boundary function in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528790. [PMID: 36824960 PMCID: PMC9949125 DOI: 10.1101/2023.02.16.528790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In higher eukaryotes enhancer-promoter interactions are known to be restricted by the chromatin insulators/boundaries that delimit topologically associated domains (TADs); however, there are instances in which enhancer-promoter interactions span one or more boundary elements/TADs. At present, the mechanisms that enable cross-TAD regulatory interaction are not known. In the studies reported here we have taken advantage of the well characterized Drosophila Bithorax complex (BX-C) to study one potential mechanism for controlling boundary function and TAD organization. The regulatory domains of BX-C are flanked by boundaries which function to block crosstalk with their neighboring domains and also to support long distance interactions between the regulatory domains and their target gene. As many lncRNAs have been found in BX-C, we asked whether transcriptional readthrough can impact boundary function. For this purpose, we took advantage of two BX-C boundary replacement platforms, Fab-7 attP50 and F2 attP , in which the Fab-7 and Fub boundaries, respectively, are deleted and replaced with an attP site. We introduced boundary elements, promoters and polyadenylation signals arranged in different combinations and then assayed for boundary function. Our results show that transcriptional readthrough can interfere with boundary activity. Since lncRNAs represent a significant fraction of Pol II transcripts in multicellular eukaryotes, it is possible that many of them may function in the regulation of TAD organization. Author Summary Recent studies have shown that much genome in higher eukaryotes is transcribed into non-protein coding lncRNAs. It is though that lncRNAs may preform important regulatory functions, including the formation of protein complexes, organization of functional interactions between enhancers and promoters and the maintenance of open chromatin. Here we examined how transcription from promoters inserted into the Drosophila Bithorax complex can impact the boundaries that are responsible for establishing independent regulatory domains. Surprisingly, we found that even a relatively low level of transcriptional readthrough can impair boundary function. Transcription also affects the activity of enhancers located in BX-C regulatory domains. Taken together, our results raise the possibility that transcriptional readthrough may be a widely used mechanism to alter chromosome structure and regulate gene expression.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia,Corresponding author: (PG), (PS)
| | - Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Maxim Tikhonov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA,Corresponding author: (PG), (PS)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia,Corresponding author: (PG), (PS)
| |
Collapse
|
12
|
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int J Mol Sci 2023; 24:ijms24032855. [PMID: 36769179 PMCID: PMC9917889 DOI: 10.3390/ijms24032855] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.
Collapse
|
13
|
Kyrchanova OV, Bylino OV, Georgiev PG. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila. Front Genet 2022; 13:1081088. [PMID: 36531247 PMCID: PMC9751008 DOI: 10.3389/fgene.2022.1081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.
Collapse
|
14
|
Leipart V, Enger Ø, Turcu DC, Dobrovolska O, Drabløs F, Halskau Ø, Amdam GV. Resolving the zinc binding capacity of honey bee vitellogenin and locating its putative binding sites. INSECT MOLECULAR BIOLOGY 2022; 31:810-820. [PMID: 36054587 PMCID: PMC9804912 DOI: 10.1111/imb.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The protein vitellogenin (Vg) plays a central role in lipid transportation in most egg-laying animals. High Vg levels correlate with stress resistance and lifespan potential in honey bees (Apis mellifera). Vg is the primary circulating zinc-carrying protein in honey bees. Zinc is an essential metal ion in numerous biological processes, including the function and structure of many proteins. Measurements of Zn2+ suggest a variable number of ions per Vg molecule in different animal species, but the molecular implications of zinc-binding by this protein are not well-understood. We used inductively coupled plasma mass spectrometry to determine that, on average, each honey bee Vg molecule binds 3 Zn2+ -ions. Our full-length protein structure and sequence analysis revealed seven potential zinc-binding sites. These are located in the β-barrel and α-helical subdomains of the N-terminal domain, the lipid binding site, and the cysteine-rich C-terminal region of unknown function. Interestingly, two potential zinc-binding sites in the β-barrel can support a proposed role for this structure in DNA-binding. Overall, our findings suggest that honey bee Vg bind zinc at several functional regions, indicating that Zn2+ -ions are important for many of the activities of this protein. In addition to being potentially relevant for other egg-laying species, these insights provide a platform for studies of metal ions in bee health, which is of global interest due to recent declines in pollinator numbers.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | - Øyvind Enger
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
| | | | | | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNTNU – Norwegian University of Science and TechnologyTrondheimNorway
| | - Øyvind Halskau
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesAasNorway
- School of Life SciencesArizona State UniversityTempeArizonaUSA
| |
Collapse
|
15
|
Mohamed RA, Guo CT, Xu SY, Ying SH, Feng MG. Characterization of BbKlf1 as a novel transcription factor vital for asexual and infection cycles of Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:719-731. [PMID: 35851566 DOI: 10.1111/1758-2229.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The large family of C2H2-type zinc finger transcription factors (TFs) comprise the Kruppel-like factors (KLFs) that evolved relatively late in eukaryotes but remain unexplored in filamentous fungi. Here, we report that an orthologue (BbKlf1) of yeast Klf1 mediating cell wall integrity (CWI) is a wide-spectrum TF evidently localized in nucleus and cytoplasm in Beauveria bassiana. BbKlf1 features conserved domains and multiple DNA-binding motifs predicted to bind multiple promoter DNA fragments of target genes across asexual developmental and stress-responsive pathways. Despite limited impact on normal colony growth, deletion of Bbklf1 resulted in impaired CWI and hypersensitivity to Congo red-induced cell wall stress. Also, the deletion mutant was severely compromised in tolerance to oxidative and osmotic stresses, hyphal septation and differentiation, conidiation capacity (reduced by 95%), conidial quality (viability and hydrocarbon epitope pattern) and virulence. Importantly, these phenotypes correlated well with sharply repressed or nearly abolished expressions of those genes required for or involved in chitin biosynthesis, antioxidant activity, cell division and differentiation, aerial conidiation and conidial maturation. These findings indicate an essentiality of BbKlf1 for the asexual and insect-pathogenic lifecycles of B. bassiana and a novel scenario much beyond the yeast orthologue-mediated CWI, suggesting important roles of its orthologues in filamentous fungi.
Collapse
Affiliation(s)
- Rehab Abdelmonem Mohamed
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong-Tao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Yuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Bonchuk AN, Boyko KM, Nikolaeva AY, Burtseva AD, Popov VO, Georgiev PG. Structural insights into highly similar spatial organization of zinc-finger associated domains with a very low sequence similarity. Structure 2022; 30:1004-1015.e4. [DOI: 10.1016/j.str.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
17
|
Tikhonova E, Mariasina S, Arkova O, Maksimenko O, Georgiev P, Bonchuk A. Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. Int J Mol Sci 2022; 23:3862. [PMID: 35409222 PMCID: PMC8998743 DOI: 10.3390/ijms23073862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
In Drosophila melanogaster, CLAMP is an essential zinc-finger transcription factor that is involved in chromosome architecture and functions as an adaptor for the dosage compensation complex. Most of the known Drosophila architectural proteins have structural N-terminal homodimerization domains that facilitate distance interactions. Because CLAMP performs architectural functions, we tested its N-terminal region for the presence of a homodimerization domain. We used a yeast two-hybrid assay and biochemical studies to demonstrate that the adjacent N-terminal region between 46 and 86 amino acids is capable of forming homodimers. This region is conserved in CLAMP orthologs from most insects, except Hymenopterans. Biophysical techniques, including nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS), suggested that this domain lacks secondary structure and has features of intrinsically disordered regions despite the fact that the protein structure prediction algorithms suggested the presence of beta-sheets. The dimerization domain is essential for CLAMP functions in vivo because its deletion results in lethality. Thus, CLAMP is the second architectural protein after CTCF that contains an unstructured N-terminal dimerization domain.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Sofia Mariasina
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Olga Arkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.A.); (O.M.)
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.A.); (O.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.A.); (O.M.)
| |
Collapse
|
18
|
Kyrchanova OV, Postika NY, Sokolov VV, Georgiev PG. Fragments of the Fab-3 and Fab-4 Boundaries of the Drosophila melanogaster Bithorax Complex That Include CTCF Sites Are not Effective Insulators. DOKL BIOCHEM BIOPHYS 2022; 502:21-24. [PMID: 35275301 PMCID: PMC8917101 DOI: 10.1134/s1607672922010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
The segment-specific regulatory domains of the Bithorax complex (BX-C), which consists of three homeotic genes Ubx, abd-A and Abd-B, are separated by boundaries that function as insulators. Most of the boundaries contain binding sites for the architectural protein CTCF, which is conserved for higher eukaryotes. As was shown previously, the CTCF sites determine the insulator activity of the boundaries of the Abd-B regulatory region. In this study, it was shown that fragments of the Fab-3 and Fab-4 boundaries of the abd-A regulatory region, containing CTCF binding sites, are not effective insulators.
