1
|
Menon SR, Sahu S, Mitra A, Chakraborty A, Malhotra G, Kamaldeep, Tawate M, Lad S, Rakshit S, Upadhye T, Ray MK, Banerjee S. On the automated radiosynthesis of pharmaceutical grade [ 68Ga]Ga-Pentixafor, its pre-clinical evaluation, clinical application and radiation dosimetry aspects. Sci Rep 2025; 15:6476. [PMID: 39987209 PMCID: PMC11846852 DOI: 10.1038/s41598-024-84096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/19/2024] [Indexed: 02/24/2025] Open
Abstract
The current study outlines a consistent and reproducible protocol for the routine clinical dose preparation of [68Ga]Ga-Pentixafor using the Eckert and Ziegler 'Modular-Lab Standard' non-cassette based automated module, that can be effectively used in the hospital radiopharmacy unit of a high volume nuclear medicine centre. The pre-clinical studies (including in-vitro cell line studies, in-vivo PET/CT imaging and pre-clinical dosimetry) were conducted to show the promising potential of the product for clinical use in targeting CXCR4 tumor overexpression. PET/CT image of SCID mouse bearing lymphoma xenograft tumor, at 2 h post-injection, clearly delineated the tumor. The pre-clinical dosimetry results show the suitability of the product for clinical use in patients. [68Ga]Ga-Pentixafor when administered to patients with primary aldosteronism exhibited distinct uptake in the adrenal nodules. The clinical PET/CT scan of the patients demonstrated the potential use of CXCR4 targeted imaging as a promising surgical decision-making tool for patients with primary aldosteronism.
Collapse
Affiliation(s)
- Sreeja Raj Menon
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Arpit Mitra
- Radiopharmaceutical Laboratory, Board of Radiation and Isotope Technology, Navi Mumbai, Maharashtra, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gaurav Malhotra
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Kamaldeep
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Megha Tawate
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sangita Lad
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Trupti Upadhye
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
| | - Mukti Kanta Ray
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Maharashtra, Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
- Radiological Research Unit, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
| |
Collapse
|
2
|
Chavoshi M, Mirshahvalad SA, Kohan A, Ortega C, Metser U, Farag A, Kridel R, Hodgson D, Bhella S, Kukreti V, Veit-Haibach P. CXCR4-Targeted PET Imaging in Hematologic Malignancies: A Systematic Review and Meta-analysis. Clin Nucl Med 2025; 50:e7-e16. [PMID: 39259697 DOI: 10.1097/rlu.0000000000005426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE The aims of this study were to perform a comprehensive review and meta-analyses and to report pooled diagnostic results on CXCR4-targeted PET, particularly considering detection, visualization, and prognostication. PATIENTS AND METHODS This study followed PRISMA-DTA. A systematic search was conducted on major medical literature databases up to March 1, 2024. The search strategy was designed to include CXCR4 PET studies in hematologic malignancies. A random-effects model combined sensitivity values derived from 2-by-2 contingency tables. Pooled means for SUV max were computed. Analyses were performed by R software. RESULTS The initial search resulted in a total of 1428 studies. Ultimately, 18 were eligible for systematic review and meta-analytic calculations. Twelve studies (320 patients) included B-cell lymphoma. The pooled detection rate of CXCR4 PET was 99.4% (95% confidence interval [CI]: 88.3%-100%). Marginal zone lymphoma was investigated in 5 studies (209 patients), with a pooled sensitivity of 97.6% (95% CI: 79.7%-99.8%). In studies on central nervous system lymphoma, CXCR4 PET demonstrated 100% accuracy at both patient and lesion levels. Also, it demonstrated a significantly higher tumor-to-background ratio than 18 F-FDG PET. For multiple myeloma, 5 studies (116 patients) showed a patient-level pooled sensitivity of 77.8% (95% CI: 64.4%-87.2%), whereas 18 F-FDG PET had 65.0% (95% CI: 55.2%-73.7%). The pooled SUV max for CXCR4 PET was 13.6 (95% CI: 9.3-17.8) versus 9.0 (95% CI: 6.3-11.7) for 18 F-FDG PET. Additionally, CXCR4 PET-derived parameters were significant predictors of survival in multiple myeloma. CONCLUSIONS CXCR4 PET can be a helpful imaging tool for evaluating hematologic malignancies, particularly in B-cell lymphoma and multiple myeloma patients. In specific clinical scenarios, it appears to be superior compared with the current standard-of-care imaging.
Collapse
Affiliation(s)
- Mohammadreza Chavoshi
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andres Kohan
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Claudia Ortega
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ur Metser
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adam Farag
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert Kridel
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Hodgson
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sita Bhella
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vishal Kukreti
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital & Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I. CXCR4 as a therapeutic target in acute myeloid leukemia. Leukemia 2024; 38:2303-2317. [PMID: 39261603 DOI: 10.1038/s41375-024-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Extensive research on the CXCL12-CXCR4 axis in acute myeloid leukemia (AML) has resulted in the incorporation of novel anti-leukemia drugs targeting this axis into therapeutic strategies. However, despite this progress, a comprehensive and up-to-date review addressing the role of the CXCL12-CXCR4 axis in AML's oncogenic processes is lacking. In this review, we examine its molecular aspects influencing cancer progression, such as its impact on autonomous proliferation, apoptotic regulation, chemoresistance mechanisms, and interactions with non-leukemic cells such as MSCs and Treg cells. Additionally, we explore clinical implications, including prognosis, correlation with WBC count, blast count in the bone marrow and peripheral blood, as well as its association with FLT3-ITD, NPM1 mutations, and FAB classification. Finally, this paper extensively discusses drugs that specifically target the CXCL12-CXCR4 axis, including plerixafor/AMD3100, ulocuplumab, peptide E5, and motixafortide, shedding light on their potential therapeutic value in the treatment of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Nucleophosmin
- Molecular Targeted Therapy
- Chemokine CXCL12/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Drug Resistance, Neoplasm
- Mutation
- Animals
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046, Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
4
|
Wu P, Xu L, Wang Q, Ma X, Wang X, Wang H, He S, Ru H, Zhao Y, Xiao Y, Zhang J, Wang X, An S, Hacker M, Li X, Zhang X, Wang Y, Yang M, Wu Z, Li S. Left Ventricular Remodelling Associated with the Transient Elevated [ 68Ga]Ga-Pentixafor Activity in the Remote Myocardium Following Acute Myocardial Infarction. Mol Imaging Biol 2024; 26:693-703. [PMID: 38641708 DOI: 10.1007/s11307-024-01912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Previous studies have initially reported accompanying elevated 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) inflammatory activity in the remote area and its prognostic value after acute myocardial infarction (AMI). Non-invasive characterization of the accompanying inflammation in the remote myocardium may be of potency in guiding future targeted theranostics. [68Ga]Ga-Pentixafor targeting chemokine receptor 4 (CXCR4) on the surface of inflammatory cells is currently one of the promising inflammatory imaging agents. In this study, we sought to focus on the longitudinal evolution of [68Ga]Ga-Pentixafor activities in the remote myocardium following AMI and its association with cardiac function. METHODS Twelve AMI rats and six Sham rats serially underwent [68Ga]Ga-Pentixafor imaging at pre-operation, and 5, 7, 14 days post-operation. Maximum and mean standard uptake value (SUV) and target-to-background ratio (TBR) were assessed to indicate the uptake intensity. Gated [18F]F-FDG imaging and immunofluorescent staining were performed to obtain cardiac function and responses of pro-inflammatory and reparative macrophages, respectively. RESULTS The uptake of [68Ga]Ga-Pentixafor in the infarcted myocardium peaked at day 5 (all P = 0.003), retained at day 7 (all P = 0.011), and recovered at day 14 after AMI (P > 0.05), paralleling with the rise-fall pro-inflammatory M1 macrophages (P < 0.05). Correlated with the peak activity in the infarct territory, [68Ga]Ga-Pentixafor uptake in the remote myocardium on day 5 early after AMI significantly increased (AMI vs. Sham: SUVmean, SUVmax, and TBRmean: all P < 0.05), and strongly correlated with contemporaneous EDV and/or ESV (SUVmean and TBRmean: both P < 0.05). The transitory remote activity recovered as of day 7 post-AMI (AMI vs. Sham: P > 0.05). CONCLUSIONS Corresponding with the peaked [68Ga]Ga-Pentixafor activity in the infarcted myocardium, the activity in the remote region elevated accordingly and led to contemporaneous left ventricular remodelling early after AMI. Further studies are warranted to clarify its clinical application potential.
