1
|
Yang X, Fengyi W, Yi C, Lin Q, Yang L, Xize L, Shaxin L, Yonghong Y. Effects of robot-assisted upper limb training combined with functional electrical stimulation in stroke patients: study protocol for a randomized controlled trial. Trials 2024; 25:355. [PMID: 38835062 PMCID: PMC11149248 DOI: 10.1186/s13063-024-08199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
INTRODUCTION About 17-80% stroke survivors experience the deficit of upper limb function, which strongly influences their independence and quality of life. Robot-assisted training and functional electrical stimulation are commonly used interventions in the rehabilitation of hemiplegia upper extremities, while the effect of their combination remains unclear. The aim of this trial is to explore the effect of robot-assisted upper limb training combined with functional electrical stimulation, in terms of neuromuscular rehabilitation, compared with robot-assisted upper limb training alone. METHODS Individuals (n = 60) with the first onset of stroke (more than 1 week and less than 1 year after stroke onset) will be considered in the recruitment of this single-blinded, three-arm randomized controlled trial. Participants will be allocated into three groups (robot-assisted training combined with functional electrical stimulation group, robot-assisted training group, and conventional rehabilitation therapies group) with a ratio of 1:1:1. All interventions will be executed for 45 min per session, one session per day, 5 sessions per week for 6 weeks. The neuromuscular function of the upper limb (Fugl-Meyer Assessment of upper extremity), ability of daily life (modified Barthel Index), pain (visual analogue scale), and quality of life (EQ-5D-5L) will be assessed at the baseline, at the end of this trial and after 3 months follow-up. Two-way repeated measures analysis of variance will be used to compare the outcomes if the data are normally distributed. Simple effects tests will be used for the further exploration of interaction effects by time and group. Scheirer-Ray-Hare test will be used if the data are not satisfied with normal distribution. DISCUSSION We expect this three-arm randomized controlled trial to explore the effectiveness of robot-assisted training combined with functional electrical stimulation in improving post-stroke upper limb function compared with robot-assisted training alone. TRIAL REGISTRATION Effect of upper limb robot on improving upper limb function after stroke, identifier: ChiCTR2300073279. Registered on 5 July 2023.
Collapse
Affiliation(s)
- Xu Yang
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China
| | - Wang Fengyi
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China
| | - Chen Yi
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China
| | - Qiu Lin
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China
| | - Lin Yang
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China
| | - Li Xize
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China
| | - Liu Shaxin
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China.
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China.
| | - Yang Yonghong
- Rehabilitation Medicine Center, Sichuan University West China Hospital, Chengdu, 611135, Sichuan Province, China.
- Sichuan University West China School of Medicine, Chengdu, 611135, Sichuan Province, China.
| |
Collapse
|
2
|
Hong R, Li B, Bao Y, Liu L, Jin L. Therapeutic robots for post-stroke rehabilitation. MEDICAL REVIEW (2021) 2024; 4:55-67. [PMID: 38515779 PMCID: PMC10954296 DOI: 10.1515/mr-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/25/2024] [Indexed: 03/23/2024]
Abstract
Stroke is a prevalent, severe, and disabling health-care issue on a global scale, inevitably leading to motor and cognitive deficits. It has become one of the most significant challenges in China, resulting in substantial social and economic burdens. In addition to the medication and surgical interventions during the acute phase, rehabilitation treatment plays a crucial role in stroke care. Robotic technology takes distinct advantages over traditional physical therapy, occupational therapy, and speech therapy, and is increasingly gaining popularity in post-stroke rehabilitation. The use of rehabilitation robots not only alleviates the workload of healthcare professionals but also enhances the prognosis for specific stroke patients. This review presents a concise overview of the application of therapeutic robots in post-stroke rehabilitation, with particular emphasis on the recovery of motor and cognitive function.
