1
|
Bak-Gordon P, Manley JL. SF3B1: from core splicing factor to oncogenic driver. RNA (NEW YORK, N.Y.) 2025; 31:314-332. [PMID: 39773890 PMCID: PMC11874996 DOI: 10.1261/rna.080368.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing. This involves perturbation of an early spliceosomal trimeric protein complex necessary for accurate BS recognition in a subset of introns, which leads to activation of upstream branchpoints and selection of cryptic 3' splice sites. We next discuss how specific transcripts affected by aberrant splicing in SF3B1-mutant cells contribute to the initiation and progression of cancer. Finally, we highlight the prognostic value and disease phenotypes of different cancer-associated SF3B1 mutations, which is critical for developing new targeted therapeutics against SF3B1-mutant cancers still lacking in the clinic.
Collapse
Affiliation(s)
- Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
2
|
Desai A, Samara Y, Yang D, Ball B, Braun A, Koller P, Blackmon A, Agrawal V, Pourhassan H, Amanam I, Arslan S, Otoukesh S, Sandhu K, Aldoss I, Ali H, Salhotra A, Al Malki MM, Artz A, Becker P, Smith E, Stein A, Marcucci G, Forman SJ, Curtin P, Nakamura R, Pullarkat V. Impact of spliceosome mutation on outcomes of myelodysplastic syndrome and chronic myelomonocytic leukemia patients undergoing allogeneic hematopoietic cell transplantation. Leuk Res 2024; 145:107565. [PMID: 39208597 DOI: 10.1016/j.leukres.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Allogeneic Hematopoietic cell transplantation (allo-HCT) remains the only curative therapy for myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML). The impact of spliceosome mutations on allo-HCT outcome is unclear and further understanding is needed to assess the implications of this class of mutations on risk of relapse, overall survival (OS) and non-relapse mortality (NRM) in order to make decision regarding timing of allo-HCT. We examined the allo-HCT outcomes of MDS/CMML patients based on their spliceosome mutation profile to understand the impact of these mutations on transplant outcomes. OBJECTIVE To compare outcomes of MDS/CMML patients with and without spliceosome mutations undergoing allo-HCT. METHODS This is a single institution, retrospective study of MDS/CMML patients who underwent allo-HCT with myeloablative or reduced intensity conditioning (RIC) regimen at City of Hope from January 2016 to December 2021. Among them, patients who underwent molecular mutation profiling by NGS (Next Generation Sequencing) for a set of genes known to be mutated in myeloid neoplasms are included in this analysis. We compared OS, relapse free survival, NRM and acute/chronic graft versus host disease (GVHD) incidence between the spliceosome-mutated and unmutated groups. RESULTS We identified 258 consecutive MDS/CMML patients who underwent allo-HCT. Of these, 126 (48.8 %) patients had molecular profiling done among whom 57 (45.2 %) patients carried a spliceosome mutation. 84.9 % of patients had MDS and 55.6 % underwent a matched unrelated donor transplant. The median age for the whole cohort was 66 years (range 12-77).78.6 % and 73.7 % received RIC in the spliceosome and non-spliceosome groups, respectively. The 2-year OS for the whole cohort was 66.5 % (95 %CI 0.55-0.75) with a day 100 NRM of 7.1 % and 2-year cumulative incidence of relapse of 20 %. Grade II-IV acute GVHD at day 100 was 36.3 % (95 % CI 0.27-0.44) and any chronic GVHD at 2-years was 48.4 % (95 % CI 0.37-0.58). Patients who carried a spliceosome mutation had a significantly better 2-year survival of 83.8 % vs 55.9 % in the non-spliceosome group (P=0.002) and a better PFS of 73.7 % vs 50.0 % (P=0.007). There was no difference in the cumulative incidence of relapse at 2-years 15.9 % vs 18.5 % (P=0.59) between two groups but the spliceosome group had a significantly lower NRM at 2-years 10.4 % vs 31.5 % (P=0.009). There was no difference in incidence of acute or chronic GVHD between the two groups. CONCLUSIONS Among patients with MDS or CMML who underwent allo-HCT, our study shows better OS for patients who have spliceosome mutations due to lower NRM compared to those carrying non- spliceosome mutations. This favorable outcome of the spliceosome-mutated patients could have implications for timing of allo-HCT, particularly for patients in the intermediate MDS prognostic risk groups.
Collapse
Affiliation(s)
- Amrita Desai
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Yazeed Samara
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, United States
| | - Brian Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Adam Braun
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Paul Koller
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Amanda Blackmon
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Karamjeet Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Pamela Becker
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Eileen Smith
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Anthony Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States.
| |
Collapse
|
3
|
Eroz I, Kakkar PK, Lazar RA, El-Jawhari J. Mesenchymal Stem Cells in Myelodysplastic Syndromes and Leukaemia. Biomedicines 2024; 12:1677. [PMID: 39200142 PMCID: PMC11351218 DOI: 10.3390/biomedicines12081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the main residents in the bone marrow (BM) and have an essential role in the regulation of haematopoietic stem cell (HSC) differentiation and proliferation. Myelodysplastic syndromes (MDSs) are a group of myeloid disorders impacting haematopoietic stem and progenitor cells (HSCPs) that are characterised by BM failure, ineffective haematopoiesis, cytopenia, and a high risk of transformation through the expansion of MDS clones together with additional genetic defects. It has been indicated that MSCs play anti-tumorigenic roles such as in cell cycle arrest and pro-tumorigenic roles including the induction of metastasis in MDS and leukaemia. Growing evidence has shown that MSCs have impaired functions in MDS, such as decreased proliferation capacity, differentiation ability, haematopoiesis support, and immunomodulation function and increased inflammatory alterations within the BM through some intracellular pathways such as Notch and Wnt and extracellular modulators abnormally secreted by MSCs, including increased expression of inflammatory factors and decreased expression of haematopoietic factors, contributing to the development and progression of MDSs. Therefore, MSCs can be targeted for the treatment of MDSs and leukaemia. However, it remains unclear what drives MSCs to behave abnormally. In this review, dysregulations in MSCs and their contributions to myeloid haematological malignancies will be discussed.
Collapse
Affiliation(s)
- Ilayda Eroz
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Prabneet Kaur Kakkar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Renal Antoinette Lazar
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
| | - Jehan El-Jawhari
- Biosciences Department, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK (P.K.K.); (R.A.L.)
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Aptullahoglu E, Wallis JP, Marr H, Marshall S, Bown N, Willmore E, Lunec J. SF3B1 Mutations Are Associated with Resistance to Non-Genotoxic MDM2 Inhibition in Chronic Lymphocytic Leukemia. Int J Mol Sci 2023; 24:11335. [PMID: 37511096 PMCID: PMC10379212 DOI: 10.3390/ijms241411335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a genetically and clinically heterogeneous malignancy affecting older individuals. There are a number of current treatment options for CLL, including monoclonal antibodies, targeted drugs, chemotherapy, and different combinations of these. However, for those patients who are intrinsically treatment resistant, or relapse following initial responses, novel targeted therapies are still needed. Targeting the mouse double-minute-2 human homolog (MDM2), a primary negative regulator of p53, is an appealing therapeutic strategy for non-genotoxic reactivation of p53, since the TP53 gene is in its wild-type state at diagnosis in approximately 90% of patients. Mutated SF3B1 and TP53 are both associated with more aggressive disease, resistance to therapies and poorer overall survival for CLL. In this study, we performed a screen for SF3B1 and TP53 mutations and tested RG7388 (idasanutlin), a second-generation MDM2 inhibitor, in a cohort of CLL primary patient samples. SF3B1 mutations were detected in 24 of 195 cases (12.3%) and found associated with poor overall survival (hazard ratio [HR] 2.12, p = 0.032) and high CD38 expression (median CD38 (%) 32 vs. 5; p = 0.0087). The novel striking finding of this study was an independent link between SF3B1 mutational status and poor response to RG7388. Overall, SF3B1 mutations in CLL patient samples were associated with resistance to treatment with RG7388 ex vivo, and patients with the wild type for both SF3B1 and TP53 are more likely to benefit from treatment with MDM2 inhibitors.