Collapse
Affiliation(s)
- Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Li Xu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofang Ma
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Xinzhu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sheng He
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Huibin Ru
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Yuting Zhao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Yuxin Xiao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Jingying Zhang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
| | - Xinchao Wang
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Shaohui An
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xiaoli Zhang
- Laboratory for Molecular Imaging, Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Minfu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Pan Q, Cao X, Li J, Li F, Luo Y. Different extramedullary disease shown in chemokine receptor 4 targeted PET/CT with [ 68 Ga]Ga-pentixafor in patients with Waldenström macroglobulinemia and smoldering disease. Nucl Med Commun 2024; 45:727-735. [PMID: 38745523 DOI: 10.1097/mnm.0000000000001862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION It is important to distinguish Waldenström macroglobulinemia from smoldering Waldenström macroglobulinemia (sWM), because only patients with Waldenström macroglobulinemia require treatment, however the distinction can be clinically complex. The aim of this study is to investigate whether [ 68 Ga]Ga-pentixafor PET/CT shows different characteristics in sWM and Waldenström macroglobulinemia patients and therefore can help to differentiate Waldenström macroglobulinemia and sWM. RESULTS Thirty-seven patients with newly diagnosed Waldenström macroglobulinemia and 11 sWM patients were analyzed [35 men and 13 women; 64.3 ± 10.7 (range, 29-87) years old]. The SUV max of bone marrow disease, lymph nodes, and other extramedullary diseases on [ 68 Ga]Ga-pentixafor were significantly higher than those on 2-[ 18 F]FDG PET/CT ( P < 0.05). On [ 68 Ga]Ga-pentixafor PET/CT, patients with Waldenström macroglobulinemia had more lymph node regions involved, significantly higher incidence of involvement in more than three lymph node regions, larger nodal disease, and higher incidence of other extramedullary disease when compared with sWM patients ( P < 0.05). Waldenström macroglobulinemia patients showed significantly higher total lesions uptake, total lesion volume, and SUV max of extramedullary disease than sWM patients did ( P < 0.05). None of the visual or semiquantitative indexes in 2-[ 18 F]FDG PET/CT showed significant difference between Waldenström macroglobulinemia and sWM patients. CONCLUSION [ 68 Ga]Ga-pentixafor PET/CT had better diagnostic performance than 2-[ 18 F]FDG PET/CT in Waldenström macroglobulinemia. Patients with Waldenström macroglobulinemia presented with more extensive extramedullary disease shown in [ 68 Ga]Ga-pentixafor PET/CT than sWM patients did.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital,
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and
| | - Xinxin Cao
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Jian Li
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital,
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital,
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and
| |
Collapse
|
6
|
Al-Ibraheem A, Allouzi S, Abdlkadir AS, Mikhail-Lette M, Al-Rabi K, Ma'koseh M, Knoll P, Abdelrhman Z, Shahin O, Juweid ME, Paez D, Lopci E. PET/CT in leukemia: utility and future directions. Nucl Med Commun 2024; 45:550-563. [PMID: 38646840 DOI: 10.1097/mnm.0000000000001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
2-Deoxy-2-[ 18 F]fluoro- d -glucose PET/computed tomography ([ 18 F]FDG PET/CT) has proven to be a sensitive method for the detection and evaluation of hematologic malignancies, especially lymphoma. The increasing incidence and mortality rates of leukemia have raised significant concerns. Through the utilization of whole-body imaging, [ 18 F]FDG PET/CT provides a thorough assessment of the entire bone marrow, complementing the limited insights provided by biopsy samples. In this regard, [ 18 F]FDG PET/CT has the ability to assess diverse types of leukemia The utilization of [ 18 F]FDG PET/CT has been found to be effective in evaluating leukemia spread beyond the bone marrow, tracking disease relapse, identifying Richter's transformation, and assessing the inflammatory activity associated with acute graft versus host disease. However, its role in various clinical scenarios in leukemia remains unacknowledged. Despite their less common use, some novel PET/CT radiotracers are being researched for potential use in specific scenarios in leukemia patients. Therefore, the objectives of this review are to provide a thorough assessment of the current applications of [ 18 F]FDG PET/CT in the staging and monitoring of leukemia patients, as well as the potential for an expanding role of PET/CT in leukemia patients.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC),
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, Jordan,
| | - Sudqi Allouzi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC),
| | | | - Miriam Mikhail-Lette
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Kamal Al-Rabi
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Mohammad Ma'koseh
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Zaid Abdelrhman
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Omar Shahin
- Department of Medical Oncology, King Hussein Cancer Center (KHCC), Amman, Jordan,
| | - Malik E Juweid
- Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan and
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria,
| | - Egesta Lopci
- Department of Nuclear Medicine, IRCCS - Humanitas Clinical and Research Hospital, Rozzano (MI), Italy
| |
Collapse
|
7
|
Shu Q, He X, Chen Y, Cai L. FDG-Avid But Pentixafor-Negative in EBV-Associated T-Cell Lymphoproliferative Disorders. Clin Nucl Med 2023; Publish Ahead of Print:00003072-990000000-00606. [PMID: 37335307 DOI: 10.1097/rlu.0000000000004747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
ABSTRACT An 18-year-old woman with intermittent fever, pancytopenia, abnormal liver function, and enlarged lymph nodes and hepatosplenomegaly was clinically suspected as hemophagocytic lymphohistiocytosis. 18F-FDG PET/CT showed increased metabolism in multiple lymph nodes, which were highly suggestive of lymphoma. No increased CXCR4 expression in lymph nodes was demonstrated on 68Ga-pentixafor PET/CT. Subsequent right neck lymph node biopsy pathology revealed EBV-associated lymphoproliferative disorders. Our case shows that 68Ga-pentixafor PET/CT may have potential value in differentiating EBV-associated lymphoproliferative disorders from lymphomas.
Collapse
|
8
|
Yu J, Zhou X, Shen L. CXCR4-Targeted Radiopharmaceuticals for the Imaging and Therapy of Malignant Tumors. Molecules 2023; 28:4707. [PMID: 37375261 DOI: 10.3390/molecules28124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is a 7-transmembrane helix G-protein-coupled receptor that is encoded by the CXCR4 gene. Involved in various physiological processes, CXCR4 could form an interaction with its endogenous partner, chemokine ligand 12 (CXCL12), which is also named SDF-1. In the past several decades, the CXCR4/CXCL12 couple has attracted a large amount of research interest due to its critical functions in the occurrence and development of refractory diseases, such as HIV infection, inflammatory diseases, and metastatic cancer, including breast cancer, gastric cancer, and non-small cell lung cancer. Furthermore, overexpression of CXCR4 in tumor tissues was shown to have a high correlation with tumor aggressiveness and elevated risks of metastasis and recurrence. The pivotal roles of CXCR4 have encouraged an effort around the world to investigate CXCR4-targeted imaging and therapeutics. In this review, we would like to summarize the implementation of CXCR4-targeted radiopharmaceuticals in the field of various kinds of carcinomas. The nomenclature, structure, properties, and functions of chemokines and chemokine receptors are briefly introduced. Radiopharmaceuticals that could target CXCR4 will be described in detail according to their structure, such as pentapeptide-based structures, heptapeptide-based structures, nonapeptide-based structures, etc. To make this review a comprehensive and informative article, we would also like to provide the predictive prospects for the CXCR4-targeted species in future clinical development.
Collapse
Affiliation(s)
- Jingjing Yu
- HTA Co., Ltd., Beijing 102413, China
- Department of Nuclear Technology Application, China Institute of Atomic Energy, Beijing 102413, China
| | - Xu Zhou
- HTA Co., Ltd., Beijing 102413, China
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
9
|
Buck AK, Serfling SE, Kraus S, Samnick S, Dreher N, Higuchi T, Rasche L, Einsele H, Werner RA. Theranostics in Hematooncology. J Nucl Med 2023:jnumed.122.265199. [PMID: 37290799 DOI: 10.2967/jnumed.122.265199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the early 2000s, major clinical trials provided evidence of a favorable outcome from antibody-mediated radioimmunotherapy for hematologic neoplasms, which then led to Food and Drug Administration approval. For instance, the theranostic armamentarium for the referring hematooncologist now includes 90Y-ibritumomab tiuxetan for refractory low-grade follicular lymphoma or transformed B-cell non-Hodgkin lymphoma, as well as 131I-tositumomab for rituximab-refractory follicular lymphoma. Moreover, the first interim results of the SIERRA phase III trial reported beneficial effects from the use of 131I-anti-CD45 antibodies (Iomab-B) in refractory or relapsed acute myeloid leukemia. During the last decade, the concept of theranostics in hematooncology has been further expanded by C-X-C motif chemokine receptor 4-directed molecular imaging. Beyond improved detection rates of putative sites of disease, C-X-C motif chemokine receptor 4-directed PET/CT also selects candidates for radioligand therapy using β-emitting radioisotopes targeting the identical chemokine receptor on the lymphoma cell surface. Such image-piloted therapeutic strategies provided robust antilymphoma efficacy, along with desired eradication of the bone marrow niche, such as in patients with T- or B-cell lymphoma. As an integral part of the treatment plan, such radioligand therapy-mediated myeloablation also allows one to line up patients for stem cell transplantation, which leads to successful engraftment during the further treatment course. In this continuing education article, we provide an overview of the current advent of theranostics in hematooncology and highlight emerging clinical applications.
Collapse
Affiliation(s)
- Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany;
| | | | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Niklas Dreher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany; and
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Renard I, Domarkas J, Poty S, Burke BP, Roberts DP, Goze C, Denat F, Cawthorne CJ, Archibald SJ. In vivo validation of 68Ga-labeled AMD3100 conjugates for PET imaging of CXCR4. Nucl Med Biol 2023; 120-121:108335. [PMID: 37068392 DOI: 10.1016/j.nucmedbio.2023.108335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/19/2023]
Abstract
INTRODUCTION The chemokine receptor CXCR4 has been shown to be over-expressed in multiple types of cancer and is usually associated with aggressive phenotypes and poor prognosis. Successfully targeting and imaging the expression level of this receptor in tumours could inform treatment selection and facilitate patient stratification. METHODS Known conjugates of AMD3100 that are specific to CXCR4 have been radiolabelled with gallium-68 and evaluated in naïve and tumour-bearing mice. Tumour uptake of the radiotracers was compared to the known CXCR4-specific PET imaging agent, [68Ga]Pentixafor. RESULTS Ex vivo biodistribution in naïve animals showed CXCR4-mediated uptake in the liver with both radiotracers, confirmed by blocking experiments with the high affinity CXCR4 antagonist Cu2CB-Bicyclam (IC50 = 3 nM). PET/CT imaging studies revealed one tracer to have a higher accumulation in the tumour (SUVMean of 0.89 ± 0.14 vs 0.32 ± 0.11). CXCR4-specificity of the best performing tracer was confirmed by administration of a blocking dose of Cu2CB-Bicyclam, showing a 3- and 6-fold decrease in tumour and liver uptake, respectively. CONCLUSION AND ADVANCES IN KNOWLEDGE This initial study offers some interesting insights on the impact of some structural features on the pharmacokinetics and metabolic stability of the radiotracer. Additionally, as Pentixafor only binds to human CXCR4, the development of CXCR4-targeted imaging agents that bind to the receptor across different species could significantly help with preclinical evaluation of new CXCR4-specific therapeutics.