Collapse
Affiliation(s)
- Ronghua Hong
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yunjun Bao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Lingyu Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons’ Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Neurotoxin Research Center, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Carrillo C, Tilley D, Horn K, Gonzalez M, Coffman C, Hilton C, Mani K. Effectiveness of Robotics in Stroke Rehabilitation to Accelerate Upper Extremity Function: Systematic Review. Occup Ther Int 2023; 2023:7991765. [PMID: 37927581 PMCID: PMC10624545 DOI: 10.1155/2023/7991765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To examine the effectiveness of robot-assisted therapy (RAT) combined with conventional therapy (CT) compared to CT alone in accelerating upper extremity (UE) recovery poststroke. Data Sources. We searched five databases: Ovid, MEDLINE, CINAHL, PubMed, and Scopus Study Selection. Studies were selected for this review using the following inclusion criteria: randomized controlled trials of adults, RAT combined with CT compared to CT, and Fugl-Meyer Assessment (FMA) as an outcome measure. Studies focused on children with neurological impairments, and studies that used RAT to facilitate lower extremity recovery and/or improve gait were excluded. Data Extraction. The initial search yielded 3,019 citations of articles published between January 2011 and May 2021. Fourteen articles met the inclusion criteria. Randomization, allocation sequence concealment, blinding, and other biases were assessed. Data Synthesis. Current evidence suggests that the use of RAT along with CT may accelerate upper extremity recovery, measured by FMA, in the beginning of rehabilitation. However, the progress fades over time. More empirical research is needed to validate this observation. Also, the findings related to cost-benefit analyses of RAT are inconclusive. Conclusions It is unclear whether RAT accelerates UE recovery poststroke when used in conjunction with conventional therapy. Given the capital and maintenance costs involved in developing and delivering RAT, more controlled studies examining the effectiveness and cost-benefit analysis of RAT are needed before it can be used widely. This trial is registered with CRD42021270824.
Collapse
Affiliation(s)
- Cora Carrillo
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Devyn Tilley
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Kaitlyn Horn
- University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Claudia Hilton
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Karthik Mani
- University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Lamp G, Sola Molina RM, Hugrass L, Beaton R, Crewther D, Crewther SG. Kinematic Studies of the Go/No-Go Task as a Dynamic Sensorimotor Inhibition Task for Assessment of Motor and Executive Function in Stroke Patients: An Exploratory Study in a Neurotypical Sample. Brain Sci 2022; 12:1581. [PMID: 36421905 PMCID: PMC9688448 DOI: 10.3390/brainsci12111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/12/2022] [Indexed: 08/30/2023] Open
Abstract
Inhibition of reaching and grasping actions as an element of cognitive control and executive function is a vital component of sensorimotor behaviour that is often impaired in patients who have lost sensorimotor function following a stroke. To date, there are few kinematic studies detailing the fine spatial and temporal upper limb movements associated with the millisecond temporal trajectory of correct and incorrect responses to visually driven Go/No-Go reaching and grasping tasks. Therefore, we aimed to refine the behavioural measurement of correct and incorrect inhibitory motor responses in a Go/No-Go task for future quantification and personalized rehabilitation in older populations and those with acquired motor disorders, such as stroke. An exploratory study mapping the kinematic profiles of hand movements in neurotypical participants utilizing such a task was conducted using high-speed biological motion capture cameras, revealing both within and between subject differences in a sample of healthy participants. These kinematic profiles and differences are discussed in the context of better assessment of sensorimotor function impairment in stroke survivors.
