1
|
Capasso G, Mouawad N, Castronuovo M, Ruggeri E, Visentin A, Trentin L, Frezzato F. Focal adhesion kinase as a new player in the biology of onco-hematological diseases: the starting evidence. Front Oncol 2024; 14:1446723. [PMID: 39281374 PMCID: PMC11392731 DOI: 10.3389/fonc.2024.1446723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase mainly found in the focal adhesion regions of the plasma membrane and it has a crucial role in migration and the remodeling of cellular morphology. FAK is also linked to several aspects of cancer biology, from cytokine production to angiogenesis, drug resistance, invasion, and metastasis, as well as epithelial-to-mesenchymal transition. The gene locus of FAK is frequently amplified in several human tumors, thus causing FAK overexpression in several cancers. Furthermore, FAK can influence extracellular matrix production and exosome secretion through cancer-associated fibroblasts, thus it has an important role in tumor microenvironment regulation. Although the role of FAK in solid tumors is well known, its importance in onco-hematological diseases remains poorly explored. This review collects studies related to FAK significance in onco-hematological diseases and their microenvironments. Overall, the importance of FAK in blood tumors is increasingly evident, but further research is required to confirm it as a new therapeutic target in hematological contexts.
Collapse
Affiliation(s)
- Guido Capasso
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Nayla Mouawad
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Maria Castronuovo
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Nylund P, Nikkarinen A, Ek S, Glimelius I. Empowering macrophages: the cancer fighters within the tumour microenvironment in mantle cell lymphoma. Front Immunol 2024; 15:1373269. [PMID: 38566987 PMCID: PMC10985169 DOI: 10.3389/fimmu.2024.1373269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
In Mantle Cell Lymphoma (MCL), the role of macrophages within the tumour microenvironment (TME) has recently gained attention due to their impact on prognosis and response to therapy. Despite their low absolute number in MCL tumour tissue, recent findings reveal an association between the levels of macrophages and prognosis, consistent with trends observed in other lymphoma subtypes. M2-like macrophages, identified by markers such as CD163, contribute to angiogenesis and suppression of the immune response. Clinical trials with MCL patients treated with chemoimmunotherapy and targeted treatments underscore the adverse impact of high levels of M2-like macrophages. Immunomodulatory drugs like lenalidomide reduce the levels of MCL-associated CD163+ macrophages and enhance macrophage phagocytic activity. Similarly, clinical approaches targeting the CD47 "don't eat me" signalling, in combination with the anti-CD20-antibody rituximab, demonstrate increased macrophage activity and phagocytosis of MCL tumour cells. Cell-based therapies such as chimeric antigen receptor (CAR) T-cell have shown promise but various challenges persist, leading to a potential interest in CAR-macrophages (CAR-M). When macrophages are recruited to the TME, they offer advantages including phagocytic function and responsiveness to microenvironment alterations, suggesting their potential as a manipulable and inducible alternative when CAR T-cell therapies fails in the complex landscape of MCL treatment.
Collapse
Affiliation(s)
- Patrick Nylund
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
| | - Anna Nikkarinen
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ingrid Glimelius
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Unit, Uppsala University, Uppsala, Sweden
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
4
|
Severin F, Mouawad N, Ruggeri E, Visentin A, Martinello L, Pagnin E, Trimarco V, Pravato S, Angotzi F, Facco M, Trentin L, Frezzato F. Focal adhesion kinase activation by calcium-dependent calpain is involved in chronic lymphocytic leukaemia cell aggressiveness. Br J Haematol 2023; 203:224-236. [PMID: 37495265 DOI: 10.1111/bjh.18996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Signalling events downstream the B-cell receptor (BCR) are central for the survival and progression of chronic lymphocytic leukaemia (CLL) cells. Focal adhesion kinase (FAK), regulated through calpain, interacts with molecules of BCR signalling, cytoskeletal modelling and disease progression, such as Src/Lyn, cortactin and HS1. Hypothesizing that FAK might play a key role in CLL pathogenesis, we observed a down-modulation of FAK whole form, associated with FAK cleavage due to calpain activity upon BCR stimulation. Patients, whose cells were able to release Ca++ after BCR stimulation, had less amount of full-length FAK, which translated into a higher presence of cleaved/activated form of the protein phosphorylated at Y397, these features being mostly shown by immunoglobulin heavy chain (IGHV)-unmutated poor-prognosis patients. Moreover, we found that cortactin and HS1 proteins were overexpressed in those cells, suggesting a possible interplay with FAK. Treatment with the FAK inhibitor Defactinib was able to induce apoptosis in CLL cells. In conclusion, the malignant phenotype in unfavourable-prognosis patients seems to be encouraged by the overexpression of cortactin and HS1, that, together with FAK, may be involved in a druggable pathogenetic pathway in CLL.