Collapse
Affiliation(s)
- Erhan Aptullahoglu
- Medical Faculty, Newcastle University Cancer Centre, Newcastle upon Tyne NE2 4AD, UK
| | - Jonathan P Wallis
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Helen Marr
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK
| | - Nick Bown
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne NE1 4EP, UK
| | - Elaine Willmore
- Medical Faculty, Newcastle University Cancer Centre, Newcastle upon Tyne NE2 4AD, UK
| | - John Lunec
- Medical Faculty, Newcastle University Cancer Centre, Newcastle upon Tyne NE2 4AD, UK
| |
Collapse
|
5
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
6
|
Feustel K, Falchook GS. Protein Arginine Methyltransferase 5 (PRMT5) Inhibitors in Oncology Clinical Trials: A review. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:58-67. [PMID: 36034581 PMCID: PMC9390703 DOI: 10.36401/jipo-22-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
ABSTRACT
Protein arginine methyltransferase 5 (PRMT5) inhibitors are a new class of antineoplastic agents showing promising preliminary clinical efficacy. Targeting an enzyme involved in a wide array of cellular and transcriptional pro-oncogenic processes, this class offers multifaceted tumor-suppressive effects. Partial response has been seen in adenoid cystic carcinoma from both GSK3326595 and JNJ-64619178, with four cases of stable disease seen with PRT543. Highly significant is a durable complete response in isocitrate dehydrogenase 1-mutated glioblastoma multiforme with PRT811. Both alone and in combination with existing chemotherapies and immunotherapies, this class shows promising preliminary data, particularly in cancers with splicing mutations and DNA damage repair deficiencies. Further studies are warranted, and there are clinical trials to come whose data will be telling of the efficacy of PRMT5 inhibitors in both hematologic and solid malignancies. The aim of this study is to compile available results of PRMT5 inhibitors in oncology clinical trials.
Collapse
Affiliation(s)
- Kavanya Feustel
- 1 Sky Ridge Medical Center, HCA Continental Division, Lone Tree, CO, USA
| | | |
Collapse
|
7
|
Ma L, Liang B, Hu H, Yang W, Lin S, Cao L, Li K, Kuang Y, Shou L, Jin W, Lan J, Ye X, Le J, Lei H, Fu J, Lin Y, Jiang W, Zheng Z, Jiang S, Fu L, Su C, Yin X, Liu L, Qin J, Jin J, Qian S, Ouyang G, Tong H. A Novel Prognostic Scoring Model for Myelodysplastic Syndrome Patients With SF3B1 Mutation. Front Oncol 2022; 12:905490. [PMID: 35832562 PMCID: PMC9271788 DOI: 10.3389/fonc.2022.905490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
The outcomes of myelodysplastic syndrome (MDS) patients with SF3B1 mutation, despite identified as a favorable prognostic biomarker, are variable. To comprehend the heterogeneity in clinical characteristics and outcomes, we reviewed 140 MDS patients with SF3B1 mutation in Zhejiang province of China. Seventy-three (52.1%) patients diagnosed as MDS with ring sideroblasts (MDS-RS) following the 2016 World Health Organization (WHO) classification and 118 (84.3%) patients belonged to lower risk following the revised International Prognostic Scoring System (IPSS-R). Although clonal hematopoiesis-associated mutations containing TET2, ASXL1 and DNMT3A were the most frequent co-mutant genes in these patients, RUNX1, EZH2, NF1 and KRAS/NRAS mutations had significant effects on overall survival (OS). Based on that we developed a risk scoring model as IPSS-R×0.4+RUNX1×1.1+EZH2×0.6+RAS×0.9+NF1×1.6. Patients were categorized into two subgroups: low-risk (L-R, score <= 1.4) group and high risk (H-R, score > 1.4) group. The 3-year OS for the L-R and H-R groups was 91.88% (95% CI, 83.27%-100%) and 38.14% (95% CI, 24.08%-60.40%), respectively (P<0.001). This proposed model distinctly outperformed the widely used IPSS-R. In summary, we constructed and validated a personalized prediction model of MDS patients with SF3B1 mutation that can better predict the survival of these patients.
Collapse
Affiliation(s)
- Liya Ma
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Bin Liang
- Department of Hematology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Huixian Hu
- Department of Hematology, Jinhua Central Hospital, Jinhua, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shengyun Lin
- Department of Hematology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Lihong Cao
- Department of Hematology, Shulan Hospital of Zhejiang Province, Hangzhou, China
| | - Kongfei Li
- Department of Hematology, Ningbo Yinzhou People’s Hospital, Ningbo, China
| | - Yuemin Kuang
- Department of Hematology, Jinhua People’s Hospital, Jinhua, China
| | - Lihong Shou
- Department of Hematology, Huzhou Central Hospital, Huzhou, China
| | - Weimei Jin
- Department of Hematology, Lishui People’s Hospital, Lishui, China
| | - Jianping Lan
- Department of Hematology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xingnong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University, Yiwu, China
| | - Jing Le
- Department of Hematology, Ningbo Lihuili Hospital, Ningbo, China
| | - Huyi Lei
- Department of Hematology, The Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, China
| | - Jiaping Fu
- Department of Hematology, Shaoxing People’s Hospital, Shaoxing, China
| | - Ying Lin
- Department of Hematology, The Second Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Wenhua Jiang
- Department of Hematology, Taizhou First People’s Hospital, Taizhou, China
| | - Zhiying Zheng
- Department of Hematology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou University, Wenzhou, China
| | - Lijuan Fu
- Department of Hematology, Xinhua Hospital of Zhejiang Province, Hangzhou, China
| | - Chuanyong Su
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - XiuFeng Yin
- Department of Hematology, The Affiliated Shaoyifu Hospital of Zhejiang University, Hangzhou, China
| | - Lixia Liu
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Jiayue Qin
- Department of Medical Affairs, Acornmed Biotechnology Co., Ltd., Tianjin, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shenxian Qian
- Department of Hematology, Hangzhou First People’s Hospital, Hangzhou, China
- *Correspondence: Hongyan Tong, ; Guifang Ouyang, ; Shenxian Qian,
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
- *Correspondence: Hongyan Tong, ; Guifang Ouyang, ; Shenxian Qian,
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
- *Correspondence: Hongyan Tong, ; Guifang Ouyang, ; Shenxian Qian,
| |
Collapse
|
8
|
González-López O, Muñoz-González JI, Orfao A, Álvarez-Twose I, García-Montero AC. Comprehensive Analysis of Acquired Genetic Variants and Their Prognostic Impact in Systemic Mastocytosis. Cancers (Basel) 2022; 14:cancers14102487. [PMID: 35626091 PMCID: PMC9139197 DOI: 10.3390/cancers14102487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/27/2023] Open
Abstract
Systemic mastocytosis (SM) is a rare clonal haematopoietic stem cell disease in which activating KIT mutations (most commonly KIT D816V) are present in virtually every (>90%) adult patient at similar frequencies among non-advanced and advanced forms of SM. The KIT D816V mutation is considered the most common pathogenic driver of SM. Acquisition of this mutation early during haematopoiesis may cause multilineage involvement of haematopoiesis by KIT D816V, which has been associated with higher tumour burden and additional mutations in other genes, leading to an increased rate of transformation to advanced SM. Thus, among other mutations, alterations in around 30 genes that are also frequently mutated in other myeloid neoplasms have been reported in SM cases. From these genes, 12 (i.e., ASXL1, CBL, DNMT3A, EZH2, JAK2, KRAS, NRAS, SF3B1, RUNX1, SF3B1, SRSF2, TET2) have been recurrently reported to be mutated in SM. Because of all the above, assessment of multilineage involvement of haematopoiesis by the KIT D816V mutation, in the setting of multi-mutated haematopoiesis as revealed by a limited panel of genes (i.e., ASXL1, CBL, DNMT3A, EZH2, NRAS, RUNX1 and SRSF2) and associated with a poorer patient outcome, has become of great help to identify SM patients at higher risk of disease progression and/or poor survival who could benefit from closer follow-up and eventually also early cytoreductive treatment.
Collapse
Affiliation(s)
- Oscar González-López
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Javier I. Muñoz-González
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
| | - Iván Álvarez-Twose
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast, Virgen del Valle Hospital) and REMA, 45071 Toledo, Spain
| | - Andrés C. García-Montero
- Cancer Research Center (IBMCC, USAL/CSIC), Department of Medicine, Universidad de Salamanca, Biomedical Research Institute of Salamanca and Spanish Network on Mastocytosis (REMA), 37007 Salamanca, Spain; (O.G.-L.); (J.I.M.-G.); (A.O.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
9
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
10
|
Merati G, Rossi M, Gallì A, Roncoroni E, Zibellini S, Rizzo E, Pietra D, Picone C, Rocca B, Cabrera CPT, Gelli E, Santacroce E, Arcaini L, Zappasodi P. Enrichment of Double RUNX1 Mutations in Acute Leukemias of Ambiguous Lineage. Front Oncol 2021; 11:726637. [PMID: 34540694 PMCID: PMC8444989 DOI: 10.3389/fonc.2021.726637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia of ambiguous lineage (ALAL) is a rare type of leukemia and represents an unmet clinical need. In fact, due to heterogeneity, substantial rarity and absence of clinical trials, there are no therapeutic guidelines available. We investigated the genetic basis of 10 cases of ALAL diagnosed at our centre from 2008 and 2020, through a targeted myeloid and lymphoid sequencing approach. We show that this rare group of acute leukemias is enriched in myeloid-gene mutations. In particular we found that RUNX1 mutations, which have been found double mutated in 40% of patients and tend to involve both alleles, are associated with an undifferentiated phenotype and with lineage ambiguity. Furthermore, because this feature is typical of acute myeloid leukemia with minimal differentiation, we believe that our data strengthen the idea that acute leukemia with ambiguous lineage, especially those with an undifferentiated phenotype, might be genetically more closer to acute myeloid leukemia rather than acute lymphoblastic leukemia. These data enrich the knowledge on the genetic basis of ALAL and could have clinical implications as an acute myeloid leukemia (AML) - oriented chemotherapeutic approach might be more appropriate.