Collapse
Affiliation(s)
- Gemma Lamp
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Rosa Maria Sola Molina
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Laila Hugrass
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - Russell Beaton
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Crewther
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3022, Australia
| | - Sheila Gillard Crewther
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC 3086, Australia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3022, Australia
| |
Collapse
|
5
|
Agami S, Riemer R, Berman S. Enhancing motion tracking accuracy of a low-cost 3D video sensor using a biomechanical model, sensor fusion, and deep learning. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:956381. [PMID: 36188943 PMCID: PMC9397931 DOI: 10.3389/fresc.2022.956381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Low-cost 3D video sensors equipped with routines for extracting skeleton data facilitate the widespread use of virtual reality (VR) for rehabilitation. However, the accuracy of the extracted skeleton data is often limited. Accuracy can be improved using a motion tracker, e.g., using a recurrent neural network (RNN). Yet, training an RNN requires a considerable amount of relevant and accurate training data. Training databases can be obtained using gold-standard motion tracking sensors. This limits the use of the RNN trackers in environments and tasks that lack accessibility to gold-standard sensors. Digital goniometers are typically cheaper, more portable, and simpler to use than gold-standard motion tracking sensors. The current work suggests a method for generating accurate skeleton data suitable for training an RNN motion tracker based on the offline fusion of a Kinect 3D video sensor and an electronic goniometer. The fusion applies nonlinear constraint optimization, where the constraints are based on an advanced shoulder-centered kinematic model of the arm. The model builds on the representation of the arm as a triangle (the arm triangle). The shoulder-centered representation of the arm triangle motion simplifies constraint representation and consequently the optimization problem. To test the performance of the offline fusion and the RNN trained using the optimized data, arm motion of eight participants was recorded using a Kinect sensor, an electronic goniometer, and, for comparison, a passive-marker-based motion tracker. The data generated by fusing the Kinect and goniometer recordings were used for training two long short-term memory (LSTM) RNNs. The input to one RNN included both the Kinect and the goniometer data, and the input to the second RNN included only Kinect data. The performance of the networks was compared to the performance of a tracker based on a Kalman filter and to the raw Kinect measurements. The accuracy of the fused data was high, and it considerably improved data accuracy. The accuracy for both trackers was high, and both were more accurate than the Kalman filter tracker and the raw Kinect measurements. The developed methods are suitable for integration with immersive VR rehabilitation systems in the clinic and the home environments.
Collapse
Affiliation(s)
| | | | - Sigal Berman
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
Bonnal J, Monnet F, Le BT, Pila O, Grosmaire AG, Ozsancak C, Duret C, Auzou P. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS). SENSORS (BASEL, SWITZERLAND) 2022; 22:5542. [PMID: 35898041 PMCID: PMC9329983 DOI: 10.3390/s22155542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Force and effort are important components of a motor task that can impact rehabilitation effectiveness. However, few studies have evaluated the impact of these factors on cortical activation during gait. The purpose of the study was to investigate the relation between cortical activation and effort required during exoskeleton-mediated gait at different levels of physical assistance in healthy individuals. Twenty-four healthy participants walked 10 m with an exoskeleton that provided four levels of assistance: 100%, 50%, 0%, and 25% resistance. Functional near-infrared spectroscopy (fNIRS) was used to measure cerebral flow dynamics with a 20-channel (plus two reference channels) device that covered most cortical motor regions bilaterally. We measured changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR). According to HbO2 levels, cortical activation only differed slightly between the assisted conditions and rest. In contrast, bilateral and widespread cortical activation occurred during the two unassisted conditions (somatosensory, somatosensory association, primary motor, premotor, and supplementary motor cortices). A similar pattern was seen for HbR levels, with a smaller number of significant channels than for HbO2. These results confirmed the hypothesis that there is a relation between cortical activation and level of effort during gait. This finding should help to optimize neurological rehabilitation strategies to drive neuroplasticity.
Collapse
Affiliation(s)
- Julien Bonnal
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Fanny Monnet
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
- Institut Denis Poisson, Université d’Orléans Collegium Sciences et Techniques Bâtiment de Mathématiques, Rue de Chartres, B.P. 6759, CEDEX 2, 45067 Orleans, France
| | - Ba-Thien Le
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Ophélie Pila
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Anne-Gaëlle Grosmaire
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Canan Ozsancak
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| | - Christophe Duret
- Unité de Neurorééducation, Médecine Physique et de Réadaptation, Centre de Rééducation Fonctionnelle Les Trois Soleils, Rue du Château, 77310 Boissise-Le-Roi, France; (O.P.); (A.-G.G.)
| | - Pascal Auzou
- Service de Neurologie, Centre Hospitalier Regional d’Orleans, 14 Avenue de l’Hôpital, 45100 Orleans, France; (J.B.); (F.M.); (B.-T.L.); (C.O.); (P.A.)
