1
|
Xiong ZY, Shen YJ, Zhang SZ, Zhu HH. A review of immunotargeted therapy for Philadelphia chromosome positive acute lymphoblastic leukaemia: making progress in chemotherapy-free regimens. Hematology 2024; 29:2335856. [PMID: 38581291 DOI: 10.1080/16078454.2024.2335856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (PH + ALL) is the most common cytogenetic abnormality of B-ALL in adults and is associated with poor prognosis. Previously, the only curative treatment option in PH + ALL was allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Since 2000, targeted therapy combined with chemotherapy, represented by the tyrosine kinase inhibitor Imatinib, has become the first-line treatment for PH + ALL. Currently, the remission rate and survival rate of Imatinib are superior to those of simple chemotherapy, and it can also improve the efficacy of transplantation. More recently, some innovative immune-targeted therapy greatly improved the prognosis of PH + ALL, such as Blinatumomab and Inotuzumab Ozogamicin. For patients with ABL1 mutations and those who have relapsed or are refractory to other treatments, targeted oral small molecule drugs, monoclonal antibodies, Bispecific T cell Engagers (BiTE), and chimeric antigen receptor (CAR) T cells immunotherapy are emerging as potential treatment options. These new therapeutic interventions are changing the treatment landscape for PH + ALL. In summary, this review discusses the current advancements in targeted therapeutic agents shift in the treatment strategy of PH + ALL towards using more tolerable chemotherapy-free induction and consolidation regimens confers better disease outcomes and might obviate the need for HSCT.
Collapse
Affiliation(s)
- Zhen-Yu Xiong
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Yao-Jia Shen
- Department of Hematology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shi-Zhong Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Hong-Hu Zhu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Chinese Institutes for Medical Research, Beijing, People's Republic of China
| |
Collapse
|
2
|
Mele G, Derudas D, Conticello C, Barilà G, Gentile M, Rocco S, Palmieri S, Palazzo G, Germano C, Reddiconto G, Sgherza N, De Novellis D, Galeone C, Castiglioni SA, Deiana L, Pascarella A, Martino EA, Foggetti I, Blasi I, Spina A, Di Renzo N, Maggi A, Tarantini G, Di Raimondo F, Specchia G, Musto P, Pastore D. Daratumumab-based regimens for patients with multiple myeloma plus extramedullary plasmacytomas or paraskeletal plasmacytomas: initial follow-up of an Italian multicenter observational clinical experience. Ann Hematol 2024; 103:5691-5701. [PMID: 38805036 DOI: 10.1007/s00277-024-05811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Myeloma with extramedullary plasmacytomas not adjacent to bone (EMP) is associated with an extremely poor outcome compared with paraosseous plasmacytomas (PP) as current therapeutic approaches are unsatisfactory. The role of new molecules and in particular of monoclonal antibodies is under investigation. To determine whether daratumumab-based regimens are effective for myeloma with EMP, we report herein an initial multicenter observational analysis of 102 myeloma patients with EMP (n = 10) and PP (n = 25) at diagnosis and EMP (n = 28) and PP (n = 39) at relapse, treated with daratumumab-based regimens at 11 Haematological Centers in Italy.EMP and PP at diagnosis were associated with higher biochemical (90% vs. 96%, respectively) and instrumental ORR (86% vs. 83.3%, respectively), while at relapse, biochemical (74% vs. 73%) and instrumental (53% vs. 59%) ORR were lower. Median OS was inferior in EMP patients compared with patients with PP both at diagnosis (21.0 months vs. NR) (p = 0.005) and at relapse (32.0 vs. 40.0 months) (p = 0.428), although, during relapse, there was no statistically significant difference between the two groups. Surprisingly, at diagnosis, median TTP and median TTNT were not reached either in EMP patients or PP patients and during relapse there were no statistically significant differences in terms of median TTP (20 months for two groups), and median TTNT (24 months for PP patients vs. 22 months for EMP patients) between the two groups. Median TTR was 1 month in all populations.These promising results were documented even in the absence of local radiotherapy and in transplant-ineligible patients.
Collapse
Affiliation(s)
| | - Daniele Derudas
- Haematology, Ospedale Oncologico A. Businco, Cagliari, Italy
| | - Concetta Conticello
- Haematology, AOU Policlinico G. Rodolico-San Marco, Università degli Studi di Catania, Catania, Italy
| | - Gregorio Barilà
- Haematology, Ospedale San Bortolo, Vicenza, Italy
- Haematology, Ospedale dell'Angelo, Mestre-Venezia, Italy
| | | | | | | | | | - Candida Germano
- Haematology, Ospedale Monsignor R. Dimiccoli, Barletta, BA, Italy
| | | | - Nicola Sgherza
- Haematology, AOU Consorziale Policlinico, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Danilo De Novellis
- Haematology, Ospedale Universitario San Giovanni di Dio e Ruggi D'Aragona, Università degli Studi di Salerno, Salerno, Italy
| | - Carlotta Galeone
- Bicocca Applied Statistics Center (B-ASC), Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Sara Agavni' Castiglioni
- Department of Statistical Sciences, Università degli Studi di Padova, National Cancer Institute of the National Institutes of Health (U24CA180996), Padova, Italy
| | - Luca Deiana
- Haematology, Ospedale Oncologico A. Businco, Cagliari, Italy
| | | | | | | | - Ilenia Blasi
- Haematology, Ospedale A. Perrino, Brindisi, Italy
| | | | | | | | | | - Francesco Di Raimondo
- Haematology, AOU Policlinico G. Rodolico-San Marco, Università degli Studi di Catania, Catania, Italy
| | - Giorgina Specchia
- Haematology, AOU Consorziale Policlinico, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Pellegrino Musto
- Haematology, AOU Consorziale Policlinico, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
3
|
Heudobler D, Luke F, Hahn J, Grube M, Schlosser P, Kremers S, Sudhoff T, Westermann J, Hutter-Kronke ML, Schlenk RF, Weber D, Paschka P, Zeman F, Dohner H, Herr W, Reichle A, Thomas S. Low-dose azacitidine, pioglitazone and all- trans retinoic acid is safe in patients aged ≥60 years with acute myeloid leukemia refractory to standard induction chemotherapy (AMLSG 26-16/AML-ViVA): results of the safety run-in phase. Haematologica 2024; 109:1274-1278. [PMID: 37881883 PMCID: PMC10985427 DOI: 10.3324/haematol.2023.283864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Daniel Heudobler
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology, Germany; Bavarian Center for Cancer Research, University Hospital Regensburg, Regensburg.