Collapse
Affiliation(s)
- Isaline Renard
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Juozas Domarkas
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Sophie Poty
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Benjamin P Burke
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - David P Roberts
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, Dijon, France.
| | - Christopher J Cawthorne
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; Nuclear Medicine & Molecular Imaging, Department of Imaging & Pathology, KU Leuven, 3000 Leuven, Belgium.
| | - Stephen J Archibald
- Centre for Biomedicine and PET Research Centre, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
11
|
Watts A, Singh B, Singh H, Bal A, Kaur H, Dhanota N, Arora SK, Mittal BR, Behera D. [ 68Ga]Ga-Pentixafor PET/CT imaging for in vivo CXCR4 receptor mapping in different lung cancer histologic sub-types: correlation with quantitative receptors' density by immunochemistry techniques. Eur J Nucl Med Mol Imaging 2023; 50:1216-1227. [PMID: 36482077 DOI: 10.1007/s00259-022-06059-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE In vivo CXCR4 receptor quantification in different lung cancer (LC) sub-types using [68Ga]Ga-Pentixafor PET/CT and to study correlation with quantitative CXCR4 receptors' tissue density by immunochemistry analyses. METHODS [68Ga]Ga-Pentixafor PET/CT imaging was performed prospectively in 94 (77 M: 17F, mean age 60.1 ± 10.1 years) LC patients. CXCR4 receptors' expression on lung mass in all the patients was estimated by immunohistochemistry (IHC) and fluorescence-activated cell sorting (FACS) analyses. SUVmax on PET, intensity score on IHC, and mean fluorescence index (MFI) on FACS analyses were measured. RESULTS A total of 75/94 (79.8%) cases had non-small cell lung cancer (NSCLC), 14 (14.9%) had small cell lung cancer (SCLC), and 5 (5.3%) had lung neuroendocrine neoplasm (NEN). All LC types showed increased CXCR4 expression on PET (SUVmax) and FACS (MFI). However, both these parameters (mean SUVmax = 10.3 ± 5.0; mean MFI = 349.0 ± 99.0) were significantly (p = 0.005) higher in SCLC as compared to those in NSCLC and lung NEN. The mean SUVmax in adenocarcinoma (n = 16) was 8.0 ± 1.9 which was significantly (p = 0.003) higher than in squamous cell carcinoma (n = 54; 6.2 ± 2.1) and in not-otherwise specified (NOS) sub-types (n = 5; 5.8 ± 1.5) of NSCLC. A significant correlation (r = 0.697; p = 001) was seen between SUVmax and MFI values in squamous cell NSCLC as well as in NSCLC adenocarcinoma (r = 0.538, p = 0.031) which supports the specific in vivo uptake of [68Ga]Ga-Pentixafor by CXCR4 receptors. However, this correlation was not significant in SCLC (r = 0.435, p = 0.121) and NEN (r = 0.747, p = 0.147) which may be due to the small sample size. [68Ga]Ga-Pentixafor PET/CT provided good sensitivity (85.7%) and specificity (78.1%) for differentiating SCLC from NSCLC (ROC cutoff SUVmax = 7.2). This technique presented similar sensitivity (87.5%) and specificity (71.4%) (ROC cutoff SUVmax = 6.7) for differentiating adenocarcinoma and squamous cell variants of NSCLC. CONCLUSION The high sensitivity and specificity of [68Ga]Ga-Pentixafor PET/CT for in vivo targeting of CXCR4 receptors in lung cancer can thus be used effectively for the response assessment and development of CXCR4-based radioligand therapies in LC.
Collapse
Affiliation(s)
- Ankit Watts
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India.
| | - Harmandeep Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Harneet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Ninjit Dhanota
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Sunil K Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Bhagwant R Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Digambar Behera
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
12
|
Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: Making precision medicine possible. CA Cancer J Clin 2023; 73:255-274. [PMID: 36622841 DOI: 10.3322/caac.21768] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 01/10/2023] Open
Abstract
A quintessential setting for precision medicine, theranostics refers to a rapidly evolving field of medicine in which disease is diagnosed followed by treatment of disease-positive patients using tools for the therapy identical or similar to those used for the diagnosis. Against the backdrop of only-treat-when-visualized, the goal is a high therapeutic index with efficacy markedly surpassing toxicity. Oncology leads the way in theranostics innovation, where the approach has become possible with the identification of unique proteins and other factors selectively expressed in cancer versus healthy tissue, advances in imaging technology able to report these tissue factors, and major understanding of targeting chemicals and nanodevices together with methods to attach labels or warheads for imaging and therapy. Radiotheranostics-using radiopharmaceuticals-is becoming routine in patients with prostate cancer and neuroendocrine tumors who express the proteins PSMA (prostate-specific membrane antigen) and SSTR2 (somatostatin receptor 2), respectively, on their cancer. The palpable excitement in the field stems from the finding that a proportion of patients with large metastatic burden show complete and partial responses, and this outcome is catalyzing the search for more radiotheranostics approaches. Not every patient will benefit from radiotheranostics; but, for those who cross the target-detected line, the likelihood of response is very high.
Collapse
Affiliation(s)
- Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Tara D Barwick
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Imaging, Imperial College Healthcare National Health Service Trust, Hammersmith Hospital, London, UK
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
13
|
Intense 68 Ga-Pentixafor Activity in Idiopathic Retroperitoneal Fibrosis. Clin Nucl Med 2022; 47:e760-e761. [PMID: 36026598 DOI: 10.1097/rlu.0000000000004375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT A 52-year-old man was admitted to our hospital with lower abdominal and low back pain, and abdomen CT at an outside hospital presented a retroperitoneal mass with left urinary tract obstruction and hydronephrosis. In 68 Ga-pentixafor PET/CT, the retroperitoneal mass showed intense radioactivity. Subsequently, the patient underwent biopsy of the retroperitoneal mass. The pathological examination showed only fibrous tissue without tumor cells. The patient was finally diagnosed with idiopathic retroperitoneal fibrosis. Our case demonstrated that idiopathic retroperitoneal fibrosis had intense uptake of 68 Ga-pentixafor.
Collapse
|
14
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
15
|
Abstract
A growing body of literature reports on the upregulation of C-X-C motif chemokine receptor 4 (CXCR4) in a variety of cancer entities, rendering this receptor as suitable target for molecular imaging and endoradiotherapy in a theranostic setting. For instance, the CXCR4-targeting positron emission tomography (PET) agent [68 Ga]PentixaFor has been proven useful for a comprehensive assessment of the current status quo of solid tumors, including adrenocortical carcinoma or small-cell lung cancer. In addition, [68 Ga]PentixaFor has also provided an excellent readout for hematological malignancies, such as multiple myeloma, marginal zone lymphoma, or mantle cell lymphoma. PET-based quantification of the CXCR4 capacities in vivo allows for selecting candidates that would be suitable for treatment using the theranostic equivalent [177Lu]/[90Y]PentixaTher. This CXCR4-directed theranostic concept has been used as a conditioning regimen prior to hematopoietic stem cell transplantation and to achieve sufficient anti-lymphoma/-tumor activity in particular for malignant tissues that are highly sensitive to radiation, such as the hematological system. Increasing the safety margin, pretherapeutic dosimetry is routinely performed to determine the optimal activity to enhance therapeutic efficacy and to reduce off-target adverse events. The present review will provide an overview of current applications for CXCR4-directed molecular imaging and will introduce the CXCR4-targeted theranostic concept for advanced hematological malignancies.
Collapse
|
16
|
Kraus S, Dierks A, Rasche L, Kertels O, Kircher M, Schirbel A, Zovko J, Steinbrunn T, Tibes R, Wester HJ, Buck AK, Einsele H, Kortüm KM, Rosenwald A, Lapa C. 68Ga-Pentixafor PET/CT for Detection of Chemokine Receptor CXCR4 Expression in Myeloproliferative Neoplasms. J Nucl Med 2022; 63:96-99. [PMID: 34049979 PMCID: PMC8717205 DOI: 10.2967/jnumed.121.262206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) is an attractive target for cancer diagnosis and treatment, as it is overexpressed in many solid and hematologic malignancies. This study investigated the feasibility of CXCR4-directed imaging with PET/CT using 68Ga-pentixafor to visualize and quantify disease involvement in myeloproliferative neoplasms (MPNs). Methods: Twelve patients with MPNs (4 with primary myelofibrosis, 6 with essential thrombocythemia, and 2 with polycythemia vera) and 5 controls underwent 68Ga-pentixafor PET/CT. Imaging findings were compared with immunohistochemical stainings, laboratory data, and splenic volume. Results:68Ga-pentixafor PET/CT was visually positive in 12 of 12 patients, and CXCR4 target specificity could be confirmed by immunohistochemical staining. A significantly higher tracer uptake could be detected in the bone marrow of MPN patients (SUVmean, 6.45 ± 2.34 vs. 4.44 ± 1.24). Dynamic changes in CXCR4 expression determined by 68Ga-pentixafor PET/CT corresponded with treatment response. Conclusion:68Ga-pentixafor PET/CT represents a novel diagnostic tool to noninvasively detect and quantify the extent of disease involvement in MPNs.
Collapse
Affiliation(s)
- Sabrina Kraus
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Dierks
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Olivia Kertels
- Department of Diagnostic Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Josip Zovko
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Torsten Steinbrunn
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Raoul Tibes
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Division of Hematology and Medical Oncology, New York University School of Medicine, New York, New York
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technical University of Munich, Munich, Germany; and
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital of Würzburg, Würzburg, Germany;
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
17
|
Chen Z, Xue Q, Huang C, Yao S, Miao W. Burkitt Lymphoma/Leukemia Presented on 68Ga-Pentixafor and 18F-FDG PET/CT. Clin Nucl Med 2022; 47:98-100. [PMID: 34115701 DOI: 10.1097/rlu.0000000000003750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT An 18-year-old man with newly diagnosed Burkitt lymphoma/leukemia was referred for 18F-FDG and 68Ga-Pentixafor PET/CT. 68Ga-Pentixafor PET/CT revealed similar radioactivity uptake pattern to the 18F-FDG PET/CT in superior phrenic lymph node, ascending colon, ileocecum, peritoneal, marrow, and spleen. This case highlighted that it might be interesting to further investigate the role of 68Ga-Pentixafor PET/CT imaging in staging, treatment evaluation, and especially the feasibility of CXCR4-directed radioligand therapy in Burkitt lymphoma with positive expression of CXCR4.
Collapse
|
18
|
Schottelius M, Herrmann K, Lapa C. In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 2021; 13:5920. [PMID: 34885030 PMCID: PMC8656854 DOI: 10.3390/cancers13235920] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 01/23/2023] Open
Abstract
Given its pre-eminent role in the context of tumor cell growth as well as metastasis, the C-X-C motif chemokine receptor 4 (CXCR4) has attracted a lot of interest in the field of nuclear oncology, and clinical evidence on the high potential of CXCR4-targeted theranostics is constantly accumulating. Additionally, since CXCR4 also represents a key player in the orchestration of inflammatory responses to inflammatory stimuli, based on its expression on a variety of pro- and anti-inflammatory immune cells (e.g., macrophages and T-cells), CXCR4-targeted inflammation imaging has recently gained considerable attention. Therefore, after briefly summarizing the current clinical status quo of CXCR4-targeted theranostics in cancer, this review primarily focuses on imaging of a broad spectrum of inflammatory diseases via the quantification of tissue infiltration with CXCR4-expressing immune cells. An up-to-date overview of the ongoing preclinical and clinical efforts to visualize inflammation and its resolution over time is provided, and the predictive value of the CXCR4-associated imaging signal for disease outcome is discussed. Since the sensitivity and specificity of CXCR4-targeted immune cell imaging greatly relies on the availability of suitable, tailored imaging probes, recent developments in the field of CXCR4-targeted imaging agents for various applications are also addressed.