| |
Collapse
|
7
|
Stoykov ME, Biller OM, Wax A, King E, Schauer JM, Fogg LF, Corcos DM. Bilateral upper extremity motor priming (BUMP) plus task-specific training for severe, chronic upper limb hemiparesis: study protocol for a randomized clinical trial. Trials 2022; 23:523. [PMID: 35733202 PMCID: PMC9214193 DOI: 10.1186/s13063-022-06465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Various priming techniques to enhance neuroplasticity have been examined in stroke rehabilitation research. Most priming techniques are costly and approved only for research. Here, we describe a priming technique that is cost-effective and has potential to significantly change clinical practice. Bilateral motor priming uses the Exsurgo priming device (Exsurgo Rehabilitation, Auckland, NZ) so that the less affected limb drives the more affected limb in bilateral symmetrical wrist flexion and extension. The aim of this study is to determine the effects of a 5-week protocol of bilateral motor priming in combination with task-specific training on motor impairment of the affected limb, bimanual motor function, and interhemispheric inhibition in moderate to severely impaired people with stroke. METHODS Seventy-six participants will be randomized to receive either 15, 2-h sessions, 3 times per week for 5 weeks (30 h of intervention) of bilateral motor priming and task-specific training (experimental group) or the same dose of control priming plus the task-specific training protocol. The experimental group performs bilateral symmetrical arm movements via the Exsurgo priming device which allows both wrists to move in rhythmic, symmetrical wrist flexion and extension for 15 min. The goal is one cycle (wrist flexion and wrist extension) per second. The control priming group receives transcutaneous electrical stimulation below sensory threshold for 15 min prior to the same 45 min of task-specific training. Outcome measures are collected at pre-intervention, post-intervention, and follow-up (8 weeks post-intervention). The primary outcome measure is the Fugl-Meyer Test of Upper Extremity Function. The secondary outcome is the Chedoke Arm and Hand Activity Index-Nine, an assessment of bimanual functional tasks. DISCUSSION To date, there are only 6 studies documenting the efficacy of priming using bilateral movements, 4 of which are pilot or feasibility studies. This is the first large-scale clinical trial of bilateral priming plus task-specific training. We have previously completed a feasibility intervention study of bilateral motor priming plus task-specific training and have considerable experience using this protocol. TRIAL REGISTRATION ClinicalTrials.gov NCT03517657 . Retrospectively registered on May 7, 2018.
Collapse
Affiliation(s)
- Mary Ellen Stoykov
- Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Olivia M Biller
- Department of Occupational Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexandra Wax
- Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.,Think & Speak Lab, Arms & Hands Lab, Shirley Ryan AbilityLab, Chicago, USA
| | - Erin King
- Interdepartmental Institution of Neuroscience, Northwestern University, Chicago, USA
| | - Jacob M Schauer
- Department of Preventive Medicine - Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Louis F Fogg
- Department of Occupational Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, USA
| | - Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
8
|
Xiong F, Liao X, Xiao J, Bai X, Huang J, Zhang B, Li F, Li P. Emerging Limb Rehabilitation Therapy After Post-stroke Motor Recovery. Front Aging Neurosci 2022; 14:863379. [PMID: 35401147 PMCID: PMC8984121 DOI: 10.3389/fnagi.2022.863379] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke, including hemorrhagic and ischemic stroke, refers to the blood supply disorder in the local brain tissue for various reasons (aneurysm, occlusion, etc.). It leads to regional brain circulation imbalance, neurological complications, limb motor dysfunction, aphasia, and depression. As the second-leading cause of death worldwide, stroke poses a significant threat to human life characterized by high mortality, disability, and recurrence. Therefore, the clinician has to care about the symptoms of stroke patients in the acute stage and formulate an effective postoperative rehabilitation plan to facilitate the recovery in patients. We summarize a novel application and update of the rehabilitation therapy in limb motor rehabilitation of stroke patients to provide a potential future stroke rehabilitation strategy.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Operation Room, The First People’s Hospital of Jiande, Hangzhou, China
| | - Xin Liao
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Jie Xiao
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Xin Bai
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Jiaqi Huang
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Bi Zhang
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Fang Li
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
| | - Pengfei Li