Collapse
Affiliation(s)
- Filippo Severin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Nayla Mouawad
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Edoardo Ruggeri
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Leonardo Martinello
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Elisa Pagnin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Valentina Trimarco
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Stefano Pravato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Francesco Angotzi
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Monica Facco
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| |
Collapse
|
5
|
Jain N, Mamgain M, Chowdhury SM, Jindal U, Sharma I, Sehgal L, Epperla N. Beyond Bruton's tyrosine kinase inhibitors in mantle cell lymphoma: bispecific antibodies, antibody-drug conjugates, CAR T-cells, and novel agents. J Hematol Oncol 2023; 16:99. [PMID: 37626420 PMCID: PMC10463717 DOI: 10.1186/s13045-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
Mantle cell lymphoma is a B cell non-Hodgkin lymphoma (NHL), representing 2-6% of all NHLs and characterized by overexpression of cyclin D1. The last decade has seen the development of many novel treatment approaches in MCL, most notably the class of Bruton's tyrosine kinase inhibitors (BTKi). BTKi has shown excellent outcomes for patients with relapsed or refractory MCL and is now being studied in the first-line setting. However, patients eventually progress on BTKi due to the development of resistance. Additionally, there is an alteration in the tumor microenvironment in these patients with varying biological and therapeutic implications. Hence, it is necessary to explore novel therapeutic strategies that can be effective in those who progressed on BTKi or potentially circumvent resistance. In this review, we provide a brief overview of BTKi, then discuss the various mechanisms of BTK resistance including the role of genetic alteration, cancer stem cells, tumor microenvironment, and adaptive reprogramming bypassing the effect of BTK inhibition, and then provide a comprehensive review of current and emerging therapeutic options beyond BTKi including novel agents, CAR T cells, bispecific antibodies, and antibody-drug conjugates.
Collapse
Affiliation(s)
- Neeraj Jain
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mukesh Mamgain
- Department of Medical Oncology and Hematology, All India Institute of Medical Sciences, Rishikesh, India
| | - Sayan Mullick Chowdhury
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Udita Jindal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Isha Sharma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Lalit Sehgal
- Division of Hematology, Department of Medicine, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Narendranath Epperla
- The Ohio State University Comprehensive Cancer Center, Suite 7198, 2121 Kenny Rd, Columbus, OH, 43221, USA.
| |
Collapse
|
6
|
Sbrana FV, Fiordi B, Bordini J, Belloni D, Barbaglio F, Russo L, Scarfò L, Ghia P, Scielzo C. PYK2 is overexpressed in chronic lymphocytic leukaemia: A potential new therapeutic target. J Cell Mol Med 2023; 27:576-586. [PMID: 36747338 PMCID: PMC9930416 DOI: 10.1111/jcmm.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Chronic Lymphocytic Leukaemia (CLL) is the most common adult B-cell leukaemia and despite improvement in patients' outcome, following the use of targeted therapies, it remains incurable. CLL supportive microenvironment plays a key role in both CLL progression and drug resistance through signals that can be sensed by the main components of the focal adhesion complex, such as FAK and PYK2 kinases. Dysregulations of both kinases have been observed in several metastatic cancers, but their role in haematological malignancies is still poorly defined. We characterized FAK and PYK2 expression and observed that PYK2 expression is higher in leukaemic B cells and its overexpression significantly correlates with their malignant transformation. When targeting both FAK and PYK2 with the specific inhibitor defactinib, we observed a dose-response effect on CLL cells viability and survival. In vivo treatment of a CLL mouse model showed a decrease of the leukaemic clone in all the lymphoid organs along with a significant reduction of macrophages and of the spleen weight and size. Our results first define a possible prognostic value for PYK2 in CLL, and show that both FAK and PYK2 might become putative targets for both CLL and its microenvironment (e.g. macrophages), thus paving the way to an innovative therapeutic strategy.