Collapse
Affiliation(s)
- Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, German Cancer Consortium (DKTK)-University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
| |
Collapse
|
19
|
Dun Y, Huang G, Liu J, Wei W. ImmunoPET imaging of hematological malignancies: From preclinical promise to clinical reality. Drug Discov Today 2021; 27:1196-1203. [PMID: 34838729 DOI: 10.1016/j.drudis.2021.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
Immuno-positron emission tomography (immunoPET) imaging is a paradigm-shifting imaging technique for whole-body and all-lesion tumor detection, based on the combined specificity of tumor-targeting vectors [e.g., monoclonal antibodies (mAbs), nanobodies, and bispecific antibodies] and the sensitivity of PET imaging. By noninvasively, comprehensively, and serially revealing heterogeneous tumor antigen expression, immunoPET imaging is gradually improving the theranostic prospects for hematological malignancies. In this review, we summarize the available literature regarding immunoPET in imaging hematological malignancies. We also highlight the pros and cons of current conjugation strategies, and modular chemistry that can be leveraged to develop novel immunoPET probes for hematological malignancies. Lastly, we discuss the use of immunoPET imaging in guiding antibody drug development.
Collapse
Affiliation(s)
- Yiting Dun
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
20
|
Lewis R, Habringer S, Kircher M, Hefter M, Peuker CA, Werner R, Ademaj-Kospiri V, Gäble A, Weber W, Wester HJ, Buck A, Herhaus P, Lapa C, Keller U. Investigation of spleen CXCR4 expression by [ 68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Res 2021; 11:77. [PMID: 34417915 PMCID: PMC8380222 DOI: 10.1186/s13550-021-00822-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background The chemokine receptor CXCR4 is frequently overexpressed and associated with adverse prognosis in most hematopoietic malignancies and solid cancers. Recently, CXCR4 molecular imaging using the CXCR4-specific positron emission tomography (PET) tracer Pentixafor ([68Ga]Pentixafor) has become a well-established method to non-invasively measure CXCR4 expression in vivo. In previous Pentixafor imaging studies, highly variable CXCR4 tracer uptake to the spleen was observed.
Results We investigated the hypothesis that enhanced spleen [68Ga]Pentixafor uptake and thus CXCR4 expression in patients with solid tumors would indicate an activated spleen state and/or an association with clinical and prognostic features and survival parameters. In this retrospective study, [68Ga]Pentixafor-PET images and patient records of 145 solid tumor patients representing 27 cancer entities were investigated for an association of spleen [68Ga]Pentixafor uptake and clinical characteristics and outcome. Based on this assessment, we did not observe differences in clinical outcomes, measured by progression-free survival, overall survival and remission status neither within the entire cohort nor within subgroups of adrenal cancer, desmoplastic small round cell tumor, neuroendocrine tumors, non-small cell lung cancer, small cell lung cancer and pancreatic adenocarcinoma patients. No tumor entity showed especially high levels of spleen [68Ga]Pentixafor uptake compared to others or a control cohort. However, when investigating laboratory parameters, there was a positive correlation of high spleen [68Ga]Pentixafor uptake with leukocyte and/or platelet counts in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer. Conclusion Spleen [68Ga]Pentixafor uptake was not associated with stage of disease and clinical outcomes in solid tumor patients. We identified positively associated platelet and/or leukocyte counts with spleen [68Ga]Pentixafor uptake in neuroendocrine tumors, non-small cell lung cancer and small cell lung cancer, suggesting that splenic CXCR4 expression could possibly play a role in systemic immunity/inflammation in some types of solid tumors or a subgroup of patients within solid tumor entities. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00822-6.
Collapse
Affiliation(s)
- Richard Lewis
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Malte Kircher
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Maike Hefter
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Caroline Anna Peuker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Rudolf Werner
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Valëza Ademaj-Kospiri
- Clinic for Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Gäble
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Wolfgang Weber
- Clinic for Nuclear Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Jürgen Wester
- Chair of Pharmaceutical Chemistry, Technical University of Munich, Garching, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Peter Herhaus
- Clinic and Policlinic for Internal Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany. .,German Cancer Consortium (DKTK), Partner Site Berlin; and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
21
|
|
22
|
Martin M, Mayer IA, Walenkamp AME, Lapa C, Andreeff M, Bobirca A. At the Bedside: Profiling and treating patients with CXCR4-expressing cancers. J Leukoc Biol 2020; 109:953-967. [PMID: 33089889 DOI: 10.1002/jlb.5bt1219-714r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) and its ligand, C-X-C motif chemokine 12, are key mediators of hematopoietic cell trafficking. Their roles in the proliferation and metastasis of tumor cells, induction of angiogenesis, and invasive tumor growth have been recognized for over 2 decades. CXCR4 is a promising target for imaging and therapy of both hematologic and solid tumors. To date, Sanofi Genzyme's plerixafor is the only marketed CXCR4 inhibitor (i.e., Food and Drug Administration-approved in 2008 for stem cell mobilization). However, several new CXCR4 inhibitors are now being investigated as potential therapies for a variety of fluid and solid tumors. These small molecules, peptides, and Abs include balixafortide (POL6326, Polyphor), mavorixafor (X4P-001, X4 Pharmaceuticals), motixafortide (BL-8040, BioLineRx), LY2510924 (Eli Lilly), and ulocuplumab (Bristol-Myers Squibb). Early clinical evidence has been encouraging, for example, with motixafortide and balixafortide, and the CXCR4 inhibitors appear to be generally safe and well tolerated. Molecular imaging is increasingly being used for effective patient selection before, or early during CXCR4 inhibitor treatment. The use of radiolabeled theranostics that combine diagnostics and therapeutics is an additional intriguing approach. The current status and future directions for radioimaging and treating patients with CXCR4-expressing hematologic and solid malignancies are reviewed. See related review - At the Bench: Pre-Clinical Evidence for Multiple Functions of CXCR4 in Cancer. J. Leukoc. Biol. xx: xx-xx; 2020.
Collapse
Affiliation(s)
- Miguel Martin
- Oncology Department, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense de Madrid, Madrid, Spain
| | - Ingrid A Mayer
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annemiek M E Walenkamp
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas, Maryland Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
23
|
Cancilla D, Rettig MP, DiPersio JF. Targeting CXCR4 in AML and ALL. Front Oncol 2020; 10:1672. [PMID: 33014834 PMCID: PMC7499473 DOI: 10.3389/fonc.2020.01672] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) blasts with the bone marrow microenvironment regulates self-renewal, growth signaling, as well as chemotherapy resistance. The chemokine receptor, CXC receptor 4 (CXCR4), with its ligand chemokine ligand 12 (CXCL12), plays a key role in the survival and migration of normal and malignant stem cells to the bone marrow. High expression of CXCR4 on AML and ALL blasts has been shown to be a predictor of poor prognosis for these diseases. Several small molecule inhibitors, short peptides, antibodies, and antibody drug conjugates have been developed for the purposes of more effective targeting and killing of malignant cells expressing CXCR4. In this review we will discuss recent results and strategies in targeting CXCR4 with these agents in patients with AML or ALL.
Collapse
Affiliation(s)
| | | | - John F. DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
24
|
Zhao Z, Hu Y, Li J, Zhou Y, Zhang B, Deng S. Applications of PET in Diagnosis and Prognosis of Leukemia. Technol Cancer Res Treat 2020; 19:1533033820956993. [PMID: 32875963 PMCID: PMC7476341 DOI: 10.1177/1533033820956993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As a malignant hematopoietic stem cell disease, leukemia remains life-threatening due to its increasing incidence rate and mortality rate. Therefore, its early diagnosis and treatment play a very important role. In the present work, we systematically reviewed the current applications and future directions of positron emission tomography (PET) in patients with leukemia, especially 18F-FDG PET/CT. As a useful imaging approach, PET significantly contributes to the diagnosis and treatment of different types of leukemia, especially in the evaluation of extramedullary infiltration, monitoring of leukemia relapse, detection of Richter’s transformation (RT), and assessment of the inflammatory activity associated with acute graft versus host disease. Future investigations should be focused on the potential of PET/CT in the prediction of clinical outcomes in patients with leukemia and the utility of novel radiotracers.
Collapse
Affiliation(s)
- Zixuan Zhao
- Department of Nuclear Medicine, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanwen Hu
- Department of Nuclear Medicine, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- Department of Nuclear Medicine, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yeye Zhou
- Department of Nuclear Medicine, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengming Deng
- Department of Nuclear Medicine, 74566The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Pan Q, Luo Y, Zhang Y, Chang L, Li J, Cao X, Li J, Li F. Preliminary evidence of imaging of chemokine receptor-4-targeted PET/CT with [ 68Ga]pentixafor in non-Hodgkin lymphoma: comparison to [ 18F]FDG. EJNMMI Res 2020; 10:89. [PMID: 32757068 PMCID: PMC7406627 DOI: 10.1186/s13550-020-00681-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In order to study the CXCR4 expression with [68Ga]pentixafor PET in different types of non-Hodgkin lymphoma, we performed a retrospective study to describe the [68Ga]pentixafor PET/CT imaging in a spectrum of lymphomas and to compare it with [18F]FDG PET/CT. RESULTS Twenty-seven patients with newly diagnosed non-Hodgkin lymphoma were recruited retrospectively. [68Ga]pentixafor PET showed increased radioactivity in lymphoplasmacytic lymphoma (n = 8), marginal zone lymphoma (n = 4), diffuse large B cell lymphoma (n = 3), follicular lymphoma (n = 2), mantle cell lymphoma (n = 1), unclassified indolent B cell lymphoma (n = 3), and enteropathy associated T cell lymphoma (n = 3). However, peripheral T cell lymphoma, not otherwise specified (n = 1), and NK/T cell lymphoma (n = 2) were not avid for [68Ga]pentixafor. In comparison to [18F]FDG PET, [68Ga]pentixafor PET demonstrated more extensive disease and higher radioactivity in lymphoplasmacytic lymphoma and marginal zone lymphoma. CONCLUSION CXCR4 expression varies in different types of non-Hodgkin lymphoma. Overexpression of CXCR4 was detected with [68Ga]pentixafor PET/CT in lymphoplasmacytic lymphoma, marginal zone lymphoma, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma, unclassified indolent B cell lymphoma, and enteropathy associated T cell lymphoma. The uptake of [68Ga]pentixafor was higher than [18F]FDG in lymphoplasmacytic lymphoma and marginal zone lymphoma.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, People's Republic of China
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China. .,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, People's Republic of China.