- Department of Orthopedics, The First People’s Hospital of Jiande, Hangzhou, China
- *Correspondence: Pengfei Li,
| |
Collapse
|
9
|
Pignolo L, Tonin P, Nicotera P, Bagetta G, Scuteri D. ROBOCOP (ROBOtic Care of Poststroke Pain): Study Protocol for a Randomized Trial to Assess Robot-Assisted Functional and Motor Recovery and Impact on Poststroke Pain Development. Front Neurol 2022; 13:813282. [PMID: 35250820 PMCID: PMC8894665 DOI: 10.3389/fneur.2022.813282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background Stroke is one of the most frequent causes of death and disability worldwide. It is accompanied by the impaired motor function of the upper extremities in over 69% of patients up to hemiplegia in the following 5 years in 56% of cases. This condition often is characterized by chronic poststroke pain, difficult to manage, further worsening quality of life. Poststroke pain occurs within 3–6 months. Robot-assisted neurorehabilitation using the Automatic Recovery Arm Motility Integrated System (ARAMIS) has proven efficacy in motor function recovery exploiting the movements and the strength of the unaffected arm. The rationale of the ROBOCOP (ROBOtic Care of Poststroke pain) randomized trial is the assessment of the impact of robot-assisted functional and motor recovery on the prevention of poststroke pain. Methods A total of 118 patients with hemiplegic arms due to stroke will be enrolled and randomly allocated with a 1:1 ratio to ARAMIS or conventional neurorehabilitation group. After a baseline screening at hospital discharge, ARAMIS or conventional rehabilitation will be performed for 8 weeks. The primary endpoint is the prevention of the development of poststroke pain and the secondary endpoints are prevention of spasticity and efficacy in clinical motor rehabilitation. The primary outcome measures consist in the visual analog scale and the doleur neuropatique 4 and the secondary outcome measures include: the Modified Ashworth Scale, the Resistance to Passive movement Scale; the Upper Extremity Subscale of the Fugl–Meyer Motor Assessment; the Action Research Arm Test; the Barthel Index for activities of daily living; and the magnetic resonance imaging (MRI) recovery-related parameters. After baseline, both primary and secondary outcome measures will be performed in the following time points: 1 month after stroke (t1, half of the rehabilitation); 2 months after stroke (t2, after rehabilitation); and 3 months (t3) and 6 months (t4) after stroke, critical for poststroke pain development. Discussion This is the first clinical trial investigating the efficacy of robot-assisted neurorehabilitation using ARAMIS on poststroke pain prevention. This study could remarkably improve the quality of life of stroke survivors.
Collapse
Affiliation(s)
- Loris Pignolo
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | | | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Damiana Scuteri
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- *Correspondence: Damiana Scuteri
| |
Collapse
|
10
|
Xie YL, Wang S, Wu Q, Chen X. Vagus nerve stimulation for upper limb motor impairment after ischemic stroke: A meta-analysis. Medicine (Baltimore) 2021; 100:e27871. [PMID: 34797327 PMCID: PMC8601340 DOI: 10.1097/md.0000000000027871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Upper limb motor impairment is a common complication following stroke. Although few treatments are used to enhance motor function, still approximately 60% of survivors are left with upper limb motor impairment. Several studies have investigated vagus nerve stimulation (VNS) as a potential technique for upper limb function. However, the efficacy and safety of VNS on upper limb motor function after ischemic stroke have not been systematically evaluated. Therefore, a meta-analysis based on randomized controlled trial will be conducted to determine the efficacy and safety of VNS on upper limb motor function after ischemic stroke. METHOD We searched PUBMED, MEDLINE, EMBASE, Cochrane Library, Web of Science, China National Knowledge Infrastructure Library (CNKI), and Wan Fang Database until April 1, 2021. RESULTS Six studies consisting of 234 patients were included in the analysis. Compared with control group, VNS improved upper limb function via Fugl-Meyer Assessment-Upper Extremity (mean difference = 3.26, 95% confidence interval [CI] [2.79, 3.74], P < .00001) and Functional Independence Measurement (mean difference = 6.59, 95%CI [5.77, 7.41], P < .00001), but showed no significant change on Wolf motor function test (standardized mean difference = 0.31, 95%CI [-0.15, 0.77], P = .19). The number of adverse events were not significantly different between the studied groups (risk ratio = 1.05, 95%CI [0.85, 1.31], P = .64). CONCLUSION VNS resulted in improvement of motor function in patients after ischemic stroke, especially in the sub-chronic stage. Moreover, compared with implanted VNS, transcutaneous VNS exhibited greater efficacy in poststroke patients. Based on this meta-analysis, VNS could be a feasible and safe therapy for upper limb motor impairment.