Collapse
Affiliation(s)
- Francesca Vittoria Sbrana
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Benedetta Fiordi
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
- School of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
| | - Jessica Bordini
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Daniela Belloni
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Federica Barbaglio
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Luca Russo
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Lydia Scarfò
- School of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Paolo Ghia
- School of MedicineUniversità Vita‐Salute San RaffaeleMilanItaly
- B‐cell neoplasia Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Cristina Scielzo
- Malignant B cells biology and 3D modelling Unit, Division of Experimental OncologyIRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
7
|
Shen J, Liu J. Bruton's tyrosine kinase inhibitors in the treatment of primary central nervous system lymphoma: A mini-review. Front Oncol 2022; 12:1034668. [PMID: 36465385 PMCID: PMC9713408 DOI: 10.3389/fonc.2022.1034668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a highly aggressive brain tumor with poor prognosis if no treatment. The activation of the NF-κB (nuclear factor kappa-B) is the oncogenic hallmark of PCNSL, and it was driven by B cell receptor (BCR) and Toll-like receptor (TLR) signaling pathways. The emergence of Bruton's tyrosine kinase inhibitors (BTKis) has brought the dawn of life to patients with PCNSL. This review summarizes the management of PCNSL with BTKis and potential molecular mechanisms of BTKi in the treatment of PCNSL. And the review will focus on the clinical applications of BTKi in the treatment of PCNSL including the efficacy and adverse events, the clinical trials currently being carried out, the underlying mechanisms of resistance to BTKi and possible solutions to drug resistance.
Collapse
Affiliation(s)
- Jing Shen
- Department of Hematology, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jinghua Liu
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Hematology, Northern Theater General Hospital, Shenyang, China
| |
Collapse
|
8
|
Ghaderi A, Zhong W, Okhovat MA, Aschan J, Svensson A, Sander B, Schultz J, Olin T, Österborg A, Hojjat-Farsangi M, Mellstedt H. A ROR1 Small Molecule Inhibitor (KAN0441571C) Induced Significant Apoptosis of Mantle Cell Lymphoma (MCL) Cells. Pharmaceutics 2022; 14:pharmaceutics14102238. [PMID: 36297673 PMCID: PMC9607197 DOI: 10.3390/pharmaceutics14102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is absent in most normal adult tissues but overexpressed in various malignancies and is of importance for tumor cell survival, proliferation, and metastasis. In this study, we evaluated the apoptotic effects of a novel small molecule inhibitor of ROR1 (KAN0441571C) as well as venetoclax (BCL-2 inhibitor), bendamustine, idelalisib (PI3Kδ inhibitor), everolimus (mTOR inhibitor), and ibrutinib (BTK inhibitor) alone or in combination in human MCL primary cells and cell lines. ROR1 expression was evaluated by flow cytometry and Western blot (WB). Cytotoxicity was analyzed by MTT and apoptosis by Annexin V/PI staining as well as signaling and apoptotic proteins (WB). ROR1 was expressed both in patient-derived MCL cells and human MCL cell lines. KAN0441571C alone induced significant time- and dose-dependent apoptosis of MCL cells. Apoptosis was accompanied by decreased expression of MCL-1 and BCL-2 and cleavage of PARP and caspase 3. ROR1 