| | - Yan Zhang
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Long Chang
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Ji Li
- Department of Gastroenterology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Xinxin Cao
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Jian Li
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, People's Republic of China
| |
Collapse
|
26
|
Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester HJ. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Am J Cancer Res 2020; 10:8264-8280. [PMID: 32724470 PMCID: PMC7381729 DOI: 10.7150/thno.45537] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasive PET imaging of CXCR4 expression in cancer and inflammation as well as CXCR4-targeted radioligand therapy (RLT) have recently found their way into clinical research by the development of the theranostic agents [68Ga]PentixaFor (cyclo(D-Tyr1-D-[NMe]Orn2(AMBS-[68Ga]DOTA)-Arg3-Nal4-Gly5) = [68Ga]DOTA-AMBS-CPCR4) and [177Lu/90Y]PentixaTher (cyclo(D-3-iodo-Tyr1-D-[NMe]Orn2(AMBS-[177Lu/90Y]DOTA)-Arg3-Nal4-Gly5) = [177Lu/90Y]DOTA-AMBS-iodoCPCR4). Although convincing clinical results have already been obtained with both agents, this study was designed to further investigate the required structural elements for improved ligand-receptor interaction for both peptide cores (CPCR4 and iodoCPCR4). To this aim, a series of DOTA-conjugated CPCR4- and iodoCPCR4-based ligands with new linker structures, replacing the AMBA-linker in PentixaFor and PentixaTher, were synthesized and evaluated. Methods: The in vitro investigation of the novel compounds alongside with the reference peptides PentixaFor and PentixaTher encompassed the determination of hCXCR4 and mCXCR4 affinity (IC50) of the respective natGa-, natLu-, natY- and natBi-complexes in Jurkat and Eμ-myc 1080 cells using [125I]FC-131 and [125I]CPCR4.3 as radioligands, respectively, as well as the evaluation of the internalization and externalization kinetics of selected 68Ga- and 177Lu-labeled compounds in hCXCR4-transfected Chem-1 cells. Comparative small animal PET imaging studies (1h p.i.) as well as in vivo biodistribution studies (1, 6 and 48h p.i.) were performed in Daudi (human B cell lymphoma) xenograft bearing CB17 SCID mice. Results: Based on the affinity data and cellular uptake studies, [68Ga/177Lu]DOTA-r-a-ABA-CPCR4 and [68Ga/177Lu]DOTA-r-a-ABA-iodoCPCR4 (with r-a-ABA = D-Arg-D-Ala-4-aminobenzoyl-) were selected for further evaluation. Both analogs show app. 10-fold enhanced hCXCR4 affinity compared to the respective references [68Ga]PentixaFor and [177Lu]PentixaTher, four times higher cellular uptake in hCXCR4 expressing cells and improved cellular retention. Unfortunately, the improved in vitro binding and uptake characteristics of [68Ga]DOTA-r-a-ABA-CPCR4 and -iodoCPCR4 could not be recapitulated in initial PET imaging studies; both compounds showed similar uptake in the Daudi xenografts as [68Ga]PentixaFor, alongside with higher background accumulation, especially in the kidneys. However, the subsequent biodistribution studies performed for the corresponding 177Lu-labeled analogs revealed a clear superiority of [177Lu]DOTA-r-a-ABA-CPCR4 and [177Lu]DOTA-r-a-ABA-iodoCPCR4 over [177Lu]PentixaTher with respect to tumor uptake (18.3±3.7 and 17.2±2.0 %iD/g, respectively, at 1h p.i. vs 12.4±3.7%iD/g for [177Lu]PentixaTher) as well as activity retention in tumor up to 48h. Especially for [177Lu]DOTA-r-a-ABA-CPCR4 with its low background accumulation, tumor/organ ratios at 48h were 2- to 4-fold higher than those obtained for [177Lu]PentixaTher (except for kidney). Conclusions: The in-depth evaluation of a series of novel CPCR4- and iodoCPCR4 analogs with modified linker structure has yielded reliable structure-activity relationships. It was generally observed that a) AMBA-by-ABA-substitution leads to enhanced ligand internalization, b) the extension of the ABA-linker by two additional amino acids (DOTA-Xaa2-Xaa1-ABA-) provides sufficient linker length to minimize the interaction of the [M3+]DOTA-chelate with the receptor, and that c) introduction of a cationic side chain (Xaa2) greatly enhances receptor affinity of the constructs, obliterating the necessity for Tyr1-iodination of the pentapeptide core to maintain high receptor affinity (such as in [177Lu]PentixaTher). As a result, [177Lu]DOTA-r-a-ABA-CPCR4 has emerged from this study as a powerful second-generation therapeutic CXCR4 ligand with greatly improved targeting efficiency and tumor retention and will be further evaluated in preclinical and clinical CXCR4-targeted dosimetry and RLT studies.
Collapse
|
27
|
Rangger C, Haubner R. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals (Basel) 2020; 13:E22. [PMID: 32019275 PMCID: PMC7169460 DOI: 10.3390/ph13020022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise metabolic stability. Additionally, it presents different target structures and addresses corresponding tracers, which are already used in clinical routine or are being investigated in clinical trials.
Collapse
Affiliation(s)
| | - Roland Haubner
- Department of Nuclear Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria;
| |
Collapse
|
28
|
Nimmagadda S, Penet MF. Ovarian Cancer Targeted Theranostics. Front Oncol 2020; 9:1537. [PMID: 32039018 PMCID: PMC6985364 DOI: 10.3389/fonc.2019.01537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Ovarian cancer is a leading cause of death from gynecological malignancies. Although the prognosis is quite favorable if detected at an early stage, the vast majority of cases are diagnosed at an advanced stage, when 5-year survival rates are only 30–40%. Most recurrent ovarian tumors are resistant to traditional therapies underscoring the need for new therapeutic options. Theranostic agents, that combine diagnostic and therapeutic capabilities, are being explored to better detect, diagnose and treat ovarian cancer. To minimize morbidity, improve survival rates, and eventually cure patients, new strategies are needed for early detection and for delivering specifically anticancer therapies to tumor sites. In this review we will discuss various molecular imaging modalities and targets that can be used for imaging, therapeutic and theranostic agent development for improved diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sridhar Nimmagadda
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marie-France Penet
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
C-terminal-modified LY2510924: a versatile scaffold for targeting C-X-C chemokine receptor type 4. Sci Rep 2019; 9:15284. [PMID: 31653903 PMCID: PMC6814797 DOI: 10.1038/s41598-019-51754-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 10/08/2019] [Indexed: 01/28/2023] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4) constitutes a promising target for tumor diagnosis and therapy. Herein, we evaluate a new 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CXCR4 antagonist derived from LY2510924, FRM001, and its metal complexes as CXCR4-targeting probes. FRM001 was synthesized by modifying the C-terminus of LY2510924 with maleimido-mono-amide-DOTA via a cysteine linker. FRM001 exhibited CXCR4-specific binding with an affinity similar to that of the parental LY2510924. The binding affinity of FRM001 remained unchanged after complexation with Ga, Lu, and Y. The internalization of 67Ga-FRM001 into the cells was hardly observed. In mice biodistribution studies, 67Ga-FRM001 exhibited high accumulation in the tumor and the liver with rapid elimination rates from the blood. The hepatic accumulation of 67Ga-FRM001 was preferentially and significantly reduced by co-injecting a CXCR4 antagonist, AMD3100. The C-terminal-modified LY2510924 would constitute a versatile scaffold to develop CXCR4-targeting probes or therapeutics for tumor imaging or therapy.
Collapse
|
30
|
Mayerhoefer ME, Archibald SJ, Messiou C, Staudenherz A, Berzaczy D, Schöder H. MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging 2019; 51:1325-1335. [PMID: 31260155 PMCID: PMC7217155 DOI: 10.1002/jmri.26848] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The role of MRI differs considerably between the three main groups of hematological malignancies: lymphoma, leukemia, and myeloma. In myeloma, whole‐body MRI (WB‐MRI) is recognized as a highly sensitive test for the assessment of myeloma, and is also endorsed by clinical guidelines, especially for detection and staging. In lymphoma, WB‐MRI is presently not recommended, and merely serves as an alternative technique to the current standard imaging test, [18F]FDG‐PET/CT, especially in pediatric patients. Even for lymphomas with variable FDG avidity, such as extranodal mucosa‐associated lymphoid tissue lymphoma (MALT), contrast‐enhanced computed tomography (CT), but not WB‐MRI, is presently recommended, despite the high sensitivity of diffusion‐weighted MRI and its ability to capture treatment response that has been reported in the literature. In leukemia, neither MRI nor any other cross‐sectional imaging test (including positron emission tomography [PET]) is currently recommended outside of clinical trials. This review article discusses current clinical applications as well as the main research topics for MRI, as well as PET/MRI, in the field of hematological malignancies, with a focus on functional MRI techniques such as diffusion‐weighted imaging and dynamic contrast‐enhanced MRI, on the one hand, and novel, non‐FDG PET imaging probes such as the CXCR4 radiotracer [68Ga]Ga‐Pentixafor and the amino acid radiotracer [11C]methionine, on the other hand. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1325–1335.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria.,Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | | | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Anton Staudenherz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dominik Berzaczy
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| |
Collapse
|
31
|
Luo Y, Cao X, Pan Q, Li J, Feng J, Li F. 68Ga-Pentixafor PET/CT for Imaging of Chemokine Receptor 4 Expression in Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma: Comparison to 18F-FDG PET/CT. J Nucl Med 2019; 60:1724-1729. [PMID: 31101745 DOI: 10.2967/jnumed.119.226134] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
18F-FDG PET/CT has some limitations in the evaluation of Waldenström macroglobulinemia/lymphoplasmacytic lymphoma (WM/LPL), an indolent B-cell lymphoma that primarily involves the bone marrow. Because there is a high level of chemokine receptor 4 expression in the B cells of WM/LPL patients, we performed a prospective cohort study to evaluate the performance of 68Ga-pentixafor, which targets chemokine receptor 4 in WM/LPL, and to compare it with the performance of 18F-FDG. Methods: Seventeen patients with WM/LPL were recruited. All patients underwent both 68Ga-pentixafor PET/CT and 18F-FDG PET/CT. A positive PET/CT result was defined as the presence of focal lesions with positive PET results or diffuse bone marrow patterns (uptake > liver). The rates of positive results for PET/CT scans of bone marrow, lymph nodes, and other extramedullary involvement were statistically compared. Results: 68Ga-pentixafor PET/CT had a higher rate of positive results than 18F-FDG PET/CT (100% vs. 58.8%; P = 0.023) in the recruited WM/LPL patients. The sensitivities of 68Ga-pentixafor PET/CT and 18F-FDG PET/CT for detecting bone marrow involvement were 94.1% and 58.8%, respectively (P = 0.077). In terms of detecting lymph node involvement, 68Ga-pentixafor PET/CT had a significantly higher rate of positive results than 18F-FDG PET/CT (76.5% vs. 11.8%; P = 0.003). In addition, 68Ga-pentixafor detected more paramedullary and central nervous system involvement than 18F-FDG. Conclusion: 68Ga-pentixafor might be a promising imaging agent for the assessment of WM/LPL.
