1
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
2
|
Li Z, Chang TC, Junco JJ, Devidas M, Li Y, Yang W, Huang X, Hedges DJ, Cheng Z, Shago M, Carroll AJ, Heerema NA, Gastier-Foster J, Wood BL, Borowitz MJ, Sanclemente L, Raetz EA, Hunger SP, Feingold E, Rosser TC, Sherman SL, Loh ML, Mullighan CG, Yu J, Wu G, Lupo PJ, Rabin KR, Yang JJ. Genomic landscape of Down syndrome-associated acute lymphoblastic leukemia. Blood 2023; 142:172-184. [PMID: 37001051 PMCID: PMC10352600 DOI: 10.1182/blood.2023019765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Trisomy 21, the genetic cause of Down syndrome (DS), is the most common congenital chromosomal anomaly. It is associated with a 20-fold increased risk of acute lymphoblastic leukemia (ALL) during childhood and results in distinctive leukemia biology. To comprehensively define the genomic landscape of DS-ALL, we performed whole-genome sequencing and whole-transcriptome sequencing (RNA-Seq) on 295 cases. Our integrated genomic analyses identified 15 molecular subtypes of DS-ALL, with marked enrichment of CRLF2-r, IGH::IGF2BP1, and C/EBP altered (C/EBPalt) subtypes compared with 2257 non-DS-ALL cases. We observed abnormal activation of the CEBPD, CEBPA, and CEBPE genes in 10.5% of DS-ALL cases via a variety of genomic mechanisms, including chromosomal rearrangements and noncoding mutations leading to enhancer hijacking. A total of 42.3% of C/EBP-activated DS-ALL also have concomitant FLT3 point mutations or insertions/deletions, compared with 4.1% in other subtypes. CEBPD overexpression enhanced the differentiation of mouse hematopoietic progenitor cells into pro-B cells in vitro, particularly in a DS genetic background. Notably, recombination-activating gene-mediated somatic genomic abnormalities were common in DS-ALL, accounting for a median of 27.5% of structural alterations, compared with 7.7% in non-DS-ALL. Unsupervised hierarchical clustering analyses of CRLF2-rearranged DS-ALL identified substantial heterogeneity within this group, with the BCR::ABL1-like subset linked to an inferior event-free survival, even after adjusting for known clinical risk factors. These results provide important insights into the biology of DS-ALL and point to opportunities for targeted therapy and treatment individualization.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jacob J. Junco
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Meenakshi Devidas
- Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yizhen Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xin Huang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Dale J. Hedges
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary Shago
- Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew J. Carroll
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL
| | - Nyla A. Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Julie Gastier-Foster
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | | | | | - Elizabeth A. Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Stephen P. Hunger
- Department of Pediatrics and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | | | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Philip J. Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Karen R. Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
3
|
Kurata M, Onishi I, Takahara T, Yamazaki Y, Ishibashi S, Goitsuka R, Kitamura D, Takita J, Hayashi Y, Largaesapda DA, Kitagawa M, Nakamura T. C/EBPβ induces B-cell acute lymphoblastic leukemia and cooperates with BLNK mutations. Cancer Sci 2021; 112:4920-4930. [PMID: 34653294 PMCID: PMC8645713 DOI: 10.1111/cas.15164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
BLNK (BASH/SLP‐65) encodes an adaptor protein that plays an important role in B‐cell receptor (BCR) signaling. Loss‐of‐function mutations in this gene are observed in human pre‐B acute lymphoblastic leukemia (ALL), and a subset of Blnk knock‐out (KO) mice develop pre‐B‐ALL. To understand the molecular mechanism of the Blnk mutation‐associated pre‐B‐ALL development, retroviral tagging was applied to KO mice using the Moloney murine leukemia virus (MoMLV). The Blnk mutation that significantly accelerated the onset of MoMLV‐induced leukemia and increased the incidence of pre‐B‐ALL Cebpb was identified as a frequent site of retroviral integration, suggesting that its upregulation cooperates with Blnk mutations. Transgenic expression of the liver‐enriched activator protein (LAP) isoform of Cebpb reduced the number of mature B‐lymphocytes in the bone marrow and inhibited differentiation at the pre‐BI stage. Furthermore, LAP expression significantly accelerated leukemogenesis in Blnk KO mice and alone acted as a B‐cell oncogene. Furthermore, an inverse relationship between BLNK and C/EBPβ expression was also noted in human pre‐B‐ALL cases, and the high level of CEBPB expression was associated with short survival periods in patients with BLNK‐downregulated pre‐B‐ALL. These results indicate the association between the C/EBPβ transcriptional network and BCR signaling in pre‐B‐ALL development and leukemogenesis. This study gives insight into ALL progression and suggests that the BCR/C/EBPβ pathway can be a therapeutic target.