| | - Florian Luke
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology, Germany; Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg
| | - Joachim Hahn
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology
| | - Matthias Grube
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology
| | - Pavla Schlosser
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology
| | - Stephan Kremers
- Caritaskrankenhaus Lebach, Department of Hematology/Oncology
| | | | - Jorg Westermann
- Charite- University Medical Center Berlin- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Berlin
| | - Marie Luise Hutter-Kronke
- Charite- University Medical Center Berlin- Department of Hematology, Oncology and Tumor Immunology, Campus Virchow-Klinikum, Berlin, Germany; University Hospital Ulm, Department of Internal Medicine III
| | - Richard F Schlenk
- National Center of Tumor Diseases Trial Center, German Cancer Research Center and Heidelberg University Hospital, Heidelberg, Germany; Heidelberg University Hospital, Department of Internal Medicine V, Heidelberg
| | - Daniela Weber
- University Hospital Ulm, Department of Internal Medicine III
| | - Peter Paschka
- University Hospital Ulm, Department of Internal Medicine III
| | - Florian Zeman
- Center for Clinical Studies, University Hospital Regensburg, Regensburg
| | - Hartmut Dohner
- University Hospital Ulm, Department of Internal Medicine III
| | - Wolfgang Herr
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology
| | - Albrecht Reichle
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology
| | - Simone Thomas
- University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology, Germany; Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Regensburg
| |
Collapse
|
4
|
Harrer DC, Lüke F, Pukrop T, Ghibelli L, Reichle A, Heudobler D. Addressing Genetic Tumor Heterogeneity, Post-Therapy Metastatic Spread, Cancer Repopulation, and Development of Acquired Tumor Cell Resistance. Cancers (Basel) 2023; 16:180. [PMID: 38201607 PMCID: PMC10778239 DOI: 10.3390/cancers16010180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The concept of post-therapy metastatic spread, cancer repopulation and acquired tumor cell resistance (M-CRAC) rationalizes tumor progression because of tumor cell heterogeneity arising from post-therapy genetic damage and subsequent tissue repair mechanisms. Therapeutic strategies designed to specifically address M-CRAC involve tissue editing approaches, such as low-dose metronomic chemotherapy and the use of transcriptional modulators with or without targeted therapies. Notably, tumor tissue editing holds the potential to treat patients, who are refractory to or relapsing (r/r) after conventional chemotherapy, which is usually based on administering a maximum tolerable dose of a cytostatic drugs. Clinical trials enrolling patients with r/r malignancies, e.g., non-small cell lung cancer, Hodgkin's lymphoma, Langerhans cell histiocytosis and acute myelocytic leukemia, indicate that tissue editing approaches could yield tangible clinical benefit. In contrast to conventional chemotherapy or state-of-the-art precision medicine, tissue editing employs a multi-pronged approach targeting important drivers of M-CRAC across various tumor entities, thereby, simultaneously engaging tumor cell differentiation, immunomodulation, and inflammation control. In this review, we highlight the M-CRAC concept as a major factor in resistance to conventional cancer therapies and discusses tissue editing as a potential treatment.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (D.C.H.); (F.L.); (T.P.); (D.H.)
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Esmaeili S, Yousefi AM, Delshad M, Bashash D. Synergistic effects of PI3K inhibition and pioglitazone against acute promyelocytic leukemia cells. Mol Genet Genomic Med 2023; 11:e2106. [PMID: 36398521 PMCID: PMC10009912 DOI: 10.1002/mgg3.2106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although pioglitazone, a well-known anti-diabetic agent, has recently established itself as a pillar of cancer treatment, its therapeutic value could be attenuated by the aberrant activation of the PI3K/Akt pathway. AIM To evaluate whether the PI3K/Akt suppression in leukemic cells could potentiate the anti-leukemic effects of pioglitazone. METHODS To assess the anti-leukemic effects of PI3K/Akt inhibitors on anti-leukemic effects of pioglitazone, we used MTT and trypan blue assays. Flow cytometric analysis and qRT-PCR were also applied to evaluate cell cycle and apoptosis. RESULT The resulting data revealed that upon PPARγ stimulation in different leukemic cell lines using pioglitazone, the survival and the proliferative capacity of the cells were significantly halted. Then, we evaluated the impact of the PI3K/Akt axis on the effectiveness of the drug in the most sensitive leukemic cell line; NB4 cells. Our results showed that treatment of NB4 cells with the PI3K inhibitors increased the sensitivity of leukemic cells to pioglitazone to the degree that even lower concentrations of the agent succeeded to induce apoptotic as well as the anti-proliferative effects. Moreover, it seems that PI3K inhibition could potentiate the anti-leukemic effect of pioglitazone through induction of p21-mediated sub-G1 cell cycle arrest and altering the balance between the pro-and anti-apoptotic genes. CONCLUSION This study sheds light on the significance of the PI3K/Akt pathway in APL cell sensitivity to pioglitazone and proposed that the presence of the PI3K inhibitor in the therapeutic regimen containing pioglitazone could be promising in the treatment of this malignancy.
Collapse
Affiliation(s)
- Shadi Esmaeili
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Harrer DC, Jakob M, Vogelhuber M, Lüke F, Utpatel K, Corbacioglu S, Herr W, Reichle A, Heudobler D. Biomodulatory therapy induces durable remissions in multi-system Langerhans cell histiocytosis. Leuk Lymphoma 2022; 63:2858-2868. [PMID: 35819881 DOI: 10.1080/10428194.2022.2095627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Langerhans cell histiocytosis (LCH) is rare hematological neoplasia originating from the aberrant proliferation of CD207-positive dendritic cells. Refractory multi-system LCH is difficult to treat necessitating the continuous development of different salvage therapies. At our medical center, eleven patients (age 11 months to 77 years) with multi-system LCH were treated on a compassionate use basis with metronomic biomodulation therapy (MBT) involving the daily oral application of low-dose trofosfamide, etoricoxib, pioglitazone and low-dose dexamethasone. Overall, four patients including two heavily pretreated pediatric patients achieved ongoing complete remission. Moreover, partial disease remission was observed in three patients, and four patients attained stable disease. MBT demonstrated high activity against multi-system LCH even in patients, refractory to multiple systemic chemotherapies. Further confirmation of efficacy should be systematically evaluated in prospective trials.