Collapse
Affiliation(s)
- Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China; and
| | - Xinxin Cao
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China; and
| | - Jian Li
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Jun Feng
- Department of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, People's Republic of China .,Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China; and
| |
Collapse
|
32
|
[ 18F]Fluoroethyltriazolyl Monocyclam Derivatives as Imaging Probes for the Chemokine Receptor CXCR4. Molecules 2019; 24:molecules24081612. [PMID: 31022852 PMCID: PMC6514812 DOI: 10.3390/molecules24081612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Determining chemokine receptor CXCR4 expression is significant in multiple diseases due to its role in promoting inflammation, cell migration and tumorigenesis. [68Ga]Pentixafor is a promising ligand for imaging CXCR4 expression in multiple tumor types, but its utility is limited by the physical properties of 68Ga. We screened a library of >200 fluorine-containing structural derivatives of AMD-3465 to identify promising candidates for in vivo imaging of CXCR4 expression by positron emission tomography (PET). Compounds containing fluoroethyltriazoles consistently achieved higher docking scores. Six of these higher scoring compounds were radiolabeled by click chemistry and evaluated in PC3-CXCR4 cells and BALB/c mice bearing bilateral PC3-WT and PC3-CXCR4 xenograft tumors. The apparent CXCR4 affinity of the ligands was relatively low, but tumor uptake was CXCR4-specific. The tumor uptake of [18F]RPS-534 (7.2 ± 0.3 %ID/g) and [18F]RPS-547 (3.1 ± 0.5 %ID/g) at 1 h p.i. was highest, leading to high tumor-to-blood, tumor-to-muscle, and tumor-to-lung ratios. Total cell-associated activity better predicted in vivo tumor uptake than did the docking score or apparent CXCR4 affinity. By this metric, and on the basis of their high yielding radiosynthesis, high tumor uptake, and good contrast to background, [18F]RPS-547, and especially [18F]RPS-534, are promising 18F-labeled candidates for imaging CXCR4 expression.
Collapse
|
33
|
Hüllein J, Słabicki M, Rosolowski M, Jethwa A, Habringer S, Tomska K, Kurilov R, Lu J, Scheinost S, Wagener R, Huang Z, Lukas M, Yavorska O, Helfrich H, Scholtysik R, Bonneau K, Tedesco D, Küppers R, Klapper W, Pott C, Stilgenbauer S, Burkhardt B, Löffler M, Trümper LH, Hummel M, Brors B, Zapatka M, Siebert R, Kreuz M, Keller U, Huber W, Zenz T. MDM4 Is Targeted by 1q Gain and Drives Disease in Burkitt Lymphoma. Cancer Res 2019; 79:3125-3138. [DOI: 10.1158/0008-5472.can-18-3438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
|
34
|
Liu N, Wan Q, Cheng Z, Chen Y. Radionuclide-Labeled Peptides for Imaging and Treatment of CXCR4- Overexpressing Malignant Tumors. Curr Top Med Chem 2019; 19:17-32. [PMID: 30706786 DOI: 10.2174/1568026619666190201094952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
Malignant tumors are a major cause of death. The lack of methods that provide an early diagnosis and adequate treatment of cancers is the main obstacle to precision medicine. The C-X-C chemokine receptor 4 (CXCR4) is overexpressed in various tumors and plays a key role in tumor pathogenesis. Therefore, CXCR4-targeted molecular imaging can quickly and accurately detect and quantify CXCR4 abnormalities in real time. The expression level and activation status of CXCR4 are very important for screening susceptible populations and providing an accurate diagnosis and optimal treatment. In view of the fact that radionuclide-labeled peptides have become widely used for the diagnosis and treatment of tumors, this manuscript reviews the potential of different radionuclide-labeled peptide inhibitors for the targeted imaging of CXCR4- positive tumors and targeted treatment. The article also discusses the specificity and in vivo distribution of radionuclide-labeled peptide inhibitors, and translation of these inhibitors to the clinic.
Collapse
Affiliation(s)
- Nan Liu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No.25, Taiping St, Luzhou, Sichuan 646000, China
| | - Qiang Wan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No.25, Taiping St, Luzhou, Sichuan 646000, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, 1201 Welch Road, Lucas Expansion, P095 Stanford University, California, United States
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No.25, Taiping St, Luzhou, Sichuan 646000, China
| |
Collapse
|
35
|
Maurer S, Herhaus P, Lippenmeyer R, Hänscheid H, Kircher M, Schirbel A, Maurer HC, Buck AK, Wester HJ, Einsele H, Grigoleit GU, Keller U, Lapa C. Side Effects of CXC-Chemokine Receptor 4-Directed Endoradiotherapy with Pentixather Before Hematopoietic Stem Cell Transplantation. J Nucl Med 2019; 60:1399-1405. [PMID: 30850502 DOI: 10.2967/jnumed.118.223420] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
The chemokine receptor CXC-chemokine receptor 4 (CXCR4) is a transmembrane receptor involved in survival, proliferation, and dissemination of different cancers, including hematopoietic malignancies. Relapsed or refractory hematopoietic cancers are frequently resistant to conventional therapy, and novel highly active strategies are urgently needed. CXCR4-directed endoradiotherapy constitutes a highly promising targeted therapeutic concept. Here, we investigated the adverse effects of this novel treatment approach. Methods: Twenty-two patients with heavily pretreated lymphoproliferative or myeloid malignancies were treated with 177Lu- or 90Y-pentixather-a CXCR4-directed therapeutic radioligand-before conventional conditioning therapy followed by autologous or allogeneic hematopoietic stem cell transplantation. Twenty-five CXCR4-directed endoradiotherapies were administered to those patients. Adverse events occurring between endoradiotherapy and the start of conventional conditioning therapy were retrospectively analyzed and graded for the estimation of the safety profile. Results: CXCR4-directed endoradiotherapy with pentixather showed a favorable toxicity profile. As expected, the hematopoietic system was most affected, with all subjects developing cytopenias. Except for 1 acute kidney failure, grade 3, due to tumor lysis syndrome, overall nephro- and hepatotoxicity was low. Other higher-grade adverse events were either transient and resolved or easily manageable. Conclusion: Therapy with radiolabeled pentixather appears to be well tolerated and easily applicable when preceding conventional conditioning regimens for hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Sabine Maurer
- III. Medical Department, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Peter Herhaus
- III. Medical Department, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Romina Lippenmeyer
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - H Carlo Maurer
- II. Medical Department, Gastroenterology and Hepatology, Technische Universtät München, Munich, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Hermann Einsele
- Hematology and Medical Oncology, Medical Department II, University Hospital Würzburg, Würzburg, Germany; and
| | - Götz-Ulrich Grigoleit
- Hematology and Medical Oncology, Medical Department II, University Hospital Würzburg, Würzburg, Germany; and
| | - Ulrich Keller
- III. Medical Department, Hematology and Medical Oncology, Technische Universität München, Munich, Germany .,Hematology, Oncology, and Tumor Immunology (Campus Benjamin Franklin), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
ZHOU Y, CAO HB, LI WJ, ZHAO L. The CXCL12 (SDF-1)/CXCR4 chemokine axis: Oncogenic properties, molecular targeting, and synthetic and natural product CXCR4 inhibitors for cancer therapy. Chin J Nat Med 2018; 16:801-810. [DOI: 10.1016/s1875-5364(18)30122-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 02/07/2023]
|
37
|
Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, Keller U, Lapa C. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 2018; 32:503-511. [PMID: 30105558 PMCID: PMC6182637 DOI: 10.1007/s12149-018-1290-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Given its prominent role in inflammation and cancer biology, the C-X-C motif chemokine receptor 4 (CXCR4) has gained a lot of attention in the recent years. This review gives a short overview of the physiology and pathology of chemokines and chemokine receptors and then focuses on the current experience of targeting CXCR4, using radiolabeled receptor ligands suitable for positron emission tomography (PET) imaging, in both hematologic and solid malignancy as well as in inflammatory conditions. Additionally, CXCR4-directed endoradiotherapy (ERT) as a new treatment option is discussed.
Collapse
Affiliation(s)
- Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Peter Herhaus
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
- Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany
| | - Ulrich Keller
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| |
Collapse
|
38
|
Chemokine Receptor CXCR4−Targeted PET/CT With 68Ga-Pentixafor Shows Superiority to 18F-FDG in a Patient With Waldenström Macroglobulinemia. Clin Nucl Med 2018; 43:548-550. [DOI: 10.1097/rlu.0000000000002131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
|
40
|
Amor-Coarasa A, Kelly J, Ponnala S, Vedvyas Y, Nikolopoulou A, Williams C, Jin MM, David Warren J, Babich JW. [ 18F]RPS-544: A PET tracer for imaging the chemokine receptor CXCR4. Nucl Med Biol 2018; 60:37-44. [PMID: 29544122 DOI: 10.1016/j.nucmedbio.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION CXCR4 specific [18F]-labeled positron emission tomography (PET) imaging agents are needed which would enable general distribution of the radiotracer for clinical investigation. We sought to synthesize, radiolabel and evaluate [18F]RPS-544, a novel non-peptide CXCR4 antagonist as a CXCR4 specific probe. We compared [18F]RPS-544 with the previously published [18F]-3 ([18F]RPS-510 in this paper) in a bi-lateral tumor model of differential CXCR4 expression for its ability to selectively target CXCR4 expression. METHODS Radiolabeling of [18F]RPS-544 and [18F]RPS-510 was performed by aromatic substitution on a 6-nitropyridyl group using no-carrier-added [18F]fluoride under basic conditions. 18F incorporation was determined by radioHPLC. Semi-preparative HPLC was used to purify the final product prior to reformulation. Imaging and biodistribution was performed in nude mice with bilateral PC3 (CXCR4+ and WT) xenograft tumors at 1, 2 and 4 h post injection. RESULTS RPS-544 bound CXCR4 with an IC50 of 4.9 ± 0.3 nM. [18F]RPS-544 showed preferential uptake in CXCR4+ tumors, with a CXCR4/WT ratio of 3.3 ± 1.3 at 1 h p.i. and 2.3 ± 0.5 at 2 h p.i. Maximum uptake in the CXCR4+ tumors was 3.4 ± 1.2%ID/g at 1 h p.i., significantly greater (p = 0.003) than the uptake in the WT tumor. Tumor/blood ratios were 2.5 ± 0.4 and 3.6 ± 0.3 at 1 and 2 h p.i. Tumor/muscle ratios were >4 at all time-points. Tumor/lung ratios were >2 at 1 h and 2 h p.i. Substantial uptake was observed in the liver (15-25%ID/g), kidneys (25-35%ID/g), the small intestine (1-7%ID/g) and the large intestine (1-12%ID/g). Blood concentrations varied over time (0.5-2%ID/g). All other organs showed uptake of <1%ID/g at all time points studied with clearance profiles similar to blood clearance. CONCLUSIONS Here we present, to the best of our knowledge, the first high affinity [18F]-labeled tracer, suitable for in vivo PET imaging of CXCR4. [18F]RPS-544 displayed high affinity for CXCR4 and good tumor uptake with a maximum uptake at 1 h p.i.. CXCR4 dependent uptake was demonstrated using bilateral tumors with differential CXCR4 expression as well as pharmacological blockade using the known CXCR4 antagonist, AMD-3100. Tissue contrast as judged by tumor to normal tissue ratios was positive in several key tissues. The structural and pharmacological similarities between [18F]RPS-544 and the approved drug AMD-3465, combined with the ease of synthesis and high molar activity (>185 GBq/μmol) achieved during radiosynthesis could lead to accelerated translation into the clinic.