Collapse
Affiliation(s)
- Morito Kurata
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiro Onishi
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Takahara
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Junko Takita
- Department of Pediatrics, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - David A Largaesapda
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
4
|
Yao L, Yin H, Hong M, Wang Y, Yu T, Teng Y, Li T, Wu Q. RNA methylation in hematological malignancies and its interactions with other epigenetic modifications. Leukemia 2021; 35:1243-1257. [PMID: 33767371 DOI: 10.1038/s41375-021-01225-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/18/2023]
Abstract
Hematological malignancies are a class of malignant neoplasms attributed to abnormal differentiation of hematopoietic stem cells (HSCs). The systemic involvement, poor prognosis, chemotherapy resistance, and recurrence common in hematological malignancies urge researchers to look for novel treatment targets and mechanisms. In recent years, epigenetic abnormalities have been shown to play a vital role in tumorigenesis and progression in hematological malignancies. In addition to DNA methylation and histone modifications, which are most studied, RNA methylation has become increasingly significant. In this review, we elaborate recent advances in the understanding of RNA modification in the pathogenesis, diagnosis and molecular targeted therapies of hematological malignancies and discuss its intricate interactions with other epigenetic modifications, including DNA methylation, histone modifications and noncoding RNAs.
Collapse
Affiliation(s)
- Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Yu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Panagopoulos I, Andersen K, Eilert-Olsen M, Zeller B, Munthe-Kaas MC, Buechner J, Osnes LTN, Micci F, Heim S. Therapy-induced Deletion in 11q23 Leading to Fusion of KMT2A With ARHGEF12 and Development of B Lineage Acute Lymphoplastic Leukemia in a Child Treated for Acute Myeloid Leukemia Caused by t(9;11)(p21;q23)/ KMT2A-MLLT3. Cancer Genomics Proteomics 2021; 18:67-81. [PMID: 33419897 DOI: 10.21873/cgp.20242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Fusion of histone-lysine N-methyltransferase 2A gene (KMT2A) with the Rho guanine nucleotide exchange factor 12 gene (ARHGEF12), both located in 11q23, was reported in some leukemic patients. We report a KMT2A-ARHGEF12 fusion occurring during treatment of a pediatric acute myeloid leukemia (AML) with topoisomerase II inhibitors leading to a secondary acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS Multiple genetic analyses were performed on bone marrow cells of a girl initially diagnosed with AML. RESULTS At the time of diagnosis with AML, the t(9;11)(p21;q23)/KMT2A-MLLT3 genetic abnormality was found. After chemotherapy resulting in AML clinical remission, a 2 Mb deletion in 11q23 was found generating a KMT2A-ARHGEF12 fusion gene. When the patient later developed B lineage ALL, a t(14;19)(q32;q13), loss of one chromosome 9, and KMT2A-ARHGEF12 were detected. CONCLUSION The patient sequentially developed AML and ALL with three leukemia-specific genomic abnormalities in her bone marrow cells, two of which were KMT2A-rearrangements.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Martine Eilert-Olsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bernward Zeller
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Liv T N Osnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Tarigopula A, Chandrashekar V, Perumal G. Recurrent genetic abnormalities detected by FISH in adult B ALL and association with hematological parameters. Cancer Rep (Hoboken) 2020; 3:e21290. [PMID: 32902203 PMCID: PMC7941533 DOI: 10.1002/cnr2.1290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Recurrent genetic abnormalities influence prognosis in B lymphoblastic leukemia. BCR‐ABL rearrangement is associated with higher leukocyte counts and older age at presentation. Among adults, BCR ‐ABL ‐ is the commonest recurrent abnormality whereas, IgH rearrangements are rare. Aim Aim of this study was to identify common recurrent