Collapse
Affiliation(s)
- Dennis C Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Jakob
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Heudobler D, Ghibelli L, Reichle A. Editorial: Anakoinosis for promoting tumor tissue editing: Novel therapeutic opportunities for establishing clinically relevant tumor control by targeting tumor plasticity. Front Oncol 2022; 12:1005381. [PMID: 36176412 PMCID: PMC9513606 DOI: 10.3389/fonc.2022.1005381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Meier-Menches SM, Neuditschko B, Janker L, Gerner MC, Schmetterer KG, Reichle A, Gerner C. A Proteomic Platform Enables to Test for AML Normalization In Vitro. Front Chem 2022; 10:826346. [PMID: 35178376 PMCID: PMC8844467 DOI: 10.3389/fchem.2022.826346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Acute promyelocytic leukaemia (APL) can be cured by the co-administration of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA). These small molecules relieve the differentiation blockade of the transformed promyelocytes and trigger their maturation into functional neutrophils, which are physiologically primed for apoptosis. This normalization therapy represents a compelling alternative to cytotoxic anticancer chemotherapy, but lacks an in vitro model system for testing the efficiency of novel combination treatments consisting of inducers of differentiation and metallopharmaceuticals. Here, using proteome profiling we present an experimental framework that enables characterising the differentiation- and metal-specific effects of the combination treatment in a panel of acute myeloid leukaemia (AML) cell lines (HL-60 and U937), including APL (NB4). Differentiation had a substantial impact on the proteome on the order of 10% of the identified proteins and featured classical markers and transcription factors of myeloid differentiation. Additionally, ATO provoked specific cytoprotective effects in the AML cell lines HL-60 and U937. In HL-60, these effects included an integrated stress response (ISR) in conjunction with redox defence, while proteasomal responses and a metabolic rewiring were observed in U937 cells. In contrast, the APL cell line NB4 did not display such adaptions indicating a lack of plasticity to cope with the metal-induced stress, which may explain the clinical success of this combination treatment. Based on the induction of these cytoprotective effects, we proposed a novel metal-based compound to be used for the combination treatment instead of ATO. The organoruthenium drug candidate plecstatin-1 was previously shown to induce reactive oxygen species and an ISR. Indeed, the plecstatin-1 combination was found to affect similar pathways compared to the ATO combination in HL-60 cells and did not lead to cytoprotective response signatures in NB4. Moreover, the monocytic cell line U937 showed a low plasticity to cope with the plecstatin-1 combination, which suggests that this combination might achieve therapeutic benefit beyond APL. We propose that the cytoprotective plasticity of cancer cells might serve as a general proxy to discover novel combination treatments in vitro.
Collapse
Affiliation(s)
- Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Benjamin Neuditschko
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Marlene C. Gerner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Klaus G. Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia 2021; 35:1873-1889. [PMID: 33958699 PMCID: PMC8257497 DOI: 10.1038/s41375-021-01218-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Charles Rotondo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
11
|
Heudobler D, Schulz C, Fischer JR, Staib P, Wehler T, Südhoff T, Schichtl T, Wilke J, Hahn J, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Held S, Beckers K, Bouche G, Reichle A. A Randomized Phase II Trial Comparing the Efficacy and Safety of Pioglitazone, Clarithromycin and Metronomic Low-Dose Chemotherapy with Single-Agent Nivolumab Therapy in Patients with Advanced Non-small Cell Lung Cancer Treated in Second or Further Line (ModuLung). Front Pharmacol 2021; 12:599598. [PMID: 33796020 PMCID: PMC8007965 DOI: 10.3389/fphar.2021.599598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Most non-small cell lung cancers occur in elderly and frequently comorbid patients. Therefore, it is necessary to evaluate the efficacy of biomodulatory active therapy regimen, concertedly interfering with tumor-associated homeostatic pathways to achieve tumor control paralleled by modest toxicity profiles. Patients and Methods: The ModuLung trial is a national, multicentre, prospective, open-label, randomized phase II trial in patients with histologically confirmed stage IIIB/IV squamous (n = 11) and non-squamous non-small cell (n = 26) lung cancer who failed first-line platinum-based chemotherapy. Patients were randomly assigned on a 1:1 ratio to the biomodulatory or control group, treated with nivolumab. Patients randomized to the biomodulatory group received an all-oral therapy consisting of treosulfan 250 mg twice daily, pioglitazone 45 mg once daily, clarithromycin 250 mg twice daily, until disease progression or unacceptable toxicity. Results: The study had to be closed pre-maturely due to approval of immune checkpoint inhibitors (ICi) in first-line treatment. Thirty-seven patients, available for analysis, were treated in second to forth-line. Progression-free survival (PFS) was significantly inferior for biomodulation (N = 20) vs. nivolumab (N = 17) with a median PFS (95% confidence interval) of 1.4 (1.2-2.0) months vs. 1.6 (1.4-6.2), respectively; with a hazard ratio (95% confidence interval) of 1.908 [0.962; 3.788]; p = 0.0483. Objective response rate was 11.8% with nivolumab vs. 5% with biomodulation, median follow-up 8.25 months. The frequency of grade 3-5 treatment related adverse events was 29% with nivolumab and 10% with biomodulation. Overall survival (OS), the secondary endpoint, was comparable in both treatment arms; biomodulation with a median OS (95% confidence interval) of 9.4 (6.0-33.0) months vs. nivolumab 6.9 (4.6-24.0), respectively; hazard ratio (95% confidence interval) of 0.733 [0.334; 1.610]; p = 0.4368. Seventy-five percent of patients in the biomodulation arm received rescue therapy with checkpoint inhibitors. Conclusions: This trial shows that the biomodulatory therapy was inferior to nivolumab on PFS. However, the fact that OS was similar between groups gives rise to the hypothesis that the well-tolerable biomodulatory therapy may prime tumor tissues for efficacious checkpoint inhibitor therapy, even in very advanced treatment lines where poor response to ICi might be expected with increasing line of therapy.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Peter Staib
- Euregio Cancer Center Eschweiler, Eschweiler, Germany
| | - Thomas Wehler
- Department of Hematology, Oncology, Palliative Care, Pneumology, Evangelisches Krankenhaus Hamm, Hamm, Germany.,Lungenklinik Hemer, Hemer, Germany
| | - Thomas Südhoff
- Department of Hematology and Oncology, Klinikum Passau, Passau, Germany
| | - Thomas Schichtl
- Medizinisches Versorgungszentrum Weiden, Weiden in der Oberpfalz, Bavaria, Germany
| | | | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Bavarian Center for Cancer Research, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