Collapse
|
11
|
He C, Xiong CH, Chen ZJ, Fan W, Huang XL, Fu C. Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1795-1805. [PMID: 34428146 DOI: 10.1109/tnsre.2021.3107376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upper limb exoskeletons have drawn significant attention in neurorehabilitation because of the anthropomorphic mechanical structure analogous to human anatomy. Whereas, the training movements are typically unorganized because most exoskeletons ignore the natural movement characteristic of human upper limbs, particularly inter-joint postural synergy. This paper introduces a newly developed exoskeleton (Armule) for upper limb rehabilitation with a postural synergy design concept, which can reproduce activities of daily living (ADL) motion with the characteristics of human natural movements. The semitransparent active control strategy with the interactive force guidance and visual feedback ensured the active participation of users. Eight participants with hemiplegia due to a first-ever, unilateral stroke were recruited and included. They participated in exoskeleton therapy sessions for 4 weeks, with passive/active training under trajectories and postures with the characteristics of human natural movements. The primary outcome was the Fugl-Meyer Assessment for Upper Extremities (FMA-UE). The secondary outcomes were the Action Research Arm Test(ARAT), modified Barthel Index (mBI), and metric measured with the exoskeleton After the 4-weeks intervention, all subjects showed significant improvements in the following clinical measures: the FMA-UE (difference, 11.50 points, p = 0.002), the ARAT (difference, 7.75 points ), and the mBI (difference, 17.50 points, p = 0.003 ) score. Besides, all subjects showed significant improvements in kinematic and interaction force metrics measured with the exoskeleton. These preliminary results demonstrate that the Armule exoskeleton could improve individuals' motor control and ADL function after stroke, which might be associated with kinematic and interaction force optimization and postural synergy modification during functional tasks.
Collapse
|
12
|
Li L, Fu Q, Tyson S, Preston N, Weightman A. A scoping review of design requirements for a home-based upper limb rehabilitation robot for stroke. Top Stroke Rehabil 2021; 29:449-463. [PMID: 34281494 DOI: 10.1080/10749357.2021.1943797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Home-based robotic therapy is a trend of post-stroke upper limb rehabilitation. Although home-based upper limb rehabilitation robots have been developed over several decades, no design specification has been published. OBJECTIVES To identify and synthesize design requirements considering user and technology needs for a home-based upper limb rehabilitation robot through a scoping review. METHOD Studies published between 1 January 2000 and 10 June 2020 in Scopus, Web of Science and PubMed database regarding design requirements for upper limb rehabilitation robots from of stroke survivors or therapists were identified and analyzed. We use 'requirement' as something that is needed or wanted. Two physiotherapists ranked the requirements identified from literature review. RESULTS Nine studies were selected for review. They identified 42 requirements regarding functionality (n = 11, 26.2% of total requirements), usability (n = 16, 38.0% of total requirements), software (n = 14, 33.3% of total requirements) and safety (n = 1, 2.4% of total requirements). The main implementation barriers with respect to adherence and monitoring were space, operation, and cost. CONCLUSION This is the first research to summarize the design requirements for home-based upper limb rehabilitation robots for stroke survivors. The need for a safe, comfortable, easy to use device which can be individualized and promote specific movements and tasks emerged. The result of this paper captures the design requirements that can be used in future for the development of a design specification. It provides designers and researchers guidance about the real-world needs for home-based upper limb rehabilitation robots for stroke.