was dephosphorylated as well as ROR1-associated signaling pathway molecules, including the non-canonical WNT signaling pathway (PI3Kδ/AKT/mTOR). The combination of KAN0441571C and ibrutinib, venetoclax, idelalisib, everolimus, or bendamustine had a synergistic apoptotic effect and significantly prevented phosphorylation of ROR1-associated signaling molecules as compared to KAN0441571C alone. Our results suggest that targeting ROR1 by a small molecule inhibitor, KAN0441571C, should be further evaluated particularly in combination with other targeting drugs as a new therapeutic approach for MCL.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Johanna Aschan
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Ann Svensson
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Correspondence: ; Tel.: +46-735-234-706
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
9
|
Ceccato J, Piazza M, Pizzi M, Manni S, Piazza F, Caputo I, Cinetto F, Pisoni L, Trojan D, Scarpa R, Zambello R, Tos APD, Trentin L, Semenzato G, Vianello F. A bone-based 3D scaffold as an in-vitro model of microenvironment–DLBCL lymphoma cell interaction. Front Oncol 2022; 12:947823. [PMID: 36330473 PMCID: PMC9623125 DOI: 10.3389/fonc.2022.947823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
About 30% of patients with diffuse large B-cell lymphoma (DLBCL) relapse or exhibit refractory disease (r/r DLBCL) after first-line immunochemotherapy. Bone marrow (BM) involvement confers a dismal prognosis at diagnosis, likely due to the interaction between neoplastic cells and a complex tumor microenvironment (TME). Therefore, we developed a 3D in-vitro model from human decellularized femoral bone fragments aiming to study the role of mesenchymal stromal cells (MSC) and the extracellular matrix (ECM) in the adaptation, growth, and drug resistance of DLBCL lymphoma cells. The 3D spatial configuration of the model was studied by histological analysis and confocal and multiphoton microscopy which allowed the 3D digital reproduction of the structure. We proved that MSC adapt and expand in the 3D scaffold generating niches in which also other cell types may grow. DLBCL cell lines adhered and grew in the 3D scaffold, both in the presence and absence of MSC, suggesting an active ECM–lymphocyte interaction. We found that the germinal center B-cell (GCB)-derived OCI-LY18 cells were more resistant to doxorubicin-induced apoptosis when growing in the decellularized 3D bone scaffold compared to 2D cultures (49.9% +/- 7.7% Annexin V+ cells in 2D condition compared to 30.7% + 9.2% Annexin V+ 3D adherent cells in the ECM model), thus suggesting a protective role of ECM. The coexistence of MSC in the 3D scaffold did not significantly affect doxorubicin-induced apoptosis of adherent OCI-LY18 cells (27.6% +/- 7.3% Annexin V+ 3D adherent cells in the ECM/MSC model after doxorubicin treatment). On the contrary, ECM did not protect the activated B-cell (ABC)-derived NU-DUL-1 lymphoma cell line from doxorubicin-induced apoptosis but protection was observed when MSC were growing in the bone scaffold (40.6% +/- 5.7% vs. 62.1% +/- 5.3% Annexin V+ 3D adherent cells vs. 2D condition). These data suggest that the interaction of lymphoma cells with the microenvironment may differ according to the DLBCL subtype and that 2D systems may fail to uncover this behavior. The 3D model we proposed may be improved with other cell types or translated to the study of other pathologies with the final goal to provide a tool for patient-specific treatment development.