Collapse
Affiliation(s)
- Alejandro Amor-Coarasa
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Shashikanth Ponnala
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yogindra Vedvyas
- Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Clarence Williams
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Moonsoo M Jin
- Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - J David Warren
- Milstein Chemistry Core Facility, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - John W Babich
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Habringer S, Lapa C, Herhaus P, Schottelius M, Istvanffy R, Steiger K, Slotta-Huspenina J, Schirbel A, Hänscheid H, Kircher S, Buck AK, Götze K, Vick B, Jeremias I, Schwaiger M, Peschel C, Oostendorp R, Wester HJ, Grigoleit GU, Keller U. Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics 2018; 8:369-383. [PMID: 29290814 PMCID: PMC5743554 DOI: 10.7150/thno.21397] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/12/2017] [Indexed: 12/26/2022] Open
Abstract
C-X-C chemokine receptor 4 (CXCR4) is a transmembrane receptor with pivotal roles in cell homing and hematopoiesis. CXCR4 is also involved in survival, proliferation and dissemination of cancer, including acute lymphoblastic and myeloid leukemia (ALL, AML). Relapsed/refractory ALL and AML are frequently resistant to conventional therapy and novel highly active strategies are urgently needed to overcome resistance. Methods: We used patient-derived (PDX) and cell line-based xenograft mouse models of ALL and AML to evaluate the efficacy and toxicity of a CXCR4-targeted endoradiotherapy (ERT) theranostic approach. Results: The positron emission tomography (PET) tracer 68Ga-Pentixafor enabled visualization of CXCR4 positive leukemic burden. In xenografts, CXCR4-directed ERT with 177Lu-Pentixather distributed to leukemia harboring organs and resulted in efficient reduction of leukemia. Despite a substantial in vivo cross-fire effect to the leukemia microenvironment, mesenchymal stem cells (MSCs) subjected to ERT were viable and capable of supporting the growth and differentiation of non-targeted normal hematopoietic cells ex vivo. Finally, three patients with refractory AML after first allogeneic hematopoietic stem cell transplantation (alloSCT) underwent CXCR4-directed ERT resulting in leukemia clearance, second alloSCT, and successful hematopoietic engraftment. Conclusion: Targeting CXCR4 with ERT is feasible and provides a highly efficient means to reduce refractory acute leukemia for subsequent cellular therapies. Prospective clinical trials testing the incorporation of CXCR4 targeting into conditioning regimens for alloSCT are highly warranted.
Collapse
Affiliation(s)
- Stefan Habringer
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Peter Herhaus
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Margret Schottelius
- Institute of Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| | - Rouzanna Istvanffy
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Andreas Schirbel
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heribert Hänscheid
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kircher
- Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Götze
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Binje Vick
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Unit Gene Vectors, Helmholtz Center Munich, Germany
| | - Irmela Jeremias
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Unit Gene Vectors, Helmholtz Center Munich, Germany
| | - Markus Schwaiger
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany
| | - Christian Peschel
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Oostendorp
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
| | - Hans-Jürgen Wester
- Institute of Pharmaceutical Radiochemistry, Technische Universität München, Garching, Germany
| | - Götz-Ulrich Grigoleit
- Department of Internal Medicine II, Hematology and Medical Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Ulrich Keller
- Internal Medicine III, Hematology and Medical Oncology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
42
|
Walenkamp AME, Lapa C, Herrmann K, Wester HJ. CXCR4 Ligands: The Next Big Hit? J Nucl Med 2017; 58:77S-82S. [PMID: 28864616 DOI: 10.2967/jnumed.116.186874] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
The G protein-coupled protein receptor C-X-C chemokine receptor 4 (CXCR4) is an attractive target for cancer diagnosis and treatment, as it is overexpressed in many solid and hematologic cancers. Binding of its ligand, C-X-C chemokine ligand 12 (CXCL12), results in receptor internalization and activation of several signal transduction pathways, such as phosphoinositide 3-kinase/protein kinase B, which are critical in cell proliferation, angiogenesis, development of metastasis, and survival. Also, the CXCR4-CXCL12 axis is involved in the interaction between hematopoietic stem cells (as well as hematologic and solid tumor cells) and their protective microenvironment. This interaction can be disrupted by CXCR4 antagonists. This concept is being used clinically to harvest hematopoietic stem or progenitor cells from bone marrow and to sensitize cancer cells to conventional chemotherapy and radiotherapy, and the potential to overcome tumor microenvironment-driven immunosuppression is being explored. This review focuses on new strategies for improvement of cancer treatment by targeting of the CXCR4-CXCL12 interaction. Because of its critical role in cancer, many peptidic and nonpeptidic ligands with different modes of antagonistic activity against the CXCR4-CXCL12 axis have been developed, with some of them reaching clinical trials. Molecular imaging with recently developed radiolabeled CXCR4 ligands could facilitate the selection of patients who might benefit from directed targeted therapy, including CXCR4-directed endoradiotherapy.
Collapse
Affiliation(s)
- Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany; and.,Scintomics GmbH, Fuerstenfeldbruck, Germany
| |
Collapse
|
43
|
Li X, Heber D, Leike T, Beitzke D, Lu X, Zhang X, Wei Y, Mitterhauser M, Wadsak W, Kropf S, Wester HJ, Loewe C, Hacker M, Haug AR. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2017; 45:558-566. [PMID: 28932900 PMCID: PMC5829117 DOI: 10.1007/s00259-017-3831-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/04/2017] [Indexed: 11/02/2022]
Abstract
PURPOSE The expression of chemokine receptor type 4 (CXCR4) was found co-localized with macrophages on the atherosclerotic vessel wall and participated in the initial emigration of leukocytes. Gallium-68 [68Ga]Pentixafor has recently been introduced for the imaging of atherosclerosis by targeting CXCR4. We sought to evaluate human atherosclerotic lesions using [68Ga]Pentixafor PET/MRI. METHODS Thirty-eight oncology patients underwent [68Ga]Pentixafor PET/MR imaging at baseline. Maximum standardized uptake values (SUVmax) were derived from hot lesions in seven arterial segments and target-to-blood ratios (TBR) were calculated. ANOVA post-hoc and paired t test were performed for statistical comparison, Spearman's correlation coefficient between uptake ratios and cardiovascular risk factors were assessed. The reproducibility of [68Ga]Pentixafor PET/MRI was assessed in seven patients with a follow-up exanimation by Pearson's regression and Bland-Altman plots analysis. RESULTS Thirty-four of 38 patients showed 611 focal [68Ga]Pentixafor uptake that followed the contours of the large arteries. Both prevalence and mean TBRmax were highest in the descending aorta. There were significantly higher TBR values found in men (1.9 ± 0.3) as compared to women (1.7 ± 0.2; p < 0.05). Patients with mean TBRmax > 1.7 showed a significantly higher incidence of diabetes, hypertension hypercholesterolemia and history of cardiovascular disease than patients with mean TBRmax ≤ 1.7. [68Ga]Pentixafor uptake showed a good reproducibility (r = 0.6, p < 0.01), and there was no difference between the mean TBRmax values of plaque lesions (TBRbaseline1.8 ± 0.3 vs TBRfollow-up1.8 ± 0.3) (p = 0.9). CONCLUSION Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting a potential role of [68Ga]Pentixafor in characterization of atherosclerosis.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Daniel Heber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Tatjana Leike
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | | | - Hans J Wester
- Department of Radiopharmaceutical Chemistry, Technische Universität München, Garching, Germany
| | - Christian Loewe
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Alexander R Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
44
|
Schwarzenböck SM, Stenzel J, Otto T, Helldorff HV, Bergner C, Kurth J, Polei S, Lindner T, Rauer R, Hohn A, Hakenberg OW, Wester HJ, Vollmar B, Krause BJ. [ 68Ga]pentixafor for CXCR4 imaging in a PC-3 prostate cancer xenograft model - comparison with [ 18F]FDG PET/CT, MRI and ex vivo receptor expression. Oncotarget 2017; 8:95606-95619. [PMID: 29221153 PMCID: PMC5707047 DOI: 10.18632/oncotarget.21024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim was to characterize the properties of [68Ga]Pentixafor as tracer for prostate cancer imaging in a PC-3 prostate cancer xenograft mouse model and to investigate its correlation with [18F]FDG PET/CT, magnetic resonance imaging (MRI) and ex vivo analyses. Methods Static [68Ga]Pentixafor and [18F]FDG PET as well as morphological/ diffusion weighted MRI and 1H MR spectroscopy was performed. Imaging data were correlated with ex vivo biodistribution and CXCR4 expression in PC-3 tumors (immunohistochemistry (IHC), mRNA analysis). Flow cytometry was performed for evaluation of localization of CXCR4 receptors (in vitro PC-3 cell experiments). Results Tumor uptake of [68Ga]Pentixafor was significantly lower compared to [18F]FDG. Ex vivo CXCR4 mRNA expression of tumors was shown by PCR. Only faint tumor CXCR4 expression was shown by IHC (immuno reactive score of 3). Accordingly, flow cytometry of PC-3 cells revealed only a faint signal, cell membrane permeabilisation showed a slight signal increase. There was no significant correlation of [68Ga]Pentixafor tumor uptake and ex vivo receptor expression. Spectroscopy showed typical spectra of prostate cancer. Conclusion PC-3 tumor uptake of [68Ga]Pentixafor was existent but lower compared to [18F]FDG. No significant correlation of ex vivo tumor CXCR4 receptor expression and [68Ga]Pentixafor tumor uptake was shown. CXCR4 receptor expression on the surface of PC-3 cells was existent but rather low possibly explaining the limited [68Ga]Pentixafor tumor uptake; receptor localization in the interior of PC-3 cells is presumable as shown by cell membrane permeabilisation. Further studies are necessary to define the role of [68Ga]Pentixafor in prostate cancer imaging.
