1
|
Didaran F, Kordrostami M, Ghasemi-Soloklui AA, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113004. [PMID: 39137703 DOI: 10.1016/j.jphotobiol.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Collapse
Affiliation(s)
- Fardad Didaran
- Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pavel Pashkovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Kuznetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| |
Collapse
|
2
|
Figueroa-Luque E, Figueroa M, Castillo J, Cires ADE, álvarez R, Cambrollé J, Gallego-Tévar B. High photosynthetic thermal tolerance in the Mediterranean halophyte Limoniastrum monopetalum. PHOTOSYNTHETICA 2024; 62:263-270. [PMID: 39649361 PMCID: PMC11622549 DOI: 10.32615/ps.2024.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/26/2024] [Indexed: 12/10/2024]
Abstract
The general increase in temperature, together with sudden episodes of extreme temperatures, are increasingly impacting plant species in the present climate change scenario. Limoniastrum monopetalum is a halophyte from the Mediterranean Basin, exposed to broad daily and seasonal changes in temperature and extreme high temperatures. We studied the photosynthetic responses (chlorophyll fluorescence dynamics and gas exchange) of L. monopetalum leaves exposed to temperatures from -7.5°C to +57.5°C under darkness in controlled laboratory conditions. L. monopetalum presented its optimum temperature for photosynthesis around +30°C. The photosynthetic apparatus of L. monopetalum exhibited permanent damages at > +40.0°C. L. monopetalum tolerated, without permanent damages, temperatures as low as -7.5°C in darkness. L. monopetalum appears as a plant species very well adapted to the seasonality of the Mediterranean climate, which may work as a pre-adaptation to stand more extreme temperatures in the actual context of accelerating climate change.
Collapse
Affiliation(s)
- E. Figueroa-Luque
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| | - M.E. Figueroa
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| | - J.M. Castillo
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| | - A. DE Cires
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| | - R. álvarez
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| | - J. Cambrollé
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| | - B. Gallego-Tévar
- Department of Plant Biology and Ecology, University of Sevilla, Ap 1095, 41080 Sevilla, Spain
| |
Collapse
|
3
|
Ashikhmin A, Pashkovskiy P, Kosobryukhov A, Khudyakova A, Abramova A, Vereshchagin M, Bolshakov M, Kreslavski V. The Role of Pigments and Cryptochrome 1 in the Adaptation of Solanum lycopersicum Photosynthetic Apparatus to High-Intensity Blue Light. Antioxidants (Basel) 2024; 13:605. [PMID: 38790710 PMCID: PMC11117525 DOI: 10.3390/antiox13050605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of high-intensity blue light (HIBL, 500/1000 µmol m-2s-1, 450 nm) on Solanum lycopersicum mutants with high pigment (hp) and low pigment (lp) levels and cryptochrome 1 (cry1) deficiency on photosynthesis, chlorophylls, phenols, anthocyanins, nonenzymatic antioxidant activity, carotenoid composition, and the expression of light-dependent genes were investigated. The plants, grown under white light for 42 days, were exposed to HIBL for 72 h. The hp mutant quickly adapted to 500 µmol m-2s-1 HIBL, exhibiting enhanced photosynthesis, increased anthocyanin and carotenoids (beta-carotene, zeaxanthin), and increased expression of key genes involved in pigment biosynthesis (PSY1, PAL1, CHS, ANS) and PSII proteins along with an increase in nonenzymatic antioxidant activity. At 1000 µmol m-2s-1 HIBL, the lp mutant showed the highest photosynthetic activity, enhanced expression of genes associated with PSII external proteins (psbO, psbP, psbQ), and increased in neoxanthin content. This mutant demonstrated greater resistance at the higher HIBL, demonstrating increased stomatal conductance and photosynthesis rate. The cry1 mutant exhibited the highest non-photochemical quenching (NPQ) but had the lowest pigment contents and decreased photosynthetic rate and PSII activity, highlighting the critical role of CRY1 in adaptation to HIBL. The hp and lp mutants use distinct adaptation strategies, which are significantly hindered by the cry1 mutation. The pigment content appears to be crucial for adaptation at moderate HIBL doses, while CRY1 content and stomatal activity become more critical at higher doses.