genetic abnormalities in adult B ALL and study their association with hematological findings. Methods Bone marrow and peripheral blood from patients with B acute lymphoblastic leukemia were analyzed for complete blood counts, bone marrow morphology and cytogenetic abnormalities. The study group was divided into smaller groups based on cytogenetic abnormalities. Hematological parameters and presence of recurrent genetic abnormalities was compared across age groups and gender by non parametric tests. Results BCR‐ABL positive group had a higher leukocyte count than BCR‐ABL negative group. Among groups 1 to 5, group 1 with gains of chromosomes was associated with leucopenia and higher age at presentation. BCR‐ABL is commonest recurrent abnormality followed by IgH rearrangements. Conclusion Patients with gains of chromosomes alone have low total leukocyte counts at presentation.
Collapse
Affiliation(s)
- Anil Tarigopula
- Department of Centralised Molecular Diagnostics, Apollo Hospitals, Chennai, Tamil Nadu, India
| | | | - Govindasami Perumal
- Department of Centralised Molecular Diagnostics, Apollo Hospitals, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Caution encouraged in next-generation sequencing immunogenetic analyses in acute lymphoblastic leukemia. Blood 2020; 136:1105-1107. [PMID: 32438392 DOI: 10.1182/blood.2020005613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A, Fioretos T, Jafari R, Lilljebjörn H, Odom DT, Olsson L, Ravi N, Woodward EL, Harewood L, Lehtiö J, Paulsson K. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat Commun 2019; 10:1519. [PMID: 30944321 PMCID: PMC6447538 DOI: 10.1038/s41467-019-09469-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Hyperdiploidy, i.e. gain of whole chromosomes, is one of the most common genetic features of childhood acute lymphoblastic leukemia (ALL), but its pathogenetic impact is poorly understood. Here, we report a proteogenomic analysis on matched datasets from genomic profiling, RNA-sequencing, and mass spectrometry-based analysis of >8,000 genes and proteins as well as Hi-C of primary patient samples from hyperdiploid and ETV6/RUNX1-positive pediatric ALL. We show that CTCF and cohesin, which are master regulators of chromatin architecture, display low expression in hyperdiploid ALL. In line with this, a general genome-wide dysregulation of gene expression in relation to topologically associating domain (TAD) borders were seen in the hyperdiploid group. Furthermore, Hi-C of a limited number of hyperdiploid childhood ALL cases revealed that 2/4 cases displayed a clear loss of TAD boundary strength and 3/4 showed reduced insulation at TAD borders, with putative leukemogenic effects.
Collapse
Affiliation(s)
- Minjun Yang
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Mattias Vesterlund
- Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institute, Clinical Proteomics Mass Spectrometry, SE-171 21, Stockholm, Sweden
| | - Ioannis Siavelis
- Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institute, Clinical Proteomics Mass Spectrometry, SE-171 21, Stockholm, Sweden
| | - Larissa H Moura-Castro
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Anders Castor
- Department of Pediatrics, Skåne University Hospital, Lund University, SE-221 85, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institute, Clinical Proteomics Mass Spectrometry, SE-171 21, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, 69120, Heidelberg, Germany
| | - Linda Olsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
- Department of Clinical Genetics and Pathology, Office for Medical Services, Division of Laboratory Medicine, SE-221 85, Lund, Sweden
| | - Naveen Ravi
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Eleanor L Woodward
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden
| | - Louise Harewood
- Cancer Research UK Cambridge Institute (CRUK-CI), University of Cambridge, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
- Precision Medicine Centre of Excellence, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory and Karolinska Institute, Clinical Proteomics Mass Spectrometry, SE-171 21, Stockholm, Sweden.