Collapse
Affiliation(s)
- Jessica Ceccato
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Maria Piazza
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Sabrina Manni
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Francesco Piazza
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Ilaria Caputo
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Francesco Cinetto
- Internal Medicine and Allergology and Clinical Immunology Units, Treviso Ca’ Foncello Hospital, Treviso, Italy
| | - Lorena Pisoni
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Riccardo Scarpa
- Internal Medicine and Allergology and Clinical Immunology Units, Treviso Ca’ Foncello Hospital, Treviso, Italy
| | - Renato Zambello
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Fabrizio Vianello
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- *Correspondence: Fabrizio Vianello,
| |
Collapse
|
10
|
Tumor Microenvironment and Immunotherapy-Based Approaches in Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14133229. [PMID: 35804999 PMCID: PMC9265015 DOI: 10.3390/cancers14133229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma (NHL) characterized by the translocation t(11;14) (q13;q32) and a poor response to rituximab–anthracycline-based chemotherapy. High-dose cytarabine-based regimens offer a durable response, but an important number of MCL patients are not eligible for intensive treatment and are ideal candidates for novel targeted therapies (such as BTK, proteasome or BCL2 inhibitors, Immunomodulatory Drugs (IMiDs), bispecific antibodies, or CAR-T cell therapy). On the bench side, several studies aiming to integrate the tumor within its ecosystem highlighted a critical role of the tumor microenvironment (TME) in the expansion and resistance of MCL. This led to important insights into the role of the TME in the management of MCL, including potential targets and biomarkers. Indeed, targeted agents often have a combined mechanism of action on the tumor B cell but also on the tumor microenvironment. The aim of this review is to briefly describe the current knowledge on the biology of the TME in MCL and expose the results of the different therapeutic strategies integrating the TME in this disease.
Collapse
|
11
|
Cook MR, Dunleavy K. Targeting The Tumor Microenvironment in Lymphomas: Emerging Biological Insights and Therapeutic Strategies. Curr Oncol Rep 2022; 24:1121-1131. [DOI: 10.1007/s11912-022-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 11/03/2022]
|
12
|
Bacova B, Kohutova Z, Zubata I, Gaherova L, Kucera P, Heizer T, Mikesova M, Karel T, Novak J. Cellular and humoral immune response to SARS-CoV-2 mRNA vaccines in patients treated with either Ibrutinib or Rituximab. Clin Exp Med 2022; 23:371-379. [PMID: 35352210 PMCID: PMC8963888 DOI: 10.1007/s10238-022-00809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/05/2022] [Indexed: 01/05/2023]
Abstract
Patients treated with B-cell-targeting therapies like Rituximab or Ibrutinib have decreased serological response to various vaccines. In this study, we tested serological and cellular response to SARS-CoV-2 mRNA vaccines in 16 patients treated with Ibrutinib, 16 treated with maintenance Rituximab, 18 patients with chronic lymphocytic leukaemia (CLL) with watch and wait status and 21 healthy volunteers. In comparison with the healthy volunteers, where serological response was achieved by 100% subjects, patients on B-cell-targeting therapy (Ibrutinib and Rituximab) had their response dramatically impaired. The serological response was achieved in 0% of Rituximab treated, 18% of Ibrutinib treated and 50% of untreated CLL patients. Cell-mediated immunity analysed by the whole blood Interferon-γ Release immune Assay developed in 80% of healthy controls, 62% of Rituximab treated, 75% of Ibrutinib treated and 55% of untreated CLL patients. The probability of cell-mediated immune response development negatively correlates with disease burden mainly in CLL patients. Our study shows that even though the serological response to SARS-CoV-2 vaccine is severely impaired in patients treated with B-cell-targeting therapy, the majority of these patients develop sufficient cell-mediated immunity. The vaccination of these patients therefore might be meaningful in terms of protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Barbora Bacova
- Department of Haematology, 3RdFaculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Zuzana Kohutova
- Department of Haematology, 3RdFaculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Ivana Zubata
- Department of Haematology, 3RdFaculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Lubica Gaherova
- Department of Haematology, 3RdFaculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic
| | - Petr Kucera
- Department of Immunology and Clinical Biochemistry, 3Rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Heizer
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marcela Mikesova
- Central Laboratories of the Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Tomas Karel
- Department of Statistics and Probability, Faculty of Informatics and Statistics, University of Economics and Business in Prague. Namesti W. Churchilla, 1938/4, 130 67, Prague 3, Czech Republic
| | - Jan Novak
- Department of Haematology, 3RdFaculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Srobarova 50, 100 34, Prague 10, Czech Republic.