Collapse
Affiliation(s)
- Sarah M Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jan Stenzel
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Thomas Otto
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Heike V Helldorff
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Carina Bergner
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Stefan Polei
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Tobias Lindner
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Romina Rauer
- Core Facility Small Animal Imaging, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Alexander Hohn
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Oliver W Hakenberg
- Department of Urology, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Hans J Wester
- Institute for Radiopharmaceutical Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057 Rostock, Germany
| |
Collapse
|
45
|
Chemokine receptor - Directed imaging and therapy. Methods 2017; 130:63-71. [PMID: 28916148 DOI: 10.1016/j.ymeth.2017.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/29/2022] Open
Abstract
The C-X-C chemokine receptor 4 (CXCR4) and its natural ligand CXCL12 are key factors in the process of cell migration, homing of hematopoietic stem cells to the bone marrow, and represent important mediators of angiogenesis and cell proliferation. The CXCR4/CXCL12 interplay can be disrupted by CXCR4 antagonists such as Plerixafor which are already in daily clinical use, i.e. for mobilization and subsequent harvesting of hematopoietic progenitor cells and stem cell transplantation. In a pathological condition, involvement in the process of metastasis and homing of cancer cells to a protective niche has been described, making CXCR4 an attractive target for imaging and treatment of malignant diseases. Recently, radiolabeled analogs of CXCR4 antagonists (e.g., [68Ga]Pentixafor) have been introduced which can be used for non-invasive imaging of CXCR4 expression in animal models and humans using positron emission tomography. In addition, beta emitter-labeled antagonists (i.e., [177Lu]/[90Y]Pentixather) have been used in small patient cohorts for treatment of hematological neoplasms such as lymphoma, multiple myeloma and acute myeloid leukemia. This review reports on current imaging protocols for CXCR4-directed positron emission tomography in preclinical models and in humans. Furthermore, a theranostic approach using beta emitter-labeled antagonists is highlighted. Molecular imaging of the CXCR4/CXCL12 axis can contribute to further understand the process of metastatic spread and the intra-/interindividual heterogeneity of tumors. In addition, CXCR4 directed imaging allows tracking of activated, CXCR4+ immune cells. This allows for watching inflammatory processes, thus contributing to enlighten the role of the immune system in a variety of cardiovascular and neurological diseases.
Collapse
|
46
|
Promises and limitations of nanoparticles in the era of cell therapy: Example with CD19-targeting chimeric antigen receptor (CAR)-modified T cells. Int J Pharm 2017; 532:813-824. [PMID: 28764981 DOI: 10.1016/j.ijpharm.2017.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/16/2023]
Abstract
A number of nanoparticles has been developed by chemists for biomedical applications to meet imaging and targeting needs. In parallel, adoptive T therapy with chimeric antigen receptor engineered T cells (CART cells) has recently held great promise in B-cell malignancy treatments thanks to the development of anti-CD19 CAR T cells. Indeed, CD19 is a reliable B cell marker and a validated target protein for therapy. In this perspective article, we propose to discuss the advantages, limits and challenges of nanoparticles and CAR T cells, focusing on CD19 targeting objects: anti-CD19 nanoparticles and anti-CD19 CAR T cells, because those genetically-modified cells are the most widely developed in clinical setting. In the first part, we will introduce B cell malignancies and the CD19 surface marker. Then we will present the positioning of nanomedicine in the topic of B cell malignancy, before exposing CAR T technology. Finally, we will discuss the complementary approaches between nanoparticles and CAR T cells.
Collapse
|
47
|
Schottelius M, Osl T, Poschenrieder A, Hoffmann F, Beykan S, Hänscheid H, Schirbel A, Buck AK, Kropf S, Schwaiger M, Keller U, Lassmann M, Wester HJ. [ 177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics 2017; 7:2350-2362. [PMID: 28744319 PMCID: PMC5525741 DOI: 10.7150/thno.19119] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/11/2017] [Indexed: 12/30/2022] Open
Abstract
Purpose: Based on the clinical relevance of the chemokine receptor 4 (CXCR4) as a molecular target in cancer and on the success of [68Ga]pentixafor as an imaging probe for high-contrast visualization of CXCR4-expression, the spectrum of clinical CXCR4-targeting was expanded towards peptide receptor radionuclide therapy (PRRT) by the development of [177Lu]pentixather. Experimental design: CXCR4 affinity, binding specificity, hCXCR4 selectivity and internalization efficiency of [177Lu]pentixather were evaluated using different human and murine cancer cell lines. Biodistribution studies (1, 6, 48, 96h and 7d p.i.) and in vivo metabolite analyses were performed using Daudi-lymphoma bearing SCID mice. Extrapolated organ doses were cross-validated with human dosimetry (pre-therapeutic and during [177Lu]pentixather PRRT) in a patient with multiple myeloma (MM). Results: [177Lu]pentixather binds with high affinity, specificity and selectivity to hCXCR4 and shows excellent in vivo stability. Consequently, and supported by >96% plasma protein binding and a logP=-1.76, delaying whole-body clearance of [177Lu]pentixather, tumor accumulation was high and persistent, both in the Daudi model and the MM patient. Tumor/background ratios (7d p.i.) in mice were 499±202, 33±7, 4.0±0.8 and 116±22 for blood, intestine, kidney and muscle, respectively. In the patient, high tumor/kidney and tumor/liver dose ratios of 3.1 and 6.4 were observed during [177Lu]pentixather PRRT (7.8 GBq), with the kidneys being the dose-limiting organs. Conclusions: [177Lu]pentixather shows excellent in vivo CXCR4-targeting characteristics and a suitable pharmacokinetic profile, leading to high tumor uptake and retention and thus high radiation doses to tumor tissue during PRRT, suggesting high clinical potential of this [68Ga]pentixafor/[177Lu]pentixather based CXCR4-targeted theranostic concept.
Collapse
Affiliation(s)
- Margret Schottelius
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Theresa Osl
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Andreas Poschenrieder
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Frauke Hoffmann
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| | - Seval Beykan
- Department of Nuclear Medicine, Universität Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heribert Hänscheid
- Department of Nuclear Medicine, Universität Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Andreas Schirbel
- Department of Nuclear Medicine, Universität Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, Universität Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Saskia Kropf
- Scintomics GmbH, Lindach 4, 82256 Fürstenfeldbruck, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
- Deutsches Konsortium für translationale Krebsforschung (DKTK) and Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrich Keller
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
- Deutsches Konsortium für translationale Krebsforschung (DKTK) and Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, Universität Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Hans-Jürgen Wester
- Chair for Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meissner-Strasse 3, 85748 Garching, Germany
| |
Collapse
|
48
|
Lapa C, Herrmann K, Schirbel A, Hänscheid H, Lückerath K, Schottelius M, Kircher M, Werner RA, Schreder M, Samnick S, Kropf S, Knop S, Buck AK, Einsele H, Wester HJ, Kortüm KM. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics 2017; 7:1589-1597. [PMID: 28529638 PMCID: PMC5436514 DOI: 10.7150/thno.19050] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 11/05/2022] Open
Abstract
C-X-C-motif chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. We have recently reported promising first-in-man experience with CXCR4-directed endoradiotherapy (ERT) in multiple myeloma (MM). Eight heavily pretreated MM patients underwent a total of 10 ERT cycles (7 patients with 1 cycle and a single patient with 3 cycles). ERT was administered in combination with chemotherapy and autologous stem cell support. End points were occurrence and timing of adverse events, progression-free and overall survival. ERT was overall well tolerated without any unexpected acute adverse events or changes in vital signs. With absorbed tumor doses >30-70 Gy in intra- or extramedullary lesions, significant anti-myeloma activity was observed with 1 patient achieving complete remission and 5/8 partial remission. Directly after ERT major infectious complications were seen in one patient who died from sepsis 22 days after ERT, another patient with high tumor burden experienced lethal tumor lysis syndrome. Median progression-free survival was 54 days (range, 13-175), median overall survival was 223 days (range, 13-313). During follow-up (6 patients available), one patient died from infectious complications, 2/8 from disease progression, the remaining 3/8 patients are still alive. CXCR4-directed ERT was well-tolerated and exerted anti-myeloma activity even at very advanced stage MM with presence of extramedullary disease. Further assessment of this novel treatment option is highly warranted.
Collapse
|
49
|
Poschenrieder A, Schottelius M, Osl T, Schwaiger M, Wester HJ. [ 64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model. EJNMMI Radiopharm Chem 2017; 2:2. [PMID: 29527563 PMCID: PMC5835975 DOI: 10.1186/s41181-016-0020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/22/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The chemokine receptor 4 (CXCR4) is an important molecular target for both visualization and therapy of tumors. The aim of the present study was the synthesis and preclinical evaluation of a 64Cu-labeled, CXCR4-targeting peptide for positron emission tomography (PET) imaging of CXCR4 expression in vivo. METHODS For this purpose, 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), or 1,4,7-triazacyclononane-triacetic acid (NOTA) was conjugated to the highly affine CXCR4-targeting pentixather scaffold. Affinities were determined using Jurkat T-lymphocytes in competitive binding assays employing [125I]FC131 as the radioligand. Internalization and efflux studies of [64Cu]NOTA-pentixather were performed in chem-1 cells, stably transfected with hCXCR4. The stability of the tracer was evaluated in vitro and in vivo. Small-animal PET and biodistribution studies at different time points were performed in Daudi lymphoma-bearing severe combined immunodeficiency (SCID) mice. RESULTS [64Cu]NOTA-pentixather was rapidly radiolabeled at 60 °C with high radiochemical yields ≥90% and purities >99%. [64Cu]NOTA-pentixather offered the highest affinity of the evaluated peptides in this study (IC50 = 14.9 ± 2.1 nM), showed efficient CXCR4-targeting in vitro and was stable in blood and urine with high resistance to transchelation in ethylenediaminetetraacetic acid (EDTA) challenge studies. Due to the enhanced lipophilicity of [64Cu]NOTA-pentixather (logP = -1.2), biodistribution studies showed some nonspecific accumulation in the liver and intestines. However, tumor accumulation (13.1 ± 1.5% ID/g, 1.5 h p.i.) was CXCR4-specific and higher than in all other organs and resulted in high resolution delineation of Daudi tumors in PET/CT images in vivo. CONCLUSIONS [64Cu]NOTA-pentixather was fast and efficiently radiolabeled, showed effective CXCR4-targeting, high stability in vitro and in vivo and resulted in high resolution PET/CT images accompanied with a suitable biodistribution profile, making [64Cu]NOTA-pentixather a promising tracer for future application in humans.
Collapse
Affiliation(s)
- Andreas Poschenrieder
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| | - Margret Schottelius
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| | - Theresa Osl
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str.3, 85748 Garching, Germany
| |
Collapse
|