Collapse
Affiliation(s)
- Gabriele Merati
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Rossi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Gallì
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Roncoroni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Zibellini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Daniela Pietra
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Picone
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Rocca
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Eleonora Gelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Luca Arcaini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Patrizia Zappasodi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
11
|
Mian SA, Bonnet D. Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:4116. [PMID: 34439269 PMCID: PMC8394536 DOI: 10.3390/cancers13164116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Myelodysplastic syndrome (MDS) are clonal haematopoietic stem cell (HSC) disorders driven by a complex combination(s) of changes within the genome that result in heterogeneity in both clinical phenotype and disease outcomes. MDS is among the most common of the haematological cancers and its incidence markedly increases with age. Currently available treatments have limited success, with <5% of patients undergoing allogeneic HSC transplantation, a procedure that offers the only possible cure. Critical contributions of the bone marrow microenvironment to the MDS have recently been investigated. Although the better understanding of the underlying biology, particularly genetics of haematopoietic stem cells, has led to better disease and risk classification; however, the role that the bone marrow microenvironment plays in the development of MDS remains largely unclear. This review provides a comprehensive overview of the latest developments in understanding the aetiology of MDS, particularly focussing on understanding how HSCs and the surrounding immune/non-immune bone marrow niche interacts together.
Collapse
Affiliation(s)
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
12
|
Letter to the Editor regarding the article "Prognostic significance of SF3B1 mutations in patients with myelodysplastic syndromes: A meta-analysis". Crit Rev Oncol Hematol 2021; 162:103295. [PMID: 33992800 DOI: 10.1016/j.critrevonc.2021.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/17/2021] [Accepted: 02/27/2021] [Indexed: 11/22/2022] Open
|
13
|
Hughes CFM, Gallipoli P, Agarwal R. Design, implementation and clinical utility of next generation sequencing in myeloid malignancies: acute myeloid leukaemia and myelodysplastic syndrome. Pathology 2021; 53:328-338. [PMID: 33676768 DOI: 10.1016/j.pathol.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
Next generation sequencing (NGS) based technology has contributed enormously to our understanding of the biology of myeloid malignancies including acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Assessment of clinically important mutations by NGS is a powerful tool to define diagnosis, determine prognostic risk, monitor measurable residual disease and uncover predictive mutational markers/therapeutic targets, and is now a routine component in the workup and monitoring of haematological disorders. There are many technical challenges in the design, implementation, analysis and reporting of NGS based results, and expert interpretation is essential. It is vital to distinguish relevant somatic disease associated mutations from those that are known polymorphisms, rare germline variants and clonal haematopoiesis of indeterminate potential (CHIP) associated variants. This review highlights and addresses the technical and biological challenges that should be considered before the implementation of NGS based testing in diagnostic laboratories and seeks to outline the essential and expanding role NGS plays in myeloid malignancies. Broad aspects of NGS panel design and reporting including inherent technological, biological and economic considerations are covered, following which the utility of NGS based testing in AML and MDS are discussed. In current practice, patient care is now strongly shaped by the results of NGS assessment and is considered a vital piece of the puzzle for clinicians as they manage these complex haematological disorders.
Collapse
Affiliation(s)
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
14
|
Mian SA, Abarrategi A, Kong KL, Rouault-Pierre K, Wood H, Oedekoven CA, Smith AE, Batsivari A, Ariza-McNaughton L, Johnson P, Snoeks T, Mufti GJ, Bonnet D. Ectopic humanized mesenchymal niche in mice enables robust engraftment of myelodysplastic stem cells. Blood Cancer Discov 2021; 2:135-145. [PMID: 33778768 PMCID: PMC7610449 DOI: 10.1158/2643-3230.bcd-20-0161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) are clonal stem cell diseases characterized mainly by ineffective hematopoiesis. Here, we present an approach that enables robust long-term engraftment of primary MDS stem cells (MDS-SCs) in mice by implantation of human mesenchymal cell-seeded scaffolds. Critically for modelling MDS, where patient sample material is limiting, mononuclear bone marrow cells containing as few as 104 CD34+ cells can be engrafted and expanded by this approach with the maintenance of the genetic make-up seen in the patients. Non-invasive high-resolution ultrasound imaging shows that these scaffolds are fully perfused. Our data shows that human microenvironment but not mouse is essential to MDS-SCs homing and engraftment. Notably, the alternative niche provided by healthy donor MSCs enhanced engraftment of MDS-SCs. This study characterizes a new tool to model MDS human disease with the level of engraftment previously unattainable in mice, and offers insights into human-specific determinants of MDS-SC microenvironment.
Collapse
Affiliation(s)
- Syed A Mian
- Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| | - Ander Abarrategi
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| | - Kar Lok Kong
- Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| | - Henry Wood
- Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- King's College Hospital London, London, United Kingdom
| | - Caroline A Oedekoven
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| | - Alexander E Smith
- Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- King's College Hospital London, London, United Kingdom
| | - Antoniana Batsivari
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| | | | - Peter Johnson
- Imaging Research Facility, The Francis Crick Institute, London, United Kingdom
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, United Kingdom
| | - Ghulam J Mufti
- Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom.
- King's College Hospital London, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
15
|
Pellagatti A, Boultwood J. SF3B1 mutant myelodysplastic syndrome: Recent advances. Adv Biol Regul 2020; 79:100776. [PMID: 33358369 DOI: 10.1016/j.jbior.2020.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients. It has been recently proposed that SF3B1 mutant MDS should be recognized as a distinct nosologic entity. Splicing factor mutations cause aberrant pre-mRNA splicing of many target genes, some of which have been shown to impact on hematopoiesis in functional studies. Emerging data show that some of the downstream effects of different mutated splicing factors converge on common cellular processes, such as hyperactivation of NF-κB signaling and increased R-loops. The aberrantly spliced target genes and the dysregulated pathways and cellular processes associated with splicing factor mutations provided the rationale for new potential therapeutic approaches to target MDS cells with mutations of SF3B1 and other splicing factors.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, And NIHR Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
16
|
Patel JL, Abedi M, Cogle CR, Erba HP, Foucar K, Garcia-Manero G, Grinblatt DL, Komrokji RS, Kurtin SE, Maciejewski JP, Pollyea DA, Revicki DA, Roboz GJ, Savona MR, Scott BL, Sekeres MA, Steensma DP, Thompson MA, Dawn Flick E, Kiselev P, Louis CU, Nifenecker M, Swern AS, George TI. Real-world diagnostic testing patterns for assessment of ring sideroblasts and SF3B1 mutations in patients with newly diagnosed lower-risk myelodysplastic syndromes. Int J Lab Hematol 2020; 43:426-432. [PMID: 33220019 PMCID: PMC8247031 DOI: 10.1111/ijlh.13400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 01/01/2023]
Abstract
Introduction The presence of ring sideroblasts (RS) and mutation of the SF3B1 gene are diagnostic of lower‐risk (LR) myelodysplastic syndromes (MDS) and are correlated with favorable outcomes. However, information on testing and reporting in community‐based clinical settings is scarce. This study from the Connect® MDS/AML Disease Registry aimed to compare the frequency of RS and SF3B1 reporting for patients with LR‐MDS, before and after publication of the 2016 World Health Organization (WHO) MDS classification criteria. Methods Ring sideroblasts assessment and molecular testing data were collected from patients with LR‐MDS at enrollment in the Registry. Patients enrolled between December 2013 and the data cutoff of March 2020 were included in this analysis. Results Among 489 patients with LR‐MDS, 434 (88.8%) underwent RS assessment; 190 were assessed prior to the 2016 WHO guidelines (Cohort A), and 244 after (Cohort B). In Cohort A, 87 (45.8%) patients had RS identified; 29 (33.3%) patients had RS < 15%, none of whom underwent molecular testing for SF3B1. In Cohort B, 96 (39.3%) patients had RS identified; 31 (32.3%) patients had < 15% RS, with 13 undergoing molecular testing of which 10 were assessed for SF3B1. Conclusions In the Connect® MDS/AML Registry, only 32% of patients with <15% RS underwent SF3B1 testing after the publication of the WHO 2016 classification criteria. There was no change in RS assessment frequency before and after publication, despite the potential impact on diagnostic subtyping and therapy selection, suggesting an unmet need for education to increase testing rates for SF3B1 mutations.