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, SE-221 84, Lund, Sweden.
| |
Collapse
|
9
|
Single-cell analysis identifies CRLF2 rearrangements as both early and late events in Down syndrome and non-Down syndrome acute lymphoblastic leukaemia. Leukemia 2018; 33:893-904. [PMID: 30487598 PMCID: PMC6398588 DOI: 10.1038/s41375-018-0297-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We have previously reported the genomic landscape of patients with CRLF2 rearrangements (CRLF2-r) using both whole genome and exome sequencing, which identified a number of potential clonal and sub-clonal genomic alterations. In this study, we aimed to assess when the CRLF2-r; IGH-CRLF2 or P2RY8-CRLF2, arose during the evolution of both Down syndrome-ALL (DS-ALL) and non-DS-ALL. Using fluorescence in situ hybridisation, we were able to track up to four structural variants in single cells from 47 CRLF2-r B-ALL patients, which in association with our multiplex single cell analysis of a further four patients, permitted simultaneous tracking of copy number alterations, structural and single nucleotide variants within individual cells. We observed CRLF2-r arising as both early and late events in DS and non-DS-ALL patients. Parallel evolution of discrete clones was observed in the development of CRLF2-r B-ALL, either involving the CRLF2-r or one of the other tracked abnormalities. In depth single cell analysis identified both linear and branching evolution with early clones harbouring a multitude of abnormalities, including the CRLF2-r in DS-ALL patients.
Collapse
|
10
|
Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood 2017; 130:1832-1844. [DOI: 10.1182/blood-2017-05-783852] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/17/2017] [Indexed: 02/05/2023] Open
Abstract
Abstract
Multiple cytogenetic subgroups have been described in adult Philadelphia chromosome (Ph)-negative B-cell precursor (BCP) acute lymphoblastic leukemia (ALL), often comprising small numbers of patients. In this study, we aimed to reassess the prognostic value of cytogenetic abnormalities in a large series of 617 adult patients with Ph-negative BCP-ALL (median age, 38 years), treated in the intensified Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 trials. Combined data from karyotype, DNA index, fluorescence in situ hybridization, and polymerase chain reaction screening for relevant abnormalities were centrally reviewed and were informative in 542 cases (88%), allowing classification in 10 exclusive primary cytogenetic subgroups and in secondary subgroups, including complex and monosomal karyotypes. Prognostic analyses focused on cumulative incidence of failure (including primary refractoriness and relapse), event-free survival, and overall survival. Only 2 subgroups, namely t(4;11)/KMT2A-AFF1 and 14q32/IGH translocations, displayed a significantly worse outcome in this context, still observed after adjustment for age and after censoring patients who received allogeneic stem cell transplantation (SCT) in first remission at SCT time. A worse outcome was also observed in patients with low hypodiploidy/near triploidy, but this was likely related to their higher age and worse tolerance to therapy. The other cytogenetic abnormalities, including complex and monosomal karyotypes, had no prognostic value in these intensive protocols designed for adult patients up to the age of 60 years.