Collapse
Affiliation(s)
- Lutong Li
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Manchester, UK
| | - Qiang Fu
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Manchester, UK
| | - Sarah Tyson
- Division of Nursing, Midwifery & Social Work, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nick Preston
- Academic Department of Rehabilitation Medicine, The University of Leeds, Leeds, UK
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Fernandez-Garcia C, Ternent L, Homer TM, Rodgers H, Bosomworth H, Shaw L, Aird L, Andole S, Cohen D, Dawson J, Finch T, Ford G, Francis R, Hogg S, Hughes N, Krebs HI, Price C, Turner D, Van Wijck F, Wilkes S, Wilson N, Vale L. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open 2021; 11:e042081. [PMID: 34035087 PMCID: PMC8154983 DOI: 10.1136/bmjopen-2020-042081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To determine whether robot-assisted training is cost-effective compared with an enhanced upper limb therapy (EULT) programme or usual care. DESIGN Economic evaluation within a randomised controlled trial. SETTING Four National Health Service (NHS) centres in the UK: Queen's Hospital, Barking, Havering and Redbridge University Hospitals NHS Trust; Northwick Park Hospital, London Northwest Healthcare NHS Trust; Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde; and North Tyneside General Hospital, Northumbria Healthcare NHS Foundation Trust. PARTICIPANTS 770 participants aged 18 years or older with moderate or severe upper limb functional limitation from first-ever stroke. INTERVENTIONS Participants randomised to one of three programmes provided over a 12-week period: robot-assisted training plus usual care; the EULT programme plus usual care or usual care. MAIN ECONOMIC OUTCOME MEASURES Mean healthcare resource use; costs to the NHS and personal social services in 2018 pounds; utility scores based on EQ-5D-5L responses and quality-adjusted life years (QALYs). Cost-effectiveness reported as incremental cost per QALY and cost-effectiveness acceptability curves. RESULTS At 6 months, on average usual care was the least costly option (£3785) followed by EULT (£4451) with robot-assisted training being the most costly (£5387). The mean difference in total costs between the usual care and robot-assisted training groups (£1601) was statistically significant (p<0.001). Mean QALYs were highest for the EULT group (0.23) but no evidence of a difference (p=0.995) was observed between the robot-assisted training (0.21) and usual care groups (0.21). The incremental cost per QALY at 6 months for participants randomised to EULT compared with usual care was £74 100. Cost-effectiveness acceptability curves showed that robot-assisted training was unlikely to be cost-effective and that EULT had a 19% chance of being cost-effective at the £20 000 willingness to pay (WTP) threshold. Usual care was most likely to be cost-effective at all the WTP values considered in the analysis. CONCLUSIONS The cost-effectiveness analysis suggested that neither robot-assisted training nor EULT, as delivered in this trial, were likely to be cost-effective at any of the cost per QALY thresholds considered. TRIAL REGISTRATION NUMBER ISRCTN69371850.
Collapse
Affiliation(s)
- Cristina Fernandez-Garcia
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Laura Ternent
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Tara Marie Homer
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Helen Rodgers
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Helen Bosomworth
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Lisa Shaw
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Lydia Aird
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Sreeman Andole
- Stroke Medicine, Barking Havering and Redbridge Hospitals NHS Trust, Romford, UK
| | - David Cohen
- Northwick Park, London North West University Healthcare NHS Trust, Harrow, UK
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tracy Finch
- Nursing, Midwifery and Health, Northumbria University, Newcastle upon Tyne, UK
| | - Gary Ford
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Oxford Academic Health Science Network, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Francis
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Steven Hogg
- (Lay Investigator) Contact Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Niall Hughes
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - H I Krebs
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher Price
- Stroke Research Group, Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
- Stroke Northumbria, Northumbria Healthcare NHS Foundation Trust, North Shields, UK
| | - Duncan Turner
- School of Health Sport and Bioscience, University of East London, London, UK
| | - Frederike Van Wijck
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Scott Wilkes
- School of Pharmacy, University of Sunderland, Sunderland, UK
| | - Nina Wilson
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|