Collapse
Affiliation(s)
- Jay L Patel
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| | - Mehrdad Abedi
- University of California, Davis, Sacramento, CA, USA
| | | | | | - Kathryn Foucar
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | - Gail J Roboz
- Weill Cornell Medicine and The New York Presbyterian Hospital, New York, NY, USA
| | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | - Tracy I George
- University of Utah and ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Caponetti GC, Bagg A. Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. Int J Lab Hematol 2020; 42:671-684. [PMID: 32757473 DOI: 10.1111/ijlh.13284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous constellation of hematologic malignancies characterized by aberrant differentiation and clonal expansion of abnormal myeloid cells that initially manifest with ineffective hematopoiesis and consequent cytopenias. The prognosis of MDS is variable and depends on clinical and hematologic parameters, cytogenetic and molecular findings, as well as comorbidities. Gene sequencing studies have uncovered remarkable genomic complexity within MDS, based on the presence of recurrent and sometimes co-operating mutations in genes encoding proteins that play a role in numerous biologic pathways. Although the treatment of MDS is currently limited to the use of hypomethylating, immunomodulatory, or erythropoiesis-stimulating agents, improved understanding of the molecular underpinnings of its pathophysiology has led to the development of multiple targeted treatments that are poised to be added to the therapeutic armamentarium. This review will focus on the role of mutations in the pathogenesis, diagnosis, and prognosis of MDS and how the discovery of clonal hematopoiesis of indeterminate potential (CHIP) might impact the utility of detecting mutations in the diagnosis of MDS.
Collapse
Affiliation(s)
- Gabriel C Caponetti
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Cai L, Zhao X, Ai L, Wang H. Role Of TP53 mutations in predicting the clinical efficacy of hypomethylating therapy in patients with myelodysplastic syndrome and related neoplasms: a systematic review and meta-analysis. Clin Exp Med 2020; 20:361-371. [PMID: 32613269 DOI: 10.1007/s10238-020-00641-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Hypomethylating agents (HMAs) are now a major treatment option for myelodysplastic syndrome (MDS) and related neoplasms, but 50% of patients still do not respond and realize poor outcomes. Mutational predictors of treatment efficacy attract continuous attention. Whether TP53 mutations can be used as predictors of HMA effectiveness has caused heated debate. Therefore, we performed a meta-analysis to investigate the predictive value of TP53 mutations to outcomes of HMA therapy in patients with MDS and related neoplasms. We systematically searched PubMed, Embase, the Cochrane Library, and the WanFang databases (published deadline: September 12, 2019). The primary endpoints were overall response rate (ORR) and overall survival (OS). Odds ratio (OR), hazard ratio (HR), and 95% confidence intervals (CI) were pooled to estimate the association between TP53 mutations and the clinical efficacy of HMAs. Four hundred fifteen papers were found, and 22 papers were included in this meta-analysis (N = 2020 participants). The results showed that the presence of TP53 mutation predicted an increased overall response rate with HMA treatment in the subsets that restricted patients in de novo disease, MDS by WHO (World Health Organization) criteria, or NGS (next-generation sequence) group (P = 0.005, P = 0.003, P = 0.0005, respectively). However, TP53 mutations remained poor factors for OS (P < 0.00001). Collectively, in HMA therapy, TP53 mutations can predict better ORR when setting more refined subgroups, but TP53 mutations still strongly correlated with poor survival in hypomethylating therapy.
Collapse
Affiliation(s)
- Li Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol 2020; 17:457-474. [PMID: 32303702 DOI: 10.1038/s41571-020-0350-x] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.
Collapse
|
20
|
Crisà E, Kulasekararaj AG, Adema V, Such E, Schanz J, Haase D, Shirneshan K, Best S, Mian SA, Kizilors A, Cervera J, Lea N, Ferrero D, Germing U, Hildebrandt B, Martínez ABV, Santini V, Sanz GF, Solé F, Mufti GJ. Impact of somatic mutations in myelodysplastic patients with isolated partial or total loss of chromosome 7. Leukemia 2020; 34:2441-2450. [PMID: 32066866 DOI: 10.1038/s41375-020-0728-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
Monosomy 7 [-7] and/or partial loss of chromosome 7 [del(7q)] are associated with poor and intermediate prognosis, respectively, in myelodysplastic syndromes (MDS), but somatic mutations may also play a key complementary role. We analyzed the impact on the outcomes of deep targeted mutational screening in 280 MDS patients with -7/del(7q) as isolated cytogenetic abnormality (86 with del(7q) and 194 with -7). Patients with del(7q) or -7 had similar demographic and disease-related characteristics. Somatic mutations were detected in 79% (93/117) of patients (82% in -7 and 73% in del(7q) group). Median number of mutations per patient was 2 (range 0-8). There was no difference in mutation frequency between the two groups. Patients harbouring ≥2 mutations had a worse outcome than patients with <2 or no mutations (leukaemic transformation at 24 months, 38% and 20%, respectively, p = 0.044). Untreated patients with del(7q) had better overall survival (OS) compared with -7 (median OS, 34 vs 17 months, p = 0.034). In multivariable analysis, blast count, TP53 mutations and number of mutations were independent predictors of OS, whereas the cytogenetic subgroups did not retain prognostic relevance. This study highlights the importance of mutational analysis in terms of prognosis in MDS patients with isolated -7 or del(7q).
Collapse
Affiliation(s)
- Elena Crisà
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK. .,Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy. .,Fondazione Italiana Sindromi Mielodisplastiche (FISiM), Bologna, Italy.
| | - Austin G Kulasekararaj
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK
| | - Vera Adema
- Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Esperanza Such
- Department of Hematology, Hospital Universitario La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie Schanz
- Department of Hematology and Medical Oncology, University Medical Center of Göttingen, Göttingen, Germany
| | - Detlef Haase
- Department of Hematology and Medical Oncology, University Medical Center of Göttingen, Göttingen, Germany
| | - Katayoon Shirneshan
- Department of Hematology and Medical Oncology, University Medical Center of Göttingen, Göttingen, Germany
| | - Steven Best
- Laboratory for Molecular Haemato-Oncology, King's College Hospital, NHS Foundation Trust, London, UK
| | - Syed A Mian
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK.,Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Aytug Kizilors
- Laboratory for Molecular Haemato-Oncology, King's College Hospital, NHS Foundation Trust, London, UK
| | - José Cervera
- Genetics Unit, Hospital Universitario La Fe, Valencia, Spain
| | - Nicholas Lea
- Laboratory for Molecular Haemato-Oncology, King's College Hospital, NHS Foundation Trust, London, UK
| | - Dario Ferrero
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM), Bologna, Italy.,Division of Hematology, University of Torino, AOU Città della Salute e della Scienza, Torino, Italy
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Valeria Santini
- Fondazione Italiana Sindromi Mielodisplastiche (FISiM), Bologna, Italy.,MDS UNIT, AOU Careggi, University of Florence, Firenze, Italy
| | - Guillermo F Sanz
- Department of Hematology, Hospital Universitario La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Francesc Solé
- Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College Hospital, NHS Foundation Trust, London, UK
| |
Collapse
|
21
|
Jafari PA, Sadeghian MH, Miri HH, Sadeghi R, Bagheri R, Lavasani S, Souri S. Prognostic significance of SF3B1 mutations in patients with myelodysplastic syndromes: A meta-analysis. Crit Rev Oncol Hematol 2020; 145:102832. [DOI: 10.1016/j.critrevonc.2019.102832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/02/2018] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
|
22
|
Follo MY, Pellagatti A, Ratti S, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Suh PG, McCubrey JA, Manzoli L, Boultwood J, Cocco L. Recent advances in MDS mutation landscape: Splicing and signalling. Adv Biol Regul 2019; 75:100673. [PMID: 31711974 DOI: 10.1016/j.jbior.2019.100673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Recurrent cytogenetic aberrations, genetic mutations and variable gene expression have been consistently recognized in solid cancers and in leukaemia, including in Myelodysplastic Syndromes (MDS). Besides conventional cytogenetics, the growing accessibility of new techniques has led to a deeper analysis of the molecular significance of genetic variations. Indeed, gene mutations affecting splicing genes, as well as genes implicated in essential signalling pathways, play a pivotal role in MDS physiology and pathophysiology, representing potential new molecular targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford and Oxford BRC Haematology Theme, Oxford, UK
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Splicing factor mutant myelodysplastic syndromes: Recent advances. Adv Biol Regul 2019; 75:100655. [PMID: 31558432 DOI: 10.1016/j.jbior.2019.100655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022]
Abstract
The myelodysplastic syndromes (MDS) are common myeloid malignancies showing frequent progression to acute myeloid leukemia (AML). Pre-mRNA splicing is an essential cellular process carried out by the spliceosome. Mutations in splicing factor genes (including SF3B1, SRSF2, U2AF1 and ZRSR2) occur in over half of MDS patients and result in aberrant pre-mRNA splicing of many target genes, implicating aberrant spliceosome function in MDS disease pathogenesis. Recent functional studies have illuminated the impact on hematopoiesis of some aberrantly spliced target genes associated with splicing factor mutations. Emerging data show that the commonly mutated splicing factors have convergent effects on aberrant splicing of mRNAs that promote NF-κB signaling and on R-loop elevation leading to DNA damage, providing novel insights into MDS disease pathophysiology. It is recognized that the survival of splicing factor mutant cells is dependent on the presence of the wildtype allele, providing a rationale for the use of spliceosome inhibitors in splicing factor mutant MDS. Pre-clinical studies involving E7107 and H3B-8800 have shown the potential of these spliceosome inhibitors for the treatment of splicing factor mutant MDS and AML.