D'Orazio M, Corsi F, Mencattini A, Di Giuseppe D, Colomba Comes M, Casti P, Filippi J, Di Natale C, Ghibelli L, Martinelli E. Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy. Front Oncol 2020; 10:580698. [PMID: 33194709 PMCID: PMC7606946 DOI: 10.3389/fonc.2020.580698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 11/13/2022] Open
Abstract
Cell motility varies according to intrinsic features and microenvironmental stimuli, being a signature of underlying biological phenomena. The heterogeneity in cell response, due to multilevel cell diversity especially relevant in cancer, poses a challenge in identifying the biological scenario from cell trajectories. We propose here a novel peer prediction strategy among cell trajectories, deciphering cell state (tumor vs. nontumor), tumor stage, and response to the anticancer drug etoposide, based on morphology and motility features, solving the strong heterogeneity of individual cell properties. The proposed approach first barcodes cell trajectories, then automatically selects the good ones for optimal model construction (good teacher and test sample selection), and finally extracts a collective response from the heterogeneous populations via cooperative learning approaches, discriminating with high accuracy prostate noncancer vs. cancer cells of high vs. low malignancy. Comparison with standard classification methods validates our approach, which therefore represents a promising tool for addressing clinically relevant issues in cancer diagnosis and therapy, e.g., detection of potentially metastatic cells and anticancer drug screening.
Collapse
Affiliation(s)
- Michele D'Orazio
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Davide Di Giuseppe
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Colomba Comes
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Casti
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Joanna Filippi
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
13
|
Reichle A, Heudobler D, Gerner C, Pantziarka P, Martinelli E, Holler E, Corsi F, Ghibelli L. Editorial: Tumor Systems Biology: How to Therapeutically Redirect Dysregulated Homeostasis in Tumor Systems (i.e., Anakoinosis). Front Oncol 2020; 10:1675. [PMID: 32984044 PMCID: PMC7492644 DOI: 10.3389/fonc.2020.01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
- Anticancer Fund, Brussels, Belgium
| | - Eugenio Martinelli
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Ernst Holler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Francesca Corsi
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
- Department of Chemical Sciences and Technologies, Universita' di Roma Tor Vergata, Rome, Italy
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Valli D, Gruszka AM, Alcalay M. Has Drug Repurposing Fulfilled its Promise in Acute Myeloid Leukaemia? J Clin Med 2020; 9:E1892. [PMID: 32560371 PMCID: PMC7356362 DOI: 10.3390/jcm9061892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Drug repurposing is a method of drug discovery that consists of finding a new therapeutic context for an old drug. Compound identification arises from screening of large libraries of active compounds, through interrogating databases of cell line gene expression response upon treatment or by merging several types of information concerning disease-drug relationships. Although, there is a general consensus on the potential and advantages of this drug discovery modality, at the practical level to-date no non-anti-cancer repurposed compounds have been introduced into standard acute myeloid leukaemia (AML) management, albeit that preclinical validation yielded several candidates. The review presents the state-of-the-art drug repurposing approach in AML and poses the question of what has to be done in order to take a full advantage of it, both at the stage of screening design and later when progressing from the preclinical to the clinical phases of drug development. We argue that improvements are needed to model and read-out systems as well as to screening technologies, but also to more funding and trust in drug repurposing strategies.
Collapse
Affiliation(s)
- Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Alicja M. Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy; (D.V.); (M.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy
| |
Collapse
|
15
|
Kattner AS, Holler E, Herr W, Reichle A, Wolff D, Heudobler D. Successful Treatment of Early Relapsed High-Risk AML After Allogeneic Hematopoietic Stem Cell Transplantation With Biomodulatory Therapy. Front Oncol 2020; 10:443. [PMID: 32391254 PMCID: PMC7190808 DOI: 10.3389/fonc.2020.00443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Early relapse of acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an often unsuccessful therapeutic challenge. Since treatment options are few and efficacy is low, new approaches such as de novo allo-HSCT, targeted therapies and biomodulatory drugs have been developed, albeit prognosis is very poor. In this manuscript we present an unusual case of a patient with high-risk AML with an unbalanced jumping translocation and FLT3-TKD (low) mutation who presented with early relapse (FLT3 negative) after allo-HSCT, refractory to one cycle of azacytidine and discontinuation of immunosuppression (IS). As salvage therapy, the patient received a biomodulatory therapy consisting of low-dose azacytidine 75 mg/day (given s.c. d1-7 of 28), pioglitazone 45 mg/day orally, and all-trans-retinoic acid (ATRA) 45 mg/m2/day orally achieving a complete remission after two cycles of therapy. Even after cessation of treatment after 5 cycles, the patient remained in complete remission with full chimerism in peripheral blood and bone marrow for another 7 months. In conclusion, we report about an unusual case of long-lasting complete remission of early relapsed high-risk AML after allo-HSCT treated with azacytidine, pioglitazone and ATRA after standard of care treatment with HMA and discontinuation of IS failed.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Internal Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Heudobler D, Lüke F, Vogelhuber M, Klobuch S, Pukrop T, Herr W, Gerner C, Pantziarka P, Ghibelli L, Reichle A. Anakoinosis: Correcting Aberrant Homeostasis of Cancer Tissue-Going Beyond Apoptosis Induction. Front Oncol 2019; 9:1408. [PMID: 31921665 PMCID: PMC6934003 DOI: 10.3389/fonc.2019.01408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
The current approach to systemic therapy for metastatic cancer is aimed predominantly at inducing apoptosis of cancer cells by blocking tumor-promoting signaling pathways or by eradicating cell compartments within the tumor. In contrast, a systems view of therapy primarily considers the communication protocols that exist at multiple levels within the tumor complex, and the role of key regulators of such systems. Such regulators may have far-reaching influence on tumor response to therapy and therefore patient survival. This implies that neoplasia may be considered as a cell non-autonomous disease. The multi-scale activity ranges from intra-tumor cell compartments, to the tumor, to the tumor-harboring organ to the organism. In contrast to molecularly targeted therapies, a systems approach that identifies the complex communications networks driving tumor growth offers the prospect of disrupting or "normalizing" such aberrant communicative behaviors and therefore attenuating tumor growth. Communicative reprogramming, a treatment strategy referred to as anakoinosis, requires novel therapeutic instruments, so-called master modifiers to deliver concerted tumor growth-attenuating action. The diversity of biological outcomes following pro-anakoinotic tumor therapy, such as differentiation, trans-differentiation, control of tumor-associated inflammation, etc. demonstrates that long-term tumor control may occur in multiple forms, inducing even continuous complete remission. Accordingly, pro-anakoinotic therapies dramatically extend the repertoire for achieving tumor control and may activate apoptosis pathways for controlling resistant metastatic tumor disease and hematologic neoplasia.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna, Austria