Collapse
Affiliation(s)
- Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Anatoliy Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Alexandra Khudyakova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (P.P.); (A.A.); (M.V.)
| | - Maksim Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia; (A.A.); (A.K.); (A.K.); (M.B.)
| |
Collapse
|
4
|
Bhutia KL, Ahmad M, Kisku A, Sudhan RA, Bhutia ND, Sharma VK, Prasad BD, Thudi M, Obročník O, Bárek V, Brestic M, Skalicky M, Gaber A, Hossain A. Shoot transcriptome revealed widespread differential expression and potential molecular mechanisms of chickpea ( Cicer arietinum L.) against Fusarium wilt. Front Microbiol 2024; 14:1265265. [PMID: 38370576 PMCID: PMC10870781 DOI: 10.3389/fmicb.2023.1265265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/30/2023] [Indexed: 02/20/2024] Open
Abstract
Introduction The yield of chickpea is severely hampered by infection wilt caused by several races of Fusarium oxysporum f. sp. ciceris (Foc). Methods To understand the underlying molecular mechanisms of resistance against Foc4 Fusarium wilt, RNA sequencing-based shoot transcriptome data of two contrasting chickpea genotypes, namely KWR 108 (resistant) and GL 13001 (susceptible), were generated and analyzed. Results and Discussion The shoot transcriptome data showed 1,103 and 1,221 significant DEGs in chickpea genotypes KWR 108 and GL 13001, respectively. Among these, 495 and 608 genes were significantly down and up-regulated in genotypes KWR 108, and 427 and 794 genes were significantly down and up-regulated in genotype GL 13001. The gene ontology (GO) analysis of significant DEGs was performed and the GO of the top 50 DEGs in two contrasting chickpea genotypes showed the highest cellular components as membrane and nucleus, and molecular functions including nucleotide binding, metal ion binding, transferase, kinase, and oxidoreductase activity involved in biological processes such as phosphorylation, oxidation-reduction, cell redox homeostasis process, and DNA repair. Compared to the susceptible genotype which showed significant up-regulation of genes involved in processes like DNA repair, the significantly up-regulated DEGs of the resistant genotypes were involved in processes like energy metabolism and environmental adaptation, particularly host-pathogen interaction. This indicates an efficient utilization of environmental adaptation pathways, energy homeostasis, and stable DNA molecules as the strategy to cope with Fusarium wilt infection in chickpea. The findings of the study will be useful in targeting the genes in designing gene-based markers for association mapping with the traits of interest in chickpea under Fusarium wilt which could be efficiently utilized in marker-assisted breeding of chickpea, particularly against Foc4 Fusarium wilt.
Collapse
Affiliation(s)
- Karma L. Bhutia
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Mahtab Ahmad
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Anima Kisku
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - R. A. Sudhan
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Nangsol D. Bhutia
- College of Horticulture and Forestry, Central Agricultural University (Imphal), Pasighat, Arunachal Pradesh, India
| | - V. K. Sharma
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Bishun Deo Prasad
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Bihar, India
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
5
|
Martins J, Neves M, Canhoto J. Drought-Stress-Induced Changes in Chloroplast Gene Expression in Two Contrasting Strawberry Tree ( Arbutus unedo L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:4133. [PMID: 38140460 PMCID: PMC10747485 DOI: 10.3390/plants12244133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
This study investigated the effect of drought stress on the expression of chloroplast genes in two different genotypes (A1 and A4) of strawberry tree plants with contrasting performances. Two-year-old plants were subjected to drought (20 days at 18% field capacity), and the photosynthetic activity, chlorophyll content, and expression levels of 16 chloroplast genes involved in photosynthesis and metabolism-related enzymes were analyzed. Genotype-specific responses were prominent, with A1 displaying wilting and leaf curling, contrasting with the mild symptoms observed in A4. Quantification of damage using the net CO2 assimilation rates and chlorophyll content unveiled a significant reduction in A1, while A4 maintained stability. Gene expression analysis revealed substantial downregulation of A1 (15 out of 16 genes) and upregulation of A4 (14 out of 16 genes). Notably, psbC was downregulated in A1, while it was prominently upregulated in A4. Principal Component Analysis (PCA) highlighted genotype-specific clusters, emphasizing distinct responses under stress, whereas a correlation analysis elucidated intricate relationships between gene expression, net CO2 assimilation, and chlorophyll content. Particularly, a positive correlation with psaB, whereas a negative correlation with psbC was found in genotype A1. Regression analysis identified potential predictors for net CO2 assimilation, in particular psaB. These findings contribute valuable insights for future strategies targeting crop enhancement and stress resilience, highlighting the central role of chloroplasts in orchestrating plant responses to environmental stressors, and may contribute to the development of drought-tolerant plant varieties, which are essential for sustaining agriculture in regions affected by water scarcity.
Collapse
Affiliation(s)
- João Martins
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.N.); (J.C.)
| | | | | |
Collapse
|
6
|
Landi M, Brestic M, Kataria S, Allakhverdiev SI. Editorial. PHOTOSYNTHETICA 2023; 61:135-137. [PMID: 39650677 PMCID: PMC11515823 DOI: 10.32615/ps.2023.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 12/11/2024]
Affiliation(s)
- M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - M Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resource, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - S Kataria
- School of Biochemistry, Devi Ahilya University, 452001 Indore, Madhya Pradesh, India
| | - S I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|