Collapse
|
24
|
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 2019; 19:594-610. [PMID: 29858605 DOI: 10.1038/s41580-018-0020-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany. .,Medical Faculty Jena, University Hospital Jena (UKJ), Jena, Germany.
| |
Collapse
|
25
|
Tobiasson M, Kittang AO. Treatment of myelodysplastic syndrome in the era of next-generation sequencing. J Intern Med 2019; 286:41-62. [PMID: 30869816 DOI: 10.1111/joim.12893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) is rapidly changing the clinical care of patients with myelodysplastic syndrome (MDS). NGS can be used for various applications: (i) in the diagnostic process to discriminate between MDS and other diseases such as aplastic anaemia, myeloproliferative disorders and idiopathic cytopenias; (ii) for classification, for example, where the presence of SF3B1 mutation is one criterion for the ring sideroblast anaemia subgroups in the World Health Organization 2016 classification; (iii) for identification of patients suitable for targeted therapy (e.g. IDH1/2 inhibitors); (iv) for prognostication, for example, where specific mutations (e.g. TP53 and RUNX1) are associated with inferior prognosis, whereas others (e.g. SF3B1) are associated with superior prognosis; and (v) to monitor patients for progression or treatment failure. Most commonly, targeted sequencing for genes (normally 50-100 genes) reported to be recurrently mutated in myeloid disease is used. At present, NGS is rarely incorporated into clinical guidelines although an increasing number of studies have demonstrated the benefit of using NGS in the clinical management of MDS patients.
Collapse
Affiliation(s)
- M Tobiasson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.,Institution of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - A O Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Prognostic value and clinical feature of SF3B1 mutations in myelodysplastic syndromes: A meta-analysis. Crit Rev Oncol Hematol 2019; 133:74-83. [DOI: 10.1016/j.critrevonc.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
|
27
|
Xu JJ, Smeets MF, Tan SY, Wall M, Purton LE, Walkley CR. Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Exp Hematol 2018; 70:10-23. [PMID: 30408513 DOI: 10.1016/j.exphem.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023]
Abstract
Myelodysplastic syndromes (MDS) and related myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are clonal stem cell disorders, primarily affecting patients over 65 years of age. Mapping of the MDS and MDS/MPN genome identified recurrent heterozygous mutations in the RNA splicing machinery, with the SF3B1, SRSF2, and U2AF1 genes being frequently mutated. To better understand how spliceosomal mutations contribute to MDS pathogenesis in vivo, numerous groups have sought to establish conditional murine models of SF3B1, SRSF2, and U2AF1 mutations. The high degree of conservation of hematopoiesis between mice and human and the well-established phenotyping and genetic modification approaches make murine models an effective tool with which to study how a gene mutation contributes to disease pathogenesis. The murine models of spliceosomal mutations described to date recapitulate human MDS or MDS/MPN to varying extents. Reasons for the differences in phenotypes reported between alleles of the same mutation are varied, but the nature of the genetic modification itself and subsequent analysis methods are important to consider. In this review, we summarize recently reported murine models of SF3B1, SRSF2, and U2AF1 mutations, with a particular focus on the genetically engineered modifications underlying the models and the experimental approaches applied.
Collapse
Affiliation(s)
- Jane Jialu Xu
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Monique F Smeets
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Shuh Ying Tan
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Hematology, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Meaghan Wall
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; Victorian Cancer Cytogenetics Service, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Louise E Purton
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Carl R Walkley
- St. Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
28
|
Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol 2018; 101:260-271. [PMID: 29742289 DOI: 10.1111/ejh.13092] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) comprise a diverse group of clonal and malignant myeloid disorders characterized by ineffective hematopoiesis, resultant peripheral cytopenias, and a meaningful increased risk of progression to acute myeloid leukemia. A wide array of recurring genetic mutations involved in RNA splicing, histone manipulation, DNA methylation, transcription factors, kinase signaling, DNA repair, cohesin proteins, and other signal transduction elements has been identified as important substrates for the development of MDS. Cytogenetic abnormalities, namely those characterized by loss of genetic material (including 5q- and 7q-), have also been strongly implicated and may influence the clonal architecture which predicts such mutations and may provoke an inflammatory bone marrow microenvironment as the substrate for clonal expansion. Other aspects of the molecular pathogenesis of MDS continue to be further elucidated, predicated upon advances in gene expression profiling and the development of new, and improved high-throughput techniques. More accurate understanding of the genetic and molecular basis for the development of MDS directly provides additional opportunity for treatment, which to date remains limited. In this comprehensive review, we examine the current understanding of the molecular pathogenesis and pathophysiology of MDS, as well as review future prospects which may enhance this understanding, treatment strategies, and hopefully outcomes.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Rami Ahmad
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
29
|
Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia 2018; 32:1679-1696. [PMID: 29946191 DOI: 10.1038/s41375-018-0173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/20/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023]
Abstract
Rapid advances over the past decade have uncovered the heterogeneous genomic and immunologic landscape of myelodysplastic syndromes (MDS). This has led to notable improvements in the accuracy and timing of diagnosis and prognostication of MDS, as well as the identification of possible novel targets for therapeutic intervention. For the practicing clinician, however, this increase in genomic, epigenomic, and immunologic knowledge needs consideration in a "real-world" context to aid diagnostic specificity. Although the 2016 revision to the World Health Organization classification for MDS is comprehensive and timely, certain limitations still exist for day-to-day clinical practice. In this review, we describe an up-to-date diagnostic approach to patients with suspected lower-risk MDS, including hypoplastic MDS, and demonstrate the requirement for an "integrated" diagnostic approach. Moreover, in the era of rapid access to massive parallel sequencing platforms for mutational screening, we suggest which patients should undergo such analyses, when such screening should be performed, and how those data should be interpreted. This is particularly relevant given the recent findings describing age-related clonal hematopoiesis.
Collapse
|
30
|
Srsf2P95H initiates myeloid bias and myelodysplastic/myeloproliferative syndrome from hemopoietic stem cells. Blood 2018; 132:608-621. [PMID: 29903888 DOI: 10.1182/blood-2018-04-845602] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/09/2018] [Indexed: 12/16/2022] Open
Abstract
Mutations in SRSF2 occur in myelodysplastic syndromes (MDS) and MDS/myeloproliferative neoplasms (MPN). SRSF2 mutations cluster at proline 95, with the most frequent mutation being a histidine (P95H) substitution. They undergo positive selection, arise early in the course of disease, and have been identified in age-related clonal hemopoiesis. It is not clear how mutation of SRSF2 modifies hemopoiesis or contributes to the development of myeloid bias or MDS/MPN. Two prior mouse models of Srsf2P95H mutation have been reported; however, these models do not recapitulate many of the clinical features of SRSF2-mutant disease and relied on bone marrow (BM) transplantation stress to elicit the reported phenotypes. We describe a new conditional murine Srsf2P95H mutation model, where the P95H mutation is expressed physiologically and heterozygously from its endogenous locus after Cre activation. Using multiple Cre lines, we demonstrate that during native hemopoiesis (ie, no BM transplantation), the Srsf2P95H mutation needs to occur within the hemopoietic stem-cell-containing populations to promote myelomonocytic bias and expansion with corresponding transcriptional and RNA splicing changes. With age, nontransplanted Srsf2P95H animals developed a progressive, transplantable disease characterized by myeloid bias, morphological dysplasia, and monocytosis, hallmarks of MDS/MPN in humans. Analysis of cooccurring mutations within the BM demonstrated the acquisition of additional mutations that are recurrent in humans with SRSF2 mutations. The tractable Srsf2P95H/+ knock-in model we have generated is highly relevant to human disease and will serve to elucidate the effect of SRSF2 mutations on initiation and maintenance of MDS/MPN.
Collapse
|
31
|
Liu L, Wang J, Jiang Y, Xie H, Tang X, Li Q, Wang H, Zou P, Miao Z, Lv Y, Wang H, Cao Z, Zhao Z. EVI1 expression predicts outcome in higher-risk myelodysplastic syndrome patients. Leuk Lymphoma 2018; 59:2929-2940. [PMID: 29846125 DOI: 10.1080/10428194.2018.1459615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Lin Liu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinhuan Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, PR China
| | - Yanan Jiang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, PR China
| | - Huan Xie
- Department of Hematology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaoqiong Tang
- Department of Hematology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qiubai Li
- Department of Hematology, The Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Ping Zou
- Department of Hematology, The Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhaoyi Miao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, PR China
| | - Yangyang Lv
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, PR China
| | - Haitao Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, PR China
| | - Zeng Cao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, PR China
| | - Zhigang Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Tianjin, PR China
| |
Collapse
|
32
|
Minor spliceosome and disease. Semin Cell Dev Biol 2017; 79:103-112. [PMID: 28965864 DOI: 10.1016/j.semcdb.2017.09.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.