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
- Anticancer Fund, Brussels, Belgium
| | - Lina Ghibelli
- Department Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Lübbert M, Grishina O, Schmoor C, Schlenk RF, Jost E, Crysandt M, Heuser M, Thol F, Salih HR, Schittenhelm MM, Germing U, Kuendgen A, Götze KS, Lindemann HW, Müller-Tidow C, Heil G, Scholl S, Bug G, Schwaenen C, Giagounidis A, Neubauer A, Krauter J, Brugger W, De Wit M, Wäsch R, Becker H, May AM, Duyster J, Döhner K, Ganser A, Hackanson B, Döhner H. Valproate and Retinoic Acid in Combination With Decitabine in Elderly Nonfit Patients With Acute Myeloid Leukemia: Results of a Multicenter, Randomized, 2 × 2, Phase II Trial. J Clin Oncol 2019; 38:257-270. [PMID: 31794324 DOI: 10.1200/jco.19.01053] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE DNA-hypomethylating agents are studied in combination with other epigenetic drugs, such as histone deacetylase inhibitors or differentiation inducers (eg, retinoids), in myeloid neoplasias. A randomized, phase II trial with a 2 × 2 factorial design was conducted to investigate the effects of the histone deacetylase inhibitor valproate and all-trans retinoic acid (ATRA) in treatment-naive elderly patients with acute myeloid leukemia (AML). PATIENTS AND METHODS Two hundred patients (median age, 76 years; range, 61-92 years) ineligible for induction chemotherapy received decitabine (20 mg/m2 intravenously, days 1 to 5) alone (n = 47) or in combination with valproate (n = 57), ATRA (n = 46), or valproate + ATRA (n = 50). The primary endpoint was objective response, defined as complete and partial remission, tested at a one-sided significance level of α = .10. Key secondary endpoints were overall survival, event-free survival, and progression-free survival and safety. RESULTS The addition of ATRA resulted in a higher remission rate (21.9% with ATRA v 13.5% without ATRA; odds ratio, 1.80; 95% CI, 0.86 to 3.79; one-sided P = .06). For valproate, no effect was observed (17.8% with valproate v 17.2% without valproate; odds ratio, 1.06; 95% CI, 0.51 to 2.21; one-sided P = .44). Median overall survival was 8.2 months with ATRA v 5.1 months without ATRA (hazard ratio, 0.65; 95% CI, 0.48 to 0.89; two-sided P = .006). Improved survival was observed across risk groups, including patients with adverse cytogenetics, and was associated with longer response duration. With valproate, no survival difference was observed. Toxicities were predominantly hematologic, without relevant differences between the 4 arms. CONCLUSION The addition of ATRA to decitabine resulted in a higher remission rate and a clinically meaningful survival extension in these patients with difficult-to-treat disease, without added toxicity.
Collapse
Affiliation(s)
- Michael Lübbert
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Freiburg, Germany
| | - Olga Grishina
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Claudia Schmoor
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Richard F Schlenk
- University Hospital of Ulm, Ulm, Germany.,Heidelberg University Hospital, Heidelberg, Germany
| | - Edgar Jost
- University Hospital Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Martina Crysandt
- University Hospital Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | | | | | - Helmut R Salih
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Tübingen, Germany
| | | | - Ulrich Germing
- Faculty of Medicine, Heinrich-Heine University, Düsseldorf, Germany
| | - Andrea Kuendgen
- Faculty of Medicine, Heinrich-Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Düsseldorf, Germany
| | - Katharina S Götze
- Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Munich, Germany
| | | | - Carsten Müller-Tidow
- Heidelberg University Hospital, Heidelberg, Germany.,University Hospital of Münster, Münster, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Gesine Bug
- University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Frankfurt, Germany
| | - Carsten Schwaenen
- Hospital Esslingen, Esslingen, Germany.,Offenburg Hospital, Offenburg, Germany
| | | | | | - Jürgen Krauter
- Städtisches Klinikum Braunschweig, Braunschweig, Germany
| | - Wolfram Brugger
- Hospital Villingen-Schwenningen, Villingen-Schwenningen, Germany
| | | | - Ralph Wäsch
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Freiburg, Germany
| | - Annette M May
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Freiburg, Germany
| | | | | | - Björn Hackanson
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Universitätsklinikum Augsburg, Augsburg, Germany
| | | | | |
Collapse
|
18
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Klobuch S, Steinberg T, Bruni E, Mirbeth C, Heilmeier B, Ghibelli L, Herr W, Reichle A, Thomas S. Biomodulatory Treatment With Azacitidine, All- trans Retinoic Acid and Pioglitazone Induces Differentiation of Primary AML Blasts Into Neutrophil Like Cells Capable of ROS Production and Phagocytosis. Front Pharmacol 2018; 9:1380. [PMID: 30542286 PMCID: PMC6278634 DOI: 10.3389/fphar.2018.01380] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Effective and tolerable salvage therapies for elderly patients with chemorefractory acute myeloid leukemia (AML) are limited and usually do not change the poor clinical outcome. We recently described in several chemorefractory elderly AML patients that a novel biomodulatory treatment regimen consisting of low-dose azacitidine (AZA) in combination with PPARγ agonist pioglitazone (PGZ) and all-trans retinoic acid (ATRA) induced complete remission of leukemia and also triggered myeloid differentiation with rapid increase of peripheral blood neutrophils. Herein, we further investigated our observations and comprehensively analyzed cell differentiation in primary AML blasts after treatment with ATRA, AZA, and PGZ ex vivo. The drug combination was found to significantly inhibit cell growth as well as to induce cell differentiation in about half of primary AML blasts samples independent of leukemia subtype. Notably and in comparison to ATRA/AZA/PGZ triple-treatment, effects on cell growth and myeloid differentiation with ATRA monotherapy was much less efficient. Morphological signs of myeloid cell differentiation were further confirmed on a functional basis by demonstrating increased production of reactive oxygen species as well as enhanced phagocytic activity in AML blasts treated with ATRA/AZA/PGZ. In conclusion, we show that biomodulatory treatment with ATRA/AZA/PGZ can induce phenotypical and functional differentiation of primary AML blasts into neutrophil like cells, which aside from its antileukemic activity may lower neutropenia associated infection rates in elderly AML patients in vivo. Clinical impact of the ATRA/AZA/PGZ treatment regimen is currently further investigated in a randomized clinical trial in chemorefractory AML patients (NCT02942758).