- Department of Immunology and Clinical Biochemistry, 3Rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
13
|
Burley TA, Hesketh A, Bucca G, Kennedy E, Ladikou EE, Towler BP, Mitchell S, Smith CP, Fegan C, Johnston R, Pepper A, Pepper C. Elucidation of Focal Adhesion Kinase as a Modulator of Migration and Invasion and as a Potential Therapeutic Target in Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14071600. [PMID: 35406371 PMCID: PMC8996841 DOI: 10.3390/cancers14071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
The retention and re-migration of Chronic Lymphocytic Leukemia cells into cytoprotective and proliferative lymphoid niches is thought to contribute to the development of resistance, leading to subsequent disease relapse. The aim of this study was to elucidate the molecular processes that govern CLL cell migration to elicit a more complete inhibition of tumor cell migration. We compared the phenotypic and transcriptional changes induced in CLL cells using two distinct models designed to recapitulate the peripheral circulation, CLL cell migration across an endothelial barrier, and the lymph node interaction between CLL cells and activated T cells. Initially, CLL cells were co-cultured with CD40L-expressing fibroblasts and exhibited an activated B-cell phenotype, and their transcriptional signatures demonstrated the upregulation of pro-survival and anti-apoptotic genes and overrepresentation of the NF-κB signaling pathway. Using our dynamic circulating model, we were able to study the transcriptomics and miRNomics associated with CLL migration. More than 3000 genes were altered when CLL cells underwent transendothelial migration, with an overrepresentation of adhesion and cell migration gene sets. From this analysis, an upregulation of the FAK signaling pathway was observed. Importantly, PTK2 (FAK) gene expression was significantly upregulated in migrating CLL cells (PTK2 Fold-change = 4.9). Here we demonstrate that TLR9 agonism increased levels of p-FAK (p ≤ 0.05), which could be prevented by pharmacological inhibition of FAK with defactinib (p ≤ 0.01). Furthermore, a reduction in CLL cell migration and invasion was observed when FAK was inhibited (p ≤ 0.0001), supporting a role for FAK in both CLL migration and tissue invasion. When taken together, our data highlights the potential for combining FAK inhibition with current targeted therapies as a more effective treatment regime for CLL.
Collapse
Affiliation(s)
- Thomas A. Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Andrew Hesketh
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK; (A.H.); (G.B.); (C.P.S.)
| | - Giselda Bucca
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK; (A.H.); (G.B.); (C.P.S.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Benjamin P. Towler
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| | - Colin P. Smith
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK; (A.H.); (G.B.); (C.P.S.)
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7YH, UK
| | - Christopher Fegan
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Rosalynd Johnston
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
- Correspondence: ; Tel.: +44-01273-678644
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (T.A.B.); (E.K.); (E.E.L.); (B.P.T.); (S.M.); (C.P.)
| |
Collapse
|
14
|
Sethi S, Epstein-Peterson Z, Kumar A, Ho C. Current Knowledge in Genetics, Molecular Diagnostic Tools, and Treatments for Mantle Cell Lymphomas. Front Oncol 2021; 11:739441. [PMID: 34888236 PMCID: PMC8649949 DOI: 10.3389/fonc.2021.739441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/29/2021] [Indexed: 12/04/2022] Open
Abstract
Mantle Cell lymphoma (MCL) is a mature B-cell lymphoma with a well-known hallmark genetic alteration in most cases, t (11,14)(q13q32)/CCND1-IGH. However, our understanding of the genetic and epigenetic alterations in MCL has evolved over the years, and it is now known that translocations involving CCND2, or cryptic insertion of enhancer elements of IGK or IGL gene, can also lead to MCL. On a molecular level, MCL can be broadly classified into two subtypes, conventional MCL (cMCL) and non-nodal MCL (nnMCL), each with different postulated tumor cell origin, clinical presentation and behavior, mutational pattern as well as genomic complexity. This article reviews both the common and rare alterations in MCL on a gene mutational, chromosomal arm, and epigenetic level, in the context of their contribution to the lymphomagenesis and disease evolution in MCL. This article also summarizes the important prognostic factors, molecular diagnostic tools, and treatment options based on the most recent MCL literature.