Collapse
|
33
|
Rouault-Pierre K, Mian SA, Goulard M, Abarrategi A, Di Tulio A, Smith AE, Mohamedali A, Best S, Nloga AM, Kulasekararaj AG, Ades L, Chomienne C, Fenaux P, Dosquet C, Mufti GJ, Bonnet D. Preclinical modeling of myelodysplastic syndromes. Leukemia 2017; 31:2702-2708. [PMID: 28663577 PMCID: PMC5729336 DOI: 10.1038/leu.2017.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/25/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematological clonal disorders. Here, we have tested the bone marrow (BM) cells from 38 MDS patients covering all risk groups in two immunodeficient mouse models: NSG and NSG-S. Our data show comparable level of engraftment in both models. The level of engraftment was patient specific with no correlation to any specific MDS risk group. Furthermore, the co-injection of mesenchymal stromal cells (MSCs) did not improve the level of engraftment. Finally, we have developed an in vitro two-dimensional co-culture system as an alternative tool to in vivo. Using our in vitro system, we have been able to co-culture CD34+ cells from MDS patient BM on auto- and/or allogeneic MSCs over 4 weeks with a fold expansion of up to 600 times. More importantly, these expanded cells conserved their MDS clonal architecture as well as genomic integrity.
Collapse
Affiliation(s)
- K Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - S A Mian
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
- King’s College London School of Medicine, Department of Haematological Medicine, London, UK
| | - M Goulard
- INSERM, UMRS1131–University Paris Diderot, Saint Louis Hospital, Paris, France
| | - A Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - A Di Tulio
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - A E Smith
- King’s College London School of Medicine, Department of Haematological Medicine, London, UK
- King’s College Hospital, Department of Haematology, London, UK
| | - A Mohamedali
- King’s College London School of Medicine, Department of Haematological Medicine, London, UK
| | - S Best
- King’s College London School of Medicine, Department of Haematological Medicine, London, UK
| | - A-M Nloga
- Senior Haematology Department, Saint Louis Hospital, APHP, Paris, France
| | | | - L Ades
- Senior Haematology Department, Saint Louis Hospital, APHP, Paris, France
| | - C Chomienne
- INSERM, UMRS1131–University Paris Diderot, Saint Louis Hospital, Paris, France
- Cell Biology Department, Saint Louis Hospital, APHP, Paris, France
| | - P Fenaux
- INSERM, UMRS1131–University Paris Diderot, Saint Louis Hospital, Paris, France
- Senior Haematology Department, Saint Louis Hospital, APHP, Paris, France
| | - C Dosquet
- INSERM, UMRS1131–University Paris Diderot, Saint Louis Hospital, Paris, France
- Cell Biology Department, Saint Louis Hospital, APHP, Paris, France
| | - G J Mufti
- King’s College London School of Medicine, Department of Haematological Medicine, London, UK
- King’s College Hospital, Department of Haematology, London, UK
| | - D Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
34
|
Zheng X, Zhan Z, Naren D, Li J, Yan T, Gong Y. Prognostic value of SRSF2 mutations in patients with de novo myelodysplastic syndromes: A meta-analysis. PLoS One 2017; 12:e0185053. [PMID: 28953917 PMCID: PMC5617234 DOI: 10.1371/journal.pone.0185053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Background The recent application of gene-sequencing technology has identified many new somatic mutations in patients with myelodysplastic syndromes (MDS). Among them, serine and arginine rich splicing factor 2 (SRSF2) mutations belonging to the RNA splicing pathway were of interest. Many studies have already reported the potential prognostic value of SRSF2 mutations in MDS patients, with controversial results. Therefore, a meta-analysis was performed to investigate their prognostic impact on MDS. Methods Databases, including PubMed, Embase and the Cochrane Library, were searched for relevant studies published up to 14 October 2016. Overall survival (OS) was selected as the primary endpoint, and acute myeloid leukemia (AML) transformation was the secondary endpoint. We extracted the corresponding hazard ratios (HRs) and their 95% confidence intervals (CIs) for OS and AML transformation from multivariate Cox proportional hazards models. The combined HRs with their 95% CIs were calculated using fixed or random effect models. Results A total of 10 cohort studies, covering 1864 patients with de novo MDS and 294 patients with SRSF2 mutations, were included in the final meta-analysis. Our results indicated that SRSF2 mutations had an adverse prognostic impact on OS (p<0.0001) and AML transformation (p = 0.0005) in the total population. Among the MDS patients with low or intermediate-1 risk defined according to the International Prognostic Scoring System (IPSS), SRSF2 mutations predicted a shorter OS (p = 0.009) and were more likely to transform to AML (p = 0.007). Conclusions This meta-analysis indicates an independent, adverse prognostic impact of SRSF2 mutations on OS and AML transformation in patients with de novo MDS. This also applies to the subgroup of low- or intermediate-1-IPSS risk MDS. The identification of mutations in SRSF2 can improve current risk stratification and help make treatment decisions.
Collapse
Affiliation(s)
- Xue Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhi Zhan
- Department of Cardiology, Zhong Shan Hospital, Fu Dan University, Shanghai, China
| | - Duolan Naren
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Li
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tianyou Yan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
35
|
Armstrong RN, Steeples V, Singh S, Sanchi A, Boultwood J, Pellagatti A. Splicing factor mutations in the myelodysplastic syndromes: target genes and therapeutic approaches. Adv Biol Regul 2017; 67:13-29. [PMID: 28986033 DOI: 10.1016/j.jbior.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 10/25/2022]
Abstract
Mutations in splicing factor genes (SF3B1, SRSF2, U2AF1 and ZRSR2) are frequently found in patients with myelodysplastic syndromes (MDS), suggesting that aberrant spliceosome function plays a key role in the pathogenesis of MDS. Splicing factor mutations have been shown to result in aberrant splicing of many downstream target genes. Recent functional studies have begun to characterize the splicing dysfunction in MDS, identifying some key aberrantly spliced genes that are implicated in disease pathophysiology. These findings have led to the development of therapeutic strategies using splicing-modulating agents and rapid progress is being made in this field. Splicing inhibitors are promising agents that exploit the preferential sensitivity of splicing factor-mutant cells to these compounds. Here, we review the known target genes associated with splicing factor mutations in MDS, and discuss the potential of splicing-modulating therapies for these disorders.
Collapse
Affiliation(s)
- Richard N Armstrong
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Violetta Steeples
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Shalini Singh
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Andrea Sanchi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
36
|
Mortera-Blanco T, Dimitriou M, Woll PS, Karimi M, Elvarsdottir E, Conte S, Tobiasson M, Jansson M, Douagi I, Moarii M, Saft L, Papaemmanuil E, Jacobsen SEW, Hellström-Lindberg E. SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood 2017; 130:881-890. [PMID: 28634182 PMCID: PMC5572789 DOI: 10.1182/blood-2017-03-776070] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the RNA splicing gene SF3B1 are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of SF3B1 mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in SF3B1 in 39 of 40 cases (97.5%), combined with TET2 and DNMT3A in 11 (28%) and 6 (15%) patients, respectively. All recurrent mutations identified in mononuclear cells could be tracked back to the phenotypically defined hematopoietic stem cell (HSC) compartment in all investigated patients and were also present in downstream myeloid and erythroid progenitor cells. While in agreement with previous studies, little or no evidence for clonal (SF3B1 mutation) involvement could be found in mature B cells, consistent involvement at the pro-B-cell progenitor stage was established, providing definitive evidence for SF3B1 mutations targeting lymphomyeloid HSCs and compatible with mutated SF3B1 negatively affecting lymphoid development. Assessment of stem cell function in vitro as well as in vivo established that only HSCs and not investigated progenitor populations could propagate the SF3B1 mutated clone. Upon transplantation into immune-deficient mice, SF3B1 mutated MDS-RS HSCs differentiated into characteristic ring sideroblasts, the hallmark of MDS-RS. Our findings provide evidence of a multipotent lymphomyeloid HSC origin of SF3B1 mutations in MDS-RS patients and provide a novel in vivo platform for mechanistically and therapeutically exploring SF3B1 mutated MDS-RS.