Collapse
Affiliation(s)
- Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tim Steinberg
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Emanuele Bruni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carina Mirbeth
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Bernhard Heilmeier
- Department of Oncology and Hematology, Hospital Barmherzige Brueder, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany.,Regensburg Center for Interventional Immunology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Heudobler D, Klobuch S, Thomas S, Hahn J, Herr W, Reichle A. Cutaneous Leukemic Infiltrates Successfully Treated With Biomodulatory Therapy in a Rare Case of Therapy-Related High Risk MDS/AML. Front Pharmacol 2018; 9:1279. [PMID: 30483125 PMCID: PMC6243099 DOI: 10.3389/fphar.2018.01279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022] Open
Abstract
Cutaneous manifestations in hematologic malignancies, especially in leukemia, are not common and may be very variable. Here we report a very unusual case of a patient (female, 70 years old) who was admitted to the hospital in 2016 because of skin lesions on the face, the trunk of the body and the extremities. She had a history of breast cancer in the year 2004 (pT1b, pN0, cM0, L0, V0, R0) which had been resected and treated with adjuvant radiation and chemotherapy (cyclophosphamide, methotrexate, 5-fluorouracile) as well as psoriasis treated with methotrexate and cyclosporine. Because of mild cytopenia a bone marrow aspirate/biopsy was performed showing myelodysplastic syndrome (MDS) with multilineage dysplasia. Cytogenetic review revealed a complex aberrant karyotype denoting adverse outcome. Simultaneously, a skin biopsy could confirm leukemic skin infiltration. Consequently, a therapy with azacitidine was started. After the first cycle the patient developed severe pancytopenia with a percentage of 13% peripheral blasts (previously 0–2%) as well as fever without evidence for infection which was interpreted as progressive disease. Therefore, the therapeutic regimen was changed to a biomodulatory therapy consisting of low-dose azacitidine 75 mg/day (given sc d1-7 of 28), pioglitazone 45 mg/day per os, and all-trans-retinoic acid (ATRA) 45 mg/m2/day per os. After cycle 1 of this combined biomodulatory therapy the patient showed hematologic recovery; besides a mild anemia (hemoglobin 11.1 g/dl) she developed a normal blood count. Moreover, the cutaneous leukemic infiltrates which had been unaffected by the azacitidine ameliorated tremendously after 2 cycles resulting in a complete remission of the skin lesions after cycle 6. In conclusion, we report a very unusual case with cutaneous infiltrates being the first clinical manifestation of hematologic disease, preceding the development of acute myeloid leukemia. While azacitidine alone was ineffective, a combined biomodulatory approach resulted in a complete remission of the cutaneous manifestation.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Joachim Hahn
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Bruni E, Reichle A, Scimeca M, Bonanno E, Ghibelli L. Lowering Etoposide Doses Shifts Cell Demise From Caspase-Dependent to Differentiation and Caspase-3-Independent Apoptosis via DNA Damage Response, Inducing AML Culture Extinction. Front Pharmacol 2018; 9:1307. [PMID: 30483138 PMCID: PMC6243040 DOI: 10.3389/fphar.2018.01307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic chemotherapy, still the most widely adopted anticancer treatment, aims at eliminating cancer cells inducing apoptosis with DNA damaging agents, exploiting the differential replication rate of cancer vs. normal cells; efficiency is evaluated in terms of extent of induced apoptosis, which depends on the individual cell sensitivity to a given drug, and on the dose. In this in vitro study, we report that the concentration of etoposide, a topoisomerase II poison widely used in clinics, determines both the kinetics of cell death, and the type of apoptosis induced. We observed that on a set of myeloid leukemia cell lines, etoposide at high (50 uM) dose promoted a rapid caspase-3-mediated apoptosis, whereas at low (0.5 uM) dose, it induced morphological and functional granulocytic differentiation and caspase-2-dependent, but caspase-3-independent, cell death, displaying features consistent with apoptosis. Both differentiation and caspase-2- (but not 3)-mediated apoptosis were contrasted by caffeine, a well-known inhibitor of the cellular DNA damage response (DDR), which maintained cell viability and cycling, indicating that the effects of low etoposide dose are not the immediate consequence of damage, but the result of a signaling pathway. DDR may be thus the mediator responsible for translating a mere dosage-effect into different signal transduction pathways, highlighting a strategic action in regulating timing and mode of cell death according to the severity of induced damage. The evidence of different molecular pathways induced by high vs. low drug doses may possibly contribute to explain the different effects of cytotoxic vs. metronomic therapy, the latter achieving durable clinical responses by treating cancer patients with stable, low doses of otherwise canonical cytotoxic drugs; intriguingly caspase-3, a major promoter of wounded tissue regeneration, is also a key factor of post-therapy cancer repopulation. All this suggests that cancer control in response to cytotoxic drugs arises from complex reprogramming mechanisms in tumor tissue, recently described as anakoinosis.