Collapse
Affiliation(s)
- Shenon Sethi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Zachary Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Anita Kumar
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
15
|
Togitani K, Iguchi M, Asagiri T, Ogasawara F, Murakami I, Kojima K. Glucocorticoid-induced redistribution lymphocytosis in mantle cell lymphoma with hyaline vascular Castleman disease-like features. J Clin Exp Hematop 2021; 62:46-51. [PMID: 34707036 PMCID: PMC9010492 DOI: 10.3960/jslrt.21024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a case of mantle cell lymphoma mimicking Castleman disease. A 76-year-old man presented with generalized lymphadenopathy, splenomegaly, anemia, polyclonal gammopathy, and pulmonary infiltrations. Lymph node biopsy revealed histological features of hyaline vascular Castleman disease. Treatment with prednisolone induced lymphocytosis with immunophenotypic and genetic features of mantle cell lymphoma. A detailed immunohistochemical study of the lymph node demonstrated a mantle cell lymphoma-mantle zone growth pattern. Glucocorticoid-induced distribution lymphocytosis has not been reported in mantle cell lymphoma. Careful observation of circulating lymphocytes during steroid treatment may enable diagnosis of the underlying occult lymphoma in a subset of patients exhibiting clinical manifestations of Castleman disease.
Collapse
Affiliation(s)
- Kazuto Togitani
- Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Mitsuko Iguchi
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Tadashi Asagiri
- Department of Laboratory Medicine, Kochi Medical School Hospital, Nankoku, Kochi, Japan
| | - Fumiya Ogasawara
- Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Ichiro Murakami
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kensuke Kojima
- Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
16
|
Wang X, Steinberg T, Dieterle MP, Ramminger I, Husari A, Tomakidi P. FAK Shutdown: Consequences on Epithelial Morphogenesis and Biomarker Expression Involving an Innovative Biomaterial for Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22189774. [PMID: 34575938 PMCID: PMC8470904 DOI: 10.3390/ijms22189774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.
Collapse
Affiliation(s)
- Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Correspondence:
| | - Martin P. Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| |
Collapse
|
17
|
Jalali S, Ansell SM. Role of the Bone Marrow Niche in Supporting the Pathogenesis of Lymphoid Malignancies. Front Cell Dev Biol 2021; 9:692320. [PMID: 34395425 PMCID: PMC8355623 DOI: 10.3389/fcell.2021.692320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
While the bone marrow (BM) microenvironment is the primary location for nurturing the multipotent hematopoietic stem cells and developing the blood cells of either myeloid or lymphoid origin under normal physiological conditions, it could provide a supportive milieu for the proliferation of blood cancer cells. In fact, the multiple and complex direct cell-to-cell or indirect soluble factors-mediated interactions taking place among the BM cells of different origins are shown to play a significant role in tumorigenesis of hematological cancers. In the current review, we focus on lymphoid malignancies and highlight the novel insights surrounding the role of both cellular as well as non-cellular BM compartments in modulating hematopoiesis and promoting growth and proliferation of cancer cells across a variety of aggressive and indolent lymphoid malignancies, including diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Waldenstrom Macroglobulinemia. We also discuss the mechanisms of potential intervention and discuss their therapeutic impact in clinical settings.