Collapse
Affiliation(s)
- Teresa Mortera-Blanco
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marios Dimitriou
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Petter S Woll
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Edda Elvarsdottir
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Simona Conte
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Monika Jansson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Iyadh Douagi
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matahi Moarii
- Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Leonie Saft
- Division of Hematopathology, Department of Pathology, Karolinska University Hospital, Solna, Sweden
| | | | - Sten Eirik W Jacobsen
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
37
|
|
38
|
Bejar R. Splicing Factor Mutations in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 907:215-28. [PMID: 27256388 DOI: 10.1007/978-3-319-29073-7_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many cancers demonstrate aberrant splicing patterns that contribute to their development and progression. Recently, recurrent somatic mutations of genes encoding core subunits of the spliceosome have been identified in several different cancer types. These mutations are most common in hematologic malignancies like the myelodysplastic syndromes (MDS), acute myeloid leukemia, and chronic lymphocytic leukemia, but also in occur in several solid tumors at lower frequency. The most frequent mutations occur in SF3B1, U2AF1, SRSF2, and ZRSR2 and are largely exclusive of each other. Mutations in SF3B1, U2AF1, and SRSF2 acquire heterozygous missense mutations in specific codons, resembling oncogenes. ZRSR2 mutations include clear loss-of-function variants, a pattern more common to tumor suppressor genes. These splicing factors are associated with distinct clinical phenotypes and patterns of mutation in different malignancies. Mutations have both diagnostic and prognostic relevance. Splicing factor mutations appear to affect only a minority of transcripts which show little overlap by mutation type. How differences in splicing caused by somatic mutations of spliceosome subunits lead to oncogenesis is not clear and may involve different targets in each disease type. However, cells with mutated splicing machinery may be particularly vulnerable to further disruption of the spliceosome suggesting a novel strategy for the targeted therapy of cancers.
Collapse
Affiliation(s)
- Rafael Bejar
- Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
39
|
Ng IK, Ng C, Low JJ, Chiu L, Seah E, Ng CH, Chng WJ, Yan B, Ban KHK. Identifying large indels in targeted next generation sequencing assays for myeloid neoplasms: a cautionary tale of the ZRSR1 pseudogene. J Clin Pathol 2017; 70:1069-1073. [PMID: 28676493 DOI: 10.1136/jclinpath-2017-204440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/04/2022]
Abstract
Targeted next generation sequencing platforms have been increasingly utilised for identification of novel mutations in myeloid neoplasms, such as acute myeloid leukaemia (AML), and hold great promise for use in routine clinical diagnostics. In this study, we evaluated the utility of an open source variant caller in detecting large indels in a targeted sequencing of AML samples. While we found that this bioinformatics pipeline has the potential to accurately capture large indels (>20 bp) in patient samples, we highlighted the pitfall of a confounding ZRSR1 pseudogene that led to an erroneous ZRSR2 variant call. We further discuss possible clinical implications of the ZRSR1 pseudogene in myeloid neoplasms based on its molecular features. Knowledge of the confounding ZRSR1 pseudogene in ZRSR2 sequencing assays could be particularly important in AML diagnostics because the detection of ZRSR2 in AML patients is highly specific for an s-AML diagnosis.
Collapse
Affiliation(s)
- Isaac Ks Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Ng
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore
| | - Jia Jin Low
- Department of Statistics, National University of Singapore, Singapore
| | - Lily Chiu
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore
| | - Elaine Seah
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Chin Hin Ng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Cancer Science Institute, National University of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Benedict Yan
- Department of Laboratory Medicine, Molecular Diagnosis Centre, National University Health System, Singapore
| | - Kenneth H K Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
40
|
Yip BH, Steeples V, Repapi E, Armstrong RN, Llorian M, Roy S, Shaw J, Dolatshad H, Taylor S, Verma A, Bartenstein M, Vyas P, Cross NC, Malcovati L, Cazzola M, Hellström-Lindberg E, Ogawa S, Smith CW, Pellagatti A, Boultwood J. The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes. J Clin Invest 2017; 127:2206-2221. [PMID: 28436936 PMCID: PMC5451246 DOI: 10.1172/jci91363] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/21/2017] [Indexed: 12/23/2022] Open
Abstract
Mutations of the splicing factor–encoding gene U2AF1 are frequent in the myelodysplastic syndromes (MDS), a myeloid malignancy, and other cancers. Patients with MDS suffer from peripheral blood cytopenias, including anemia, and an increasing percentage of bone marrow myeloblasts. We studied the impact of the common U2AF1S34F mutation on cellular function and mRNA splicing in the main cell lineages affected in MDS. We demonstrated that U2AF1S34F expression in human hematopoietic progenitors impairs erythroid differentiation and skews granulomonocytic differentiation toward granulocytes. RNA sequencing of erythroid and granulomonocytic colonies revealed that U2AF1S34F induced a higher number of cassette exon splicing events in granulomonocytic cells than in erythroid cells. U2AF1S34F altered mRNA splicing of many transcripts that were expressed in both cell types in a lineage-specific manner. In hematopoietic progenitors, the introduction of isoform changes identified in the U2AF1S34F target genes H2AFY, encoding an H2A histone variant, and STRAP, encoding serine/threonine kinase receptor–associated protein, recapitulated phenotypes associated with U2AF1S34F expression in erythroid and granulomonocytic cells, suggesting a causal link. Furthermore, we showed that isoform modulation of H2AFY and STRAP rescues the erythroid differentiation defect in U2AF1S34F MDS cells, suggesting that splicing modulators could be used therapeutically. These data have critical implications for understanding MDS phenotypic heterogeneity and support the development of therapies targeting splicing abnormalities.
Collapse
Affiliation(s)
- Bon Ham Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Violetta Steeples
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Emmanouela Repapi
- The Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard N Armstrong
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Miriam Llorian
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, United Kingdom
| | - Swagata Roy
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Jacqueline Shaw
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Hamid Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Stephen Taylor
- The Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Amit Verma
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Paresh Vyas
- Medical Research Council, Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, and Department of Hematology, Oxford University Hospital National Health Service Trust, Oxford, United Kingdom
| | - Nicholas Cp Cross
- Faculty of Medicine, University of Southampton, Southampton, and National Genetics Reference Laboratory (Wessex), Salisbury, United Kingdom
| | - Luca Malcovati
- Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Christopher Wj Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Blood Theme, National Institute for Health Research (NIHR) Oxford Biomedical Centre, Oxford University Hospital, Oxford, United Kingdom
| |
Collapse
|
41
|
Abstract
Tumor-associated alterations in RNA splicing result either from mutations in splicing-regulatory elements or changes in components of the splicing machinery. This review summarizes our current understanding of the role of splicing-factor alterations in human cancers. We describe splicing-factor alterations detected in human tumors and the resulting changes in splicing, highlighting cell-type-specific similarities and differences. We review the mechanisms of splicing-factor regulation in normal and cancer cells. Finally, we summarize recent efforts to develop novel cancer therapies, based on targeting either the oncogenic splicing events or their upstream splicing regulators.
Collapse
Affiliation(s)
- Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
42
|
Pellagatti A, Boultwood J. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Adv Biol Regul 2016; 63:59-70. [PMID: 27639445 DOI: 10.1016/j.jbior.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
Abstract
Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; NIHR Biomedical Research Centre, Oxford, UK.
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
43
|
Mutations of myelodysplastic syndromes (MDS): An update. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:47-62. [DOI: 10.1016/j.mrrev.2016.04.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
|
44
|
Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MDM, Wendl MC, Zhang Q, Koboldt DC, Xie M, Kandoth C, McMichael JF, Wyczalkowski MA, Larson DE, Schmidt HK, Miller CA, Fulton RS, Spellman PT, Mardis ER, Druley TE, Graubert TA, Goodfellow PJ, Raphael BJ, Wilson RK, Ding L. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun 2016; 5:3156. [PMID: 24448499 PMCID: PMC4025965 DOI: 10.1038/ncomms4156] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/19/2013] [Indexed: 01/05/2023] Open
Abstract
We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.
Collapse
Affiliation(s)
- Krishna L Kanchi
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2]
| | - Kimberly J Johnson
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Brown School, Washington University, St. Louis, Missouri 63130, USA [3] Oregon Health and Science University, Portland, Oregon 97239, USA [4]
| | - Charles Lu
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2]
| | - Michael D McLellan
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Mark D M Leiserson
- Department of Computer Science, Brown University, Providence, Rhode Island 02912, USA
| | - Michael C Wendl
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Department of Mathematics, Washington University, St. Louis, Missouri 63108, USA
| | - Qunyuan Zhang
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA
| | - Daniel C Koboldt
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Mingchao Xie
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Cyriac Kandoth
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | - Joshua F McMichael
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | | | - David E Larson
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA
| | - Heather K Schmidt
- The Genome Institute, Washington University, St. Louis, Missouri 63108, USA
| | | | - Robert S Fulton
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA
| | - Paul T Spellman
- Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Elaine R Mardis
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA
| | - Todd E Druley
- 1] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [2] Department of Pediatrics, Washington University, St. Louis, Missouri 63108, USA
| | - Timothy A Graubert
- 1] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA [2] Department of Medicine, Washington University, St. Louis, Missouri 63108, USA
| | - Paul J Goodfellow
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J Raphael
- Department of Computer Science, Brown University, Providence, Rhode Island 02912, USA
| | - Richard K Wilson
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA
| | - Li Ding
- 1] The Genome Institute, Washington University, St. Louis, Missouri 63108, USA [2] Department of Genetics, Washington University, St. Louis, Missouri 63108, USA [3] Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA [4] Department of Medicine, Washington University, St. Louis, Missouri 63108, USA
| |
Collapse
|
45
|
Tan SY, Smeets MF, Chalk AM, Nandurkar H, Walkley CR, Purton LE, Wall M. Insights into myelodysplastic syndromes from current preclinical models. World J Hematol 2016; 5:1-22. [DOI: 10.5315/wjh.v5.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been significant progress made in our understanding of the molecular genetics of myelodysplastic syndromes (MDS). Using massively parallel sequencing techniques, recurring mutations are identified in up to 80% of MDS cases, including many with a normal karyotype. The differential role of some of these mutations in the initiation and progression of MDS is starting to be elucidated. Engineering candidate genes in mice to model MDS has contributed to recent insights into this complex disease. In this review, we examine currently available mouse models, with detailed discussion of selected models. Finally, we highlight some advances made in our understanding of MDS biology, and conclude with discussions of questions that remain unanswered.
