1
|
Álvarez-Pérez S, Quevedo-Caraballo S, García ME, Blanco JL. Prevalence and genetic diversity of azole-resistant Malassezia pachydermatis isolates from canine otitis and dermatitis: A 2-year study. Med Mycol 2024; 62:myae053. [PMID: 38734886 DOI: 10.1093/mmy/myae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Despite previous reports on the emergence of Malassezia pachydermatis strains with decreased susceptibility to azoles, there is limited information on the actual prevalence and genetic diversity of azole-resistant isolates of this yeast species. We assessed the prevalence of azole resistance in M. pachydermatis isolates from cases of dog otitis or skin disease attended in a veterinary teaching hospital during a 2-year period and analyzed the ERG11 (encoding a lanosterol 14-α demethylase, the primary target of azoles) and whole genome sequence diversity of a group of isolates that displayed reduced azole susceptibility. Susceptibility testing of 89 M. pachydermatis isolates from 54 clinical episodes (1-6 isolates/episode) revealed low minimum inhibitory concentrations (MICs) to most azoles and other antifungals, but 11 isolates from six different episodes (i.e., 12.4% of isolates and 11.1% of episodes) had decreased susceptibility to multiple azoles (fluconazole, itraconazole, ketoconazole, posaconazole, ravuconazole, and/or voriconazole). ERG11 sequencing of these 11 azole-resistant isolates identified eight DNA sequence profiles, most of which contained amino acid substitutions also found in some azole-susceptible isolates. Analysis of whole genome sequencing (WGS) results revealed that the azole-resistant isolates from the same episode of otitis, or even different episodes affecting the same animal, were more genetically related to each other than to isolates from other dogs. In conclusion, our results confirmed the remarkable ERG11 sequence variability in M. pachydermatis isolates of animal origin observed in previous studies and demonstrated the value of WGS for disentangling the epidemiology of this yeast species.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sergio Quevedo-Caraballo
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Chebil W, Haouas N, Eskes E, Vandecruys P, Belgacem S, Belhadj Ali H, Babba H, Van Dijck P. In Vitro Assessment of Azole and Amphotericin B Susceptibilities of Malassezia spp. Isolated from Healthy and Lesioned Skin. J Fungi (Basel) 2022; 8:jof8090959. [PMID: 36135684 PMCID: PMC9502168 DOI: 10.3390/jof8090959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/11/2022] Open
Abstract
Malassezia yeasts have recently gained medical importance as emerging pathogens associated with a wide range of dermatological and systemic infections. Since standardized methods for in vitro antifungal susceptibility testing have not yet been established for Malassezia spp., related diseases are always treated empirically. As a result, a high rate of recurrence and decreased antifungal susceptibility have appeared. Thus, the aims of the study were to assess and analyze the in vitro susceptibility of Malassezia isolated from pityriasis versicolor (PV) lesions and healthy controls. A total of 58 Malassezia strains isolated from PV patients and healthy controls were tested. In vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. Candida spp. criteria established in accordance with CLSI guidelines were used for data interpretation. Ketoconazole and posaconazole seemed to be the most effective molecules against Malassezia species. However, considerable percentages of itraconazole, fluconazole, and amphotericin B ‘‘resistant’’ strains (27.6%, 29.3%, and 43.1%, respectively) were revealed in this study. Malassezia furfur, M. sympodialis, and M. globosa showed different susceptibility profiles to the drugs tested. These results emphasize the importance of accurately identifying and evaluating the antifungal susceptibility of Malassezia species in order to guide a specific and effective treatment regimen.
Collapse
Affiliation(s)
- Wissal Chebil
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Najoua Haouas
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Elja Eskes
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, Faculty of Sciences, KU Leuven, Heverlee, 3001 Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, Faculty of Sciences, KU Leuven, Heverlee, 3001 Leuven, Belgium
| | - Sameh Belgacem
- Laboratory of Parasitology-Mycology, Fattouma Bourguiba University Hospital, Monastir 5000, Tunisia
| | - Hichem Belhadj Ali
- Dermatology Department, Fattouma Bourguiba University Hospital, Monastir 5000, Tunisia
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, Faculty of Sciences, KU Leuven, Heverlee, 3001 Leuven, Belgium
- Correspondence: ; Tel.: +32-16321512
| |
Collapse
|