Collapse
|
11
|
Jain N, Lu X, Daver N, Thakral B, Wang SA, Konoplev S, Patel K, Kanagal-Shamanna R, Valentine M, Tang G, Pemmaraju N, Jorgensen J, Kebriaei P, Nunez CA, Wierda W, Jabbour E, Roberts KG, Mullighan CG, Kantarjian H, Konopleva M. Co-occurrence of CRLF2-rearranged and Ph+ acute lymphoblastic leukemia: a report of four patients. Haematologica 2017; 102:e514-e517. [PMID: 28860345 DOI: 10.3324/haematol.2016.161000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nitin Jain
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Xinyan Lu
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Keyur Patel
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marcus Valentine
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Jorgensen
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Cesar A Nunez
- Department of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Russell LJ, Jones L, Enshaei A, Tonin S, Ryan SL, Eswaran J, Nakjang S, Papaemmanuil E, Tubio JMC, Fielding AK, Vora A, Campbell PJ, Moorman AV, Harrison CJ. Characterisation of the genomic landscape of CRLF2-rearranged acute lymphoblastic leukemia. Genes Chromosomes Cancer 2017; 56:363-372. [PMID: 28033648 PMCID: PMC5396319 DOI: 10.1002/gcc.22439] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/24/2016] [Accepted: 12/25/2016] [Indexed: 12/31/2022] Open
Abstract
Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5-15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We aimed to determine the clinical and genetic landscape of those with IGH-CRLF2 or P2RY8-CRLF2 (CRLF2-r) using multiple genomic approaches. Clinical and demographic features of CRLF2-r patients were characteristic of B-ALL. Patients with IGH-CRLF2 were older (14 y vs. 4 y, P < .001), while the incidence of CRLF2-r among Down syndrome patients was high (50/161, 31%). CRLF2-r co-occurred with primary chromosomal rearrangements but the majority (111/161, 69%) had B-other ALL. Copy number alteration (CNA) profiles were similar to B-other ALL, although CRLF2-r patients harbored higher frequencies of IKZF1 (60/138, 43% vs. 77/1351, 24%) and BTG1 deletions (20/138, 15% vs. 3/1351, 1%). There were significant differences in CNA profiles between IGH-CRLF2 and P2RY8-CRLF2 patients: IKZF1 (25/35, 71% vs. 36/108, 33%, P < .001), BTG1 (11/35, 31% vs. 10/108, 9%, P =.004), and ADD3 deletions (9/19, 47% vs. 5/38, 13%, P =.008). A novel gene fusion, USP9X-DDX3X, was discovered in 10/54 (19%) of patients. Pathway analysis of the mutational profile revealed novel involvement for focal adhesion. Although the functional relevance of many of these abnormalities are unknown, they likely activate additional pathways, which may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Lisa J. Russell
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Lisa Jones
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Stefano Tonin
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Sarra L. Ryan
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Jeyanthy Eswaran
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Elli Papaemmanuil
- Department of Epidemiology‐BiostatisticsMemorial Sloan Kettering Cancer CenterUSA
- Cancer Genome ProjectWellcome Trust Sanger InstituteHinxtonUK
| | | | | | - Ajay Vora
- Department of HaematologySheffield Children's HospitalSheffieldUK
| | | | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
13
|
Abstract
Both B-cell and T-cell acute lymphoblastic leukemia (ALL) exhibit recurrent cytogenetic alterations, many with prognostic implications. This chapter overviews the major recurrent categories of cytogenetic abnormalities associated with ALL, with an emphasis on the detection and characterization of these cases by G-band and FISH analyses.
Collapse
|
14
|
Doerrenberg M, Kloetgen A, Hezaveh K, Wössmann W, Bleckmann K, Stanulla M, Schrappe M, McHardy AC, Borkhardt A, Hoell JI. T-cell acute lymphoblastic leukemia in infants has distinct genetic and epigenetic features compared to childhood cases. Genes Chromosomes Cancer 2016; 56:159-167. [DOI: 10.1002/gcc.22423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mareike Doerrenberg
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Andreas Kloetgen
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Kebria Hezaveh
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Wilhelm Wössmann
- Department of Pediatric Hematology and Oncology; University Hospital Gießen and Marburg; Gießen Germany
| | - Kirsten Bleckmann
- ALL BFM Trial Center; University Hospital Schleswig-Holstein; Kiel Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology; Hannover Medical School; Hannover Germany
| | - Martin Schrappe
- Department of Pediatrics; University Medical Center Schleswig-Holstein; Kiel Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Jessica I Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| |
Collapse
|
15
|