Collapse
Affiliation(s)
- O V Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - N Y Postika
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - V V Sokolov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Mechanisms of CP190 Interaction with Architectural Proteins in Drosophila Melanogaster. Int J Mol Sci 2021; 22:ijms222212400. [PMID: 34830280 PMCID: PMC8618245 DOI: 10.3390/ijms222212400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Most of the known Drosophila architectural proteins interact with an important cofactor, CP190, that contains three domains (BTB, M, and D) that are involved in protein–protein interactions. The highly conserved N-terminal CP190 BTB domain forms a stable homodimer that interacts with unstructured regions in the three best-characterized architectural proteins: dCTCF, Su(Hw), and Pita. Here, we identified two new CP190 partners, CG4730 and CG31365, that interact with the BTB domain. The CP190 BTB resembles the previously characterized human BCL6 BTB domain, which uses its hydrophobic groove to specifically associate with unstructured regions of several transcriptional repressors. Using GST pull-down and yeast two-hybrid assays, we demonstrated that mutations in the hydrophobic groove strongly affect the affinity of CP190 BTB for the architectural proteins. In the yeast two-hybrid assay, we found that architectural proteins use various mechanisms to improve the efficiency of interaction with CP190. Pita and Su(Hw) have two unstructured regions that appear to simultaneously interact with hydrophobic grooves in the BTB dimer. In dCTCF and CG31365, two adjacent regions interact simultaneously with the hydrophobic groove of the BTB and the M domain of CP190. Finally, CG4730 interacts with the BTB, M, and D domains of CP190 simultaneously. These results suggest that architectural proteins use different mechanisms to increase the efficiency of interaction with CP190.
Collapse
|
20
|
Sokolov VV, Georgiev PG, Kyrchanova OV. The Piragua Gene Is not Essential for Drosophila Development. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 501:197-200. [PMID: 34962606 DOI: 10.1134/s0012496621060089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/14/2023]
Abstract
Proteins with clusters of C2H2 zinc finger domains (C2H2-proteins) constitute the most abundant class of transcription factors in higher eukaryotes. N-terminal ZAD (zinc finger-associated domain) dimerization domain has been identified in a large group of C2H2-proteins mostly in insects. The piragua gene encodes one of these proteins, Fu2. We have generated CRISPR/Cas9-mediated deletion of the piragua gene that has no phenotype. We have used φC31-mediated attP/attB recombination to generate a transgenic line expressing Fu2 protein fused with HA epitope. This line will be useful for analysis of DNA binding profile and functions of Fu2 protein.
Collapse
Affiliation(s)
- V V Sokolov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - O V Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
21
|
Kyrchanova O, Klimenko N, Postika N, Bonchuk A, Zolotarev N, Maksimenko O, Georgiev P. Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194733. [PMID: 34311130 DOI: 10.1016/j.bbagrm.2021.194733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
CTCF is the most likely ancestor of proteins that contain large clusters of C2H2 zinc finger domains (C2H2) and is conserved among most bilateral organisms. In mammals, CTCF functions as the main architectural protein involved in the organization of topology-associated domains (TADs). In vertebrates and Drosophila, CTCF is involved in the regulation of homeotic genes. Previously, it was found that null mutations in the dCTCF gene died as pharate adults, which failed to eclose from their pupal case, or shortly after hatching of adults. Here, we obtained several new null dCTCF mutations and found that the complete inactivation of dCTCF appears is limited mainly to phenotypic manifestations of the Abd-B gene and fertility of adult flies. Many modifiers that are not associated with an independent phenotypic manifestation can significantly enhance the expressivity of the null dCTCF mutations, indicating that other architectural proteins are able to functionally compensate for dCTCF inactivation in Drosophila. We also mapped the 715-735 aa region of dCTCF as being essential for the interaction with the BTB (Broad-Complex, Tramtrack, and Bric a brac) and microtubule-targeting (M) domains of the CP190 protein, which binds to many architectural proteins. However, the mutational analysis showed that the interaction with CP190 was not important for the functional activity of dCTCF in vivo.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Nikolay Zolotarev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia.
| |
Collapse
|
22
|
Fursenko DV, Georgiev PG, Bonchuk AN. Study of the N-Terminal Domain Homodimerization in Human Proteins with Zinc Finger Clusters. DOKL BIOCHEM BIOPHYS 2021; 499:257-259. [PMID: 34426923 PMCID: PMC8382608 DOI: 10.1134/s1607672921040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
CTCF belongs to a large family of transcription factors with clusters of C2H2-type zinc finger domains (C2H2 proteins) and is a main architectural protein in mammals. Human CTCF has a homodimerizing unstructured domain at the N-terminus which is involved in long-distance interactions. To test the presence of similar N-terminal domains in other human C2H2 proteins, a yeast two-hybrid system was used. In total, the ability of unstructured N-terminal domains to homodimerize was investigated for six human C2H2 proteins with an expression profile similar to CTCF. The data indicate the lack of the homodimerization ability of these domains. On the other hand, three C2H2 proteins containing the structured domain DUF3669 at the N-terminus demonstrated homo- and heterodimerization activity.
Collapse
Affiliation(s)
- D V Fursenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A N Bonchuk
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|