Collapse
|
46
|
Mian SA, Rouault-Pierre K, Smith AE, Seidl T, Pizzitola I, Kizilors A, Kulasekararaj AG, Bonnet D, Mufti GJ. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat Commun 2015; 6:10004. [PMID: 26643973 PMCID: PMC4686651 DOI: 10.1038/ncomms10004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Despite the recent evidence of the existence of myelodysplastic syndrome (MDS) stem cells in 5q-MDS patients, it is unclear whether haematopoietic stem cells (HSCs) could also be the initiating cells in other MDS subgroups. Here we demonstrate that SF3B1 mutation(s) in our cohort of MDS patients with ring sideroblasts can arise from CD34(+)CD38(-)CD45RA(-)CD90(+)CD49f(+) HSCs and is an initiating event in disease pathogenesis. Xenotransplantation of SF3B1 mutant HSCs leads to persistent long-term engraftment restricted to myeloid lineage. Moreover, genetically diverse evolving subclones of mutant SF3B1 exist in mice, indicating a branching multi-clonal as well as ancestral evolutionary paradigm. Subclonal evolution in mice is also seen in the clinical evolution in patients. Sequential sample analysis shows clonal evolution and selection of the malignant driving clone leading to AML transformation. In conclusion, our data show SF3B1 mutations can propagate from HSCs to myeloid progeny, therefore providing a therapeutic target.
Collapse
Affiliation(s)
- Syed A. Mian
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
| | - Kevin Rouault-Pierre
- Human Normal and Malignant Haematopoiesis Stem Cells and Their Microenvironment Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Alexander E. Smith
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| | - Thomas Seidl
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
| | - Irene Pizzitola
- Human Normal and Malignant Haematopoiesis Stem Cells and Their Microenvironment Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Aytug Kizilors
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| | - Austin G. Kulasekararaj
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| | - Dominique Bonnet
- Human Normal and Malignant Haematopoiesis Stem Cells and Their Microenvironment Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Ghulam J. Mufti
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| |
Collapse
|
47
|
Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia 2015; 30:666-73. [PMID: 26514544 DOI: 10.1038/leu.2015.304] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings confirmed in a validation cohort. When parsed by VAF, TP53 VAF predicted for complex cytogenetics in both the training (P=0.001) and validation set (P<0.0001). MDS patients with a TP53 VAF > 40% had a median overall survival (OS) of 124 days versus an OS that was not reached in patients with VAF <20% (hazard ratio (HR), 3.52; P=0.01) with validation in an independent cohort (HR, 4.94, P=0.01). TP53 VAF further stratified distinct prognostic groups independent of clinical prognostic scoring systems (P=0.0005). In multivariate analysis, only a TP53 VAF >40% was an independent covariate (HR, 1.61; P<0.0001). In addition, SRSF2 VAF predicted for monocytosis (P=0.003), RUNX1 VAF with thrombocytopenia (P=0.01) and SF3B1 with ringed sideroblasts (P=0.001). Together, our study indicates that VAF should be incorporated in patient management and risk stratification in MDS.
Collapse
|
48
|
Hahn CN, Venugopal P, Scott HS, Hiwase DK. Splice factor mutations and alternative splicing as drivers of hematopoietic malignancy. Immunol Rev 2015; 263:257-78. [PMID: 25510282 DOI: 10.1111/imr.12241] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differential splicing contributes to the vast complexity of mRNA transcripts and protein isoforms that are necessary for cellular homeostasis and response to developmental cues and external signals. The hematopoietic system provides an exquisite example of this. Recently, discovery of mutations in components of the spliceosome in various hematopoietic malignancies (HMs) has led to an explosion in knowledge of the role of splicing and splice factors in HMs and other cancers. A better understanding of the mechanisms by which alternative splicing and aberrant splicing contributes to the leukemogenic process will enable more efficacious targeted approaches to tackle these often difficult to treat diseases. The clinical implications are only just starting to be realized with novel drug targets and therapeutic strategies open to exploitation for patient benefit.
Collapse
Affiliation(s)
- Christopher N Hahn
- Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia; Department of Molecular Pathology, SA Pathology, Adelaide, SA, Australia; School of Medicine, University of Adelaide, Adelaide, SA, Australia; Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
49
|
Pellagatti A, Roy S, Di Genua C, Burns A, McGraw K, Valletta S, Larrayoz MJ, Fernandez-Mercado M, Mason J, Killick S, Mecucci C, Calasanz MJ, List A, Schuh A, Boultwood J. Targeted resequencing analysis of 31 genes commonly mutated in myeloid disorders in serial samples from myelodysplastic syndrome patients showing disease progression. Leukemia 2015; 30:247-50. [PMID: 25991409 PMCID: PMC4705423 DOI: 10.1038/leu.2015.129] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- A Pellagatti
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - S Roy
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - C Di Genua
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Burns
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - K McGraw
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - S Valletta
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M J Larrayoz
- Department of Genetics, University of Navarra, Pamplona, Spain
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - J Mason
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - S Killick
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - C Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - M J Calasanz
- Department of Genetics, University of Navarra, Pamplona, Spain
| | - A List
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - A Schuh
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Smith AE, Kulasekararaj AG, Jiang J, Mian S, Mohamedali A, Gaken J, Ireland R, Czepulkowski B, Best S, Mufti GJ. CSNK1A1 mutations and isolated del(5q) abnormality in myelodysplastic syndrome: a retrospective mutational analysis. LANCET HAEMATOLOGY 2015; 2:e212-21. [PMID: 26688096 DOI: 10.1016/s2352-3026(15)00050-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND A mechanism for clonal growth advantage in isolated del(5q) disease remains elusive. CSNK1A1 resides on the critically deleted region, and deletion of this gene has been shown in mouse knockout and transplantation studies to produce some characteristics of bone marrow failure, including a proliferative advantage. We aimed to establish the frequency, nature, and clinical association of CSNK1A1 mutations in patients with myelodysplastic syndrome and associated myeloid neoplasms. METHODS Between June 1, 2004, and May 31, 2014, in King's College (London, UK), we did whole-exome sequencing of five patients with isolated del(5q) followed by targeted screening for CSNK1A1 mutations and 20 myelodysplastic syndrome-associated mutations in 245 additional patients with myeloid neoplasms. All patients met present WHO diagnostic criteria for myelodysplastic syndrome and other related myeloid neoplasms. FINDINGS 39 (16%) of 250 patients with myeloid neoplasms had isolated del(5q), of whom seven (18%) had CSNK1A1 mutations. All these mutations were missense and presented in a highly conserved region that is implicated in ATP catalysis. Serial sampling and response to lenalidomide treatment showed that CSNK1A1 mutations were highly associated with the del(5q) clone. Only one patient with a CSNK1A1 mutation showed complete cytogenetic response to lenalidomide. Four (57%) of the seven patients carrying a CSNK1A1 mutation showed disease progression coupled with an increase in mutant allele burden (all four were on lenalidomide). We detected coexisting myelodysplastic syndrome-related gene mutations in patients with CSNK1A1 mutations, including TP53. INTERPRETATION Similar to the effect of TP53 mutations on progression of del(5q) abnormality, mutant CSNK1A1 also gives rise to a poor prognosis in del(5q) abnormality, for which a coupled increase in P53 activation is suggested. CSNK1A1 mutations in del(5q) disease are important in the context of therapeutic manipulation and need incorporation into future prospective studies. FUNDING Leukaemia and Lymphoma Research.
Collapse
Affiliation(s)
- Alexander E Smith
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK; Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Austin G Kulasekararaj
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK; Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Jie Jiang
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK; Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Syed Mian
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK
| | - Azim Mohamedali
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK; Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Joop Gaken
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK
| | - Robin Ireland
- Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Barbara Czepulkowski
- Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Steven Best
- Department of Haematology, King's College Hospital, King's College London, London, UK
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College London School of Medicine, Rayne Institute, King's College London, London, UK; Department of Haematology, King's College Hospital, King's College London, London, UK.
| |
Collapse
|