Stoskus M, Eidukaite A, Griskevicius L. Defining the significance of IGF2BP1 overexpression in t(12;21)(p13;q22)-positive leukemia REH cells. Leuk Res 2016; 47:16-21. [DOI: 10.1016/j.leukres.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/06/2016] [Accepted: 05/15/2016] [Indexed: 12/27/2022]
|
16
|
Stoskus M, Vaitkeviciene G, Eidukaite A, Griskevicius L. ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia. Blood Cells Mol Dis 2016; 57:30-4. [PMID: 26852652 DOI: 10.1016/j.bcmd.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
Abstract
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) is overexpressed in a subset of cancers and promotes cell cycle, migration and aggressive phenotype by regulating post-transcriptionally a number of key mRNAs (e. g, ACTB, CD44, CTNNB1, KRAS, MAPK4, MYC, PTEN and others). IGF2BP1 is also overexpressed in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia (ALL), but the biological significance of this phenomenon has not been addressed so far. We have identified leukemia fusion gene ETV6/RUNX1 mRNA to be highly enriched in immunoprecipitated fraction of endogenous IGF2BP1 from a model cell line REH and t(12;21)(p13;q22)-positive ALL samples. Furthermore, downregulation of IGF2BP1 by two-fold has resulted in a corresponding decrease of ETV6/RUNX1 mRNA validating this transcript as a target of IGF2BP1 protein in t(12;21)(p13;q22)-positive ALL. These data infer that IGF2BP1 is a potent regulator of ETV6/RUNX1 mRNA stability and potentially link this evolutionary-highly conserved protein to cell transformation events in ETV6/RUNX1-mediated leukemogenesis of t(12;21)(p13;q22)-positive ALL.
Collapse
MESH Headings
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 21
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Binding
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Translocation, Genetic
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- Mindaugas Stoskus
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| | - Goda Vaitkeviciene
- Children's Hospital, Affiliate of Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Audrone Eidukaite
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Children's Hospital, Affiliate of Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania
| | - Laimonas Griskevicius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santariskiu Klinikos, Vilnius, Lithuania; Clinics of Internal, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
17
|
Coccé MC, Alonso CN, Rossi JG, Bernasconi AR, Rampazzi MA, Felice MS, Rubio PL, Eandi Eberle S, Medina A, Gallego MS. Cytogenetic and Molecular Findings in Children with Acute Lymphoblastic Leukemia: Experience of a Single Institution in Argentina. Mol Syndromol 2015; 6:193-203. [PMID: 26648836 DOI: 10.1159/000441046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of the current study was to evaluate the cytogenetic findings in 1,057 children with acute lymphoblastic leukemia (ALL) referred to the cytogenetics laboratory at the Hospital de Pediatría Dr. Juan P. Garrahan, between 1991 and 2014. Chromosomal abnormalities were evaluated by G-banding and FISH. Since December 2002, RT-PCR determinations were systematically carried out for BCR-ABL1, KMT2A-AFF1, ETV6-RUNX1, and TCF3-PBX1 rearrangements in children, adding KMT2A-MLLT3 and KMT2A-MLLT1 in infants. The percentage of abnormalities detected by cytogenetics was 70.1%. Four novel abnormalities, t(2;8)(p11.2;p22), inv(4)(p16q25), t(1;7)(q25;q32), and t(5;6)(q21;q21), were found in this cohort. We compared cytogenetic and RT-PCR results for BCR-ABL1, KMT2A-AFF1 and TCF3-PBX1 rearrangements in 497 children evaluated by both methods. The results were highly concordant (p < 0.7), and interestingly, FISH was relevant to confirm G-banding findings that were discordant with RT-PCR studies. This study showed the importance of performing G-banding, FISH and RT-PCR simultaneously to improve the detection of chromosomal abnormalities considering their important value in the diagnosis and prognosis of childhood ALL patients. Finally, to the best of our knowledge, this is the first series of cytogenetic findings in children with ALL reported in Argentina.
Collapse
Affiliation(s)
- Mariela C Coccé
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Cristina N Alonso
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Jorge G Rossi
- Department of Immunology and Rheumatology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Andrea R Bernasconi
- Department of Immunology and Rheumatology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Maria A Rampazzi
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Maria S Felice
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Patricia L Rubio
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Silvia Eandi Eberle
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Adriana Medina
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Marta S Gallego
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| |
Collapse
|