Collapse
Affiliation(s)
- Emanuele Bruni
- Department of Biology, University of Rome "Tor Vergata,", Rome, Italy
| | - Albrecht Reichle
- Department of Internal Medicine III, Haematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Diagnostica Medica and Villa dei Platani, Avellino, Italy
| | - Lina Ghibelli
- Department of Biology, University of Rome "Tor Vergata,", Rome, Italy
| |
Collapse
|
22
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Pukrop T, Herr W, Ghibelli L, Gerner C, Reichle A. Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. Int J Mol Sci 2018; 19:ijms19113540. [PMID: 30424016 PMCID: PMC6274845 DOI: 10.3390/ijms19113540] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
In most clinical trials, thiazolidinediones do not show any relevant anti-cancer activity when used as mono-therapy. Clinical inefficacy contrasts ambiguous pre-clinical data either favoring anti-tumor activity or tumor promotion. However, if thiazolidinediones are combined with additional regulatory active drugs, so-called ‘master modulators’ of tumors, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs, etc., the results indicate clinically relevant communicative reprogramming of tumor tissues, i.e., anakoinosis, meaning ‘communication’ in ancient Greek. The concerted activity of master modulators may multifaceted diversify palliative care or even induce continuous complete remission in refractory metastatic tumor disease and hematologic neoplasia by establishing novel communicative behavior of tumor tissue, the hosting organ, and organism. Re-modulation of gene expression, for example, the up-regulation of tumor suppressor genes, may recover differentiation, apoptosis competence, and leads to cancer control—in contrast to an immediate, ‘poisoning’ with maximal tolerable doses of targeted/cytotoxic therapies. The key for uncovering the therapeutic potential of Peroxisome proliferator-activated receptor γ (PPARγ) agonists is selecting the appropriate combination of master modulators for inducing anakoinosis: Now, anakoinosis is trend setting by establishing a novel therapeutic pillar while overcoming classic obstacles of targeted therapies, such as therapy resistance and (molecular-)genetic tumor heterogeneity.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Michael Rechenmacher
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Florian Lüke
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Martin Vogelhuber
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, 00173 Rome, Italy.
| | - Christopher Gerner
- Institut for Analytical Chemistry, Faculty Chemistry, University Vienna, Vienna A-1090, Austria.
| | - Albrecht Reichle
- Department of Internal Medicine III, University Hospital Regensburg, Hematology and Oncology, 93042 Regensburg, Germany.
| |
Collapse
|
23
|
Nicolas A, Carré M, Pasquier E. Metronomics: Intrinsic Anakoinosis Modulator? Front Pharmacol 2018; 9:689. [PMID: 29988614 PMCID: PMC6026805 DOI: 10.3389/fphar.2018.00689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/07/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- André Nicolas
- Service d'Hématologie et Oncologie Pédiatrique, Hôpital pour Enfants de La Timone, AP-HM, Marseille, France
| | - Manon Carré
- Aix-Marseille Univ., Centre National de la Recherche Scientifique, INSERM, Institut Paoli Calmettes, CRCM, Marseille, France
| | - Eddy Pasquier
- Aix-Marseille Univ., Centre National de la Recherche Scientifique, INSERM, Institut Paoli Calmettes, CRCM, Marseille, France
| |
Collapse
|
24
|
Ma HS, Robinson TM, Small D. Potential role for all- trans retinoic acid in nonpromyelocytic acute myeloid leukemia. Int J Hematol Oncol 2016; 5:133-142. [PMID: 30302214 DOI: 10.2217/ijh-2016-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
All-trans retinoic acid (ATRA) has been very successful in the subtype of acute myelogenous leukemia known as acute promyelocytic leukemia due to targeted reactivation of retinoic acid signaling. There has been great interest in applying this form of differentiation therapy to other cancers, and numerous clinical trials have been initiated. However, ATRA as monotherapy has thus far shown little benefit in nonacute promyelocytic leukemia acute myelogenous leukemia. Here, we review the literature on the use of ATRA in combination with chemotherapy, epigenetic modifying agents and targeted therapy, highlighting specific patient populations where the addition of ATRA to existing therapies may provide benefit. Furthermore, we discuss the impact of recent whole genome sequencing efforts in leading the design of rational combinatorial approaches.
Collapse
Affiliation(s)
- Hayley S Ma
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Tara M Robinson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Donald Small
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
25
|
Todorović TR, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić S, Jovanović K, Radulović S, Anđelković K, Cassar A, Filipović NR, Schembri-Wismayer P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. MEDCHEMCOMM 2016; 8:103-111. [PMID: 30108695 DOI: 10.1039/c6md00501b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Cobalt complexes with semi- and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(ii) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
Collapse
Affiliation(s)
- Tamara R Todorović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Jelena Vukašinović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Gustavo Portalone
- Department of Chemistry , Sapienza University of Rome , P.le Aldo Moro 5 , 00185 Rome , Italy
| | - Sherif Suleiman
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Snezana Bjelogrlić
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Anđelković
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Analisse Cassar
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nenad R Filipović
- Faculty of Agriculture , University of Belgrade , Nemanjina 6 , 11081 Belgrade , Serbia .
