1
|
Malara A, Gruppi C, Massa M, Tira ME, Rosti V, Balduini A, Barosi G. Elevated plasma EDA fibronectin in primary myelofibrosis is determined by high allele burden of JAK2V617F mutation and strongly predicts splenomegaly progression. Front Oncol 2022; 12:987643. [PMID: 36212480 PMCID: PMC9532599 DOI: 10.3389/fonc.2022.987643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
In primary myelofibrosis, extra-domain A fibronectin (EDA-FN), the result of alternative splicing of FN gene, sustains megakaryocyte proliferation and confers a pro-inflammatory phenotype to bone marrow cell niches. In this work we assessed the levels of circulating EDA-FN in plasma samples of 122 patients with primary myelofibrosis. Patients with a homozygous JAK2V617F genotype displayed the higher level of plasma EDA-FN. Increased EDA-FN levels were associated with anemia, elevated high-sensitivity C-reactive protein, bone marrow fibrosis and splanchnic vein thrombosis at diagnosis. While no correlation was observed with CD34+ hematopoietic stem cell mobilization, elevated blood level of EDA-FN at diagnosis was a predictor of large splenomegaly (over 10 cm from the left costal margin) outcome. Thus, EDA-FN expression in primary myelofibrosis may represent the first marker of disease progression, and a novel target to treat splenomegaly.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Alessandro Malara, ; Alessandra Balduini,
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Margherita Massa
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Maria Enrica Tira
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Alessandro Malara, ; Alessandra Balduini,
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|
2
|
Khatib-Massalha E, Méndez-Ferrer S. Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions. Front Oncol 2022; 12:840044. [PMID: 35186768 PMCID: PMC8854253 DOI: 10.3389/fonc.2022.840044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) rely on local interactions in the bone marrow (BM) microenvironment with stromal cells and other hematopoietic cells that facilitate their survival and proliferation, and also regulate their functions. HSCs and multipotent progenitor cells differentiate into lineage-specific progenitors that generate all blood and immune cells. Megakaryocytes (Mks) are hematopoietic cells responsible for producing blood platelets, which are essential for normal hemostasis and blood coagulation. Although the most prominent function of Mks is platelet production (thrombopoiesis), other increasingly recognized functions include HSC maintenance and host immune response. However, whether and how these diverse programs are executed by different Mk subpopulations remains poorly understood. This Perspective summarizes our current understanding of diversity in ontogeny, functions and cell-cell interactions. Cumulative evidence suggests that BM microenvironment dysfunction, partly caused by mutated Mks, can induce or alter the progression of a variety of hematologic malignancies, including myeloproliferative neoplasms (MPNs) and other disorders associated with tissue scarring (fibrosis). Therefore, as an example of the heterogeneous functions of Mks in malignant hematopoiesis, we will discuss the role of Mks in the onset and progression of BM fibrosis. In this regard, abnormal interactions between of Mks and other immune cells might directly contribute to fibrotic diseases. Overall, further understanding of megakaryopoiesis and how Mks interact with HSCs and immune cells has potential clinical implications for stem cell transplantation and other therapies for hematologic malignancies, as well as for treatments to stimulate platelet production and prevent thrombocytopenia.
Collapse
Affiliation(s)
- Eman Khatib-Massalha
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Simón Méndez-Ferrer
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Instituto de Biomedicina de Sevilla-IBiS, Hospitales Universitarios Virgen del Rocío y Macarena/Spanish National Research Council (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Malara A, Gruppi C, Abbonante V, Cattaneo D, De Marco L, Massa M, Iurlo A, Gianelli U, Balduini CL, Tira ME, Muro AF, Chauhan AK, Rosti V, Barosi G, Balduini A. EDA fibronectin-TLR4 axis sustains megakaryocyte expansion and inflammation in bone marrow fibrosis. J Exp Med 2019; 216:587-604. [PMID: 30733282 PMCID: PMC6400533 DOI: 10.1084/jem.20181074] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
The fibronectin EDA isoform (EDA FN) is instrumental in fibrogenesis but, to date, its expression and function in bone marrow (BM) fibrosis have not been explored. We found that mice constitutively expressing the EDA domain (EIIIA+/+), but not EDA knockout mice, are more prone to develop BM fibrosis upon treatment with the thrombopoietin (TPO) mimetic romiplostim (TPOhigh). Mechanistically, EDA FN binds to TLR4 and sustains progenitor cell proliferation and megakaryopoiesis in a TPO-independent fashion, inducing LPS-like responses, such as NF-κB activation and release of profibrotic IL-6. Pharmacological inhibition of TLR4 or TLR4 deletion in TPOhigh mice abrogated Mk hyperplasia, BM fibrosis, IL-6 release, extramedullary hematopoiesis, and splenomegaly. Finally, developing a novel ELISA assay, we analyzed samples from patients affected by primary myelofibrosis (PMF), a well-known pathological situation caused by altered TPO signaling, and found that the EDA FN is increased in plasma and BM biopsies of PMF patients as compared with healthy controls, correlating with fibrotic phase.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientific San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientific San Matteo Foundation, Pavia, Italy
| | - Daniele Cattaneo
- Hematology Division, Istituto di Ricovero e Cura a Carattere Scientific Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Luigi De Marco
- Department of Translational Research, National Cancer Center (Istituto di Ricovero e Cura a Carattere Scientific Centro di Riferimento Oncologico), Aviano, Italy
- Department of Molecular and Experimental Research, The Scripps Research Institute, La Jolla, CA
| | - Margherita Massa
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientific San Matteo Foundation, Pavia, Italy
| | - Alessandra Iurlo
- Hematology Division, Istituto di Ricovero e Cura a Carattere Scientific Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Umberto Gianelli
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carlo L Balduini
- Department of Internal Medicine, Istituto di Ricovero e Cura a Carattere Scientific San Matteo Foundation, Pavia, Italy
| | - Maria E Tira
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Andrès F Muro
- The International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Anil K Chauhan
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientific Policlinico S. Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientific Policlinico S. Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnostics, Istituto di Ricovero e Cura a Carattere Scientific San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
4
|
Sub-Cellular Localization of Metalloproteinases in Megakaryocytes. Cells 2018; 7:cells7070080. [PMID: 30037039 PMCID: PMC6071070 DOI: 10.3390/cells7070080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Metalloproteinases (MMPs) are zinc-dependent endopeptidases that play essential roles as the mediator of matrix degradation and remodeling during organogenesis, wound healing and angiogenesis. Although MMPs were originally identified as matrixin proteases that act in the extracellular matrix, more recent research has identified members of the MMP family in unusual locations within the cells, exerting distinct functions in addition to their established role as extracellular proteases. During thrombopoiesis, megakaryocytes (Mks) sort MMPs to nascent platelets through pseudopodial-like structure known as proplatelets. Previous studies identified gelatinases, MMP-2 and MMP-9, as a novel regulator system of Mks and the platelet function. In this work we have exploited a sensitive immunoassay to detect and quantify multiple MMP proteins and their localization, in conditioned medium and sub-cellular fractions of primary human CD34+-derived Mks. We provide evidence that Mks express other MMPs in addition to gelatinases MMP-2 and MMP-9, peculiar isoforms of MMP-9 and MMPs with a novel nuclear compartmentalization.
Collapse
|