| | | |
Collapse
|
26
|
Norsworthy KJ, Cho E, Arora J, Kowalski J, Tsai HL, Warlick E, Showel M, Pratz KW, Sutherland LA, Gore SD, Ferguson A, Sakoian S, Greer J, Espinoza-Delgado I, Jones RJ, Matsui WH, Smith BD. Differentiation therapy in poor risk myeloid malignancies: Results of companion phase II studies. Leuk Res 2016; 49:90-7. [PMID: 27619199 DOI: 10.1016/j.leukres.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022]
Abstract
Pre-clinical data in non-M3 AML supports the use of differentiation therapy, but clinical activity has been limited. Myeloid growth factors can enhance anti-leukemic activity of differentiating agents in vitro. We conducted companion phase II trials investigating sargramostim (GM-CSF) 125μg/m(2)/day plus 1) bexarotene (BEX) 300mg/m(2)/day or 2) entinostat (ENT) 4-8mg/m(2)/week in patients with MDS or relapsed/refractory AML. Primary endpoints were response after at least two treatment cycles and toxicity. 26 patients enrolled on the BEX trial had a median of 2 prior treatments and 24 enrolled on the ENT trial had a median of 1. Of 13 response-evaluable patients treated with BEX, the best response noted was hematologic improvement in neutrophils (HI-N) seen in 4 (31%) patients; none achieved complete (CR) or partial remission (PR). Of 10 treated with ENT, there was 1 (10%) partial remission (PR) and 2 (20%) with HI-N. The secondary endpoint responses of HI-N with each combination were accompanied by a numerical increase in ANC (BEX: 524 to 931 cells/mm(3), p=0.096; ENT: 578 to 1 137 cells/mm(3), p=0.15) without increasing marrow blasts. Shared grade 3-4 non-hematologic toxicities included febrile neutropenia, bone pain, fatigue, and dyspnea. GM-CSF plus either BEX or ENT are well tolerated in resistant and refractory MDS and AML and showed modest clinical and biologic activity, most commonly HI-N.
Collapse
Affiliation(s)
- Kelly J Norsworthy
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Eunpi Cho
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jyoti Arora
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Jeanne Kowalski
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Hua-Ling Tsai
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Erica Warlick
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Margaret Showel
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Keith W Pratz
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Lesley A Sutherland
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Steven D Gore
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Anna Ferguson
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Sarah Sakoian
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jackie Greer
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Igor Espinoza-Delgado
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, MD, United States
| | - Richard J Jones
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - William H Matsui
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - B Douglas Smith
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
27
|
Stoica S, Magoulas GE, Antoniou AI, Suleiman S, Cassar A, Gatt L, Papaioannou D, Athanassopoulos CM, Schembri-Wismayer P. Synthesis of minoxidil conjugates and their evaluation as HL-60 differentiation agents. Bioorg Med Chem Lett 2016; 26:1145-50. [PMID: 26832215 DOI: 10.1016/j.bmcl.2016.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/28/2023]
Abstract
Activation of minoxidil (MNX) with N,N'-carbonyldiimidazole and coupling with natural polyamines (PAs) and commercially available aliphatic or aromatic amines provided a series of new conjugates which were evaluated for their ability to induce differentiation to HL-60 acute myeloid leukemia cancer cells, using a modified NBTZ reduction test. Although neither MNX nor 4,4'-methylenedianiline (MDA) or 2,7-diaminofluorene (DAF), alone or in combination, had any effect, the MNX-spermine (SPM) conjugate (11) and the conjugates 7 and 8 of MNX with MDA and DAF exhibited a differentiation-inducing effect at a concentration of 10 μM without being toxic on proliferating human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Sonia Stoica
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - George E Magoulas
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Antonia I Antoniou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Sherif Suleiman
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Analisse Cassar
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Lucienne Gatt
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | | | | |
Collapse
|
28
|
Anakoinosis: Communicative Reprogramming of Tumor Systems - for Rescuing from Chemorefractory Neoplasia. CANCER MICROENVIRONMENT 2015; 8:75-92. [PMID: 26259724 PMCID: PMC4542828 DOI: 10.1007/s12307-015-0170-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/30/2015] [Indexed: 12/24/2022]
Abstract
Disruptive technologies, such as communicative reprogramming (anakoinosis) with cellular therapies in situ for treating refractory metastatic cancer allow patient care to accelerate along a totally new trajectory and highlight what may well become the next sea change in the care of patients with many types of advanced neoplasia. Cellular therapy in situ consisted of repurposed drugs, pioglitazone plus all-trans retinoic acid or dexamethasone or interferon-alpha (dual transcriptional modulation) combined with metronomic low-dose chemotherapy or low-dose 5-azacytidine, plus/minus classic targeted therapy. The novel therapeutic tools for specifically designing communication processes within tumor diseases focus on redirecting (1) rationalizations of cancer hallmarks (constitution of single cancer hallmarks), (2) modular events, (3) the 'metabolism' of evolutionary processes (the sum of therapeutically and intrinsically inducible evolutionary processes) and (4) the holistic communicative context, which determines validity and denotation of tumor promoting communication lines. Published data on cellular therapies in situ (6 histologic tumor types, 144 patients, age 0.9-83 years) in castration-resistant prostate cancer, pretreated renal clear cell carcinoma, chemorefractory acute myelocytic leukemia, multiple myeloma > second-line, chemorefractory Hodgkin lymphoma or multivisceral Langerhans cell histiocytosis, outline the possibility for treating refractory metastatic cancer with the hope that this type of reprogrammed communication will be scalable with minimal toxicity. Accessibility to anakoinosis is a tumor inherent feature, and cellular therapy in situ addresses extrinsic and intrinsic drug resistance, by redirecting convergent organized communication tools, while been supported by quite different pattern of (molecular-)genetic aberrations.
Collapse
|
29
|
Loiseau C, Ali A, Itzykson R. New therapeutic approaches in myelodysplastic syndromes: Hypomethylating agents and lenalidomide. Exp Hematol 2015; 43:661-72. [PMID: 26123365 DOI: 10.1016/j.exphem.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/17/2023]
Abstract
Recent advances in the treatment of myelodysplastic syndromes have come from the use of the hypomethylating agents decitabine and azacitidine as well as the immunomodulatory drug lenalidomide. Their clinical benefit has been demonstrated by randomized phase III clinical trials, mostly in high-risk and del(5q) myelodysplastic syndromes, respectively. Neither drug, however, appears to eradicate myelodysplastic stem cells, and thus they currently do not represent curative options. Here, we review data from both clinical and translational research on those drugs to identify their molecular and cellular mechanisms of action and to delineate paths for improved treatment allocation and further therapeutic advances in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Clémence Loiseau
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France
| | - Raphael Itzykson
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France; Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France.
| |
Collapse
|