Collapse
Affiliation(s)
- Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
18
|
SOX11, CD70 and Treg cells configure the tumor immune microenvironment of aggressive mantle cell lymphoma. Blood 2021; 138:2202-2215. [PMID: 34189576 DOI: 10.1182/blood.2020010527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with a heterogeneous clinical and biological behavior. SOX11 oncogenic expression contributes to the aggressiveness of these tumors by different mechanisms including tumor and stromal cell interactions. However, the precise composition of the immune cell microenvironment of MCL, its possible relationship to SOX11 expression, and how it may contribute to tumor behavior is not well known. Here, we performed an integrative transcriptome analysis of 730 immune-related genes combined with the immune cell phenotype analysis by immunohistochemistry in SOX11+ and SOX11- primary nodal MCL cases and non-neoplastic reactive lymph nodes (RLN). SOX11+ MCL had a significant lower T-cell intratumoral infiltration compared to negative cases. A reduced expression of MHCI/II-like and T-cell costimulation and signaling activation related transcripts was significantly associated with poor clinical outcome. Moreover, we identified CD70 as a SOX11 direct target gene, whose overexpression was induced in SOX11+ but not SOX11- tumor cells by CD40L in vitro. CD70 was overexpressed in primary SOX11+ MCL and it was associated with an immune unbalance of the tumor microenvironment characterized by increased number of effector Treg cell infiltration, higher proliferation, and aggressive clinical course. CD27 was expressed with moderate to strong intensity in 76% of cases. Overall, our results suggest that SOX11 expression in MCL is associated with an immunosuppressive microenvironment characterized by CD70 overexpression in tumor cells, increased Treg cell infiltration and downmodulation of antigen-processing and -presentation and T-cell activation that could promote MCL progression and represent a potential target for tailored therapies.
Collapse
|
19
|
Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv 2021; 4:4382-4392. [PMID: 32926124 DOI: 10.1182/bloodadvances.2020001685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-β expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-β/δ. Treatment with the selective PI3K-β/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.
Collapse
|
20
|
Integration of Metabolomics and Gene Expression Profiling Elucidates IL4I1 as Modulator of Ibrutinib Resistance in ABC-Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092146. [PMID: 33946867 PMCID: PMC8124963 DOI: 10.3390/cancers13092146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, we present a workflow to understand the modulator of ibrutinib resistance in ABC diffuse large B cell lymphoma by integrating Metabolomics and Gene expression profiling as shown in the graphical abstract. We performed an untargeted metabolomics analysis using a Q-Exactive high-resolution mass spectrometer to dissect the metabolic reprogramming associated with acquired ibrutinib resistance in paired ibrutinib-sensitive and ibrutinib-resistant DLBCL cell lines. Further, we identified common denominators, integrating metabolome and transcriptome data, confirming clinical significance, integrating pathways, and identifying the candidate gene driving ibrutinib resistance and metabolic reprogramming. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that cause metabolic deregulation in cancer cells. Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL). B-cell NHLs rely on Bruton’s tyrosine kinase (BTK) mediated B-cell receptor signaling for survival and disease progression. However, they are often resistant to BTK inhibitors or soon acquire resistance after drug exposure resulting in the drug-tolerant form. The drug-tolerant clones proliferate faster, have increased metabolic activity, and shift to oxidative phosphorylation; however, how this metabolic programming occurs in the drug-resistant tumor is poorly understood. In this study, we explored for the first time the metabolic regulators of ibrutinib-resistant activated B-cell (ABC) DLBCL using a multi-omics analysis that integrated metabolomics (using high-resolution mass spectrometry) and transcriptomic (gene expression analysis). Overlay of the unbiased statistical analyses, genetic perturbation, and pharmaceutical inhibition was further used to identify the key players contributing to the metabolic reprogramming of the drug-resistant clone. Gene-metabolite integration revealed interleukin four induced 1 (IL4I1) at the crosstalk of two significantly altered metabolic pathways involved in producing various amino acids. We showed for the first time that drug-resistant clones undergo metabolic reprogramming towards oxidative phosphorylation and are modulated via the BTK-PI3K-AKT-IL4I1 axis. Our report shows how these cells become dependent on PI3K/AKT signaling for survival after acquiring ibrutinib resistance and shift to sustained oxidative phosphorylation; additionally, we outline the compensatory pathway that might regulate this metabolic reprogramming in the drug-resistant cells. These findings from our unbiased analyses highlight the role of metabolic reprogramming during drug resistance development. Our work demonstrates that a multi-omics approach can be a robust and impartial strategy to uncover genes and pathways that drive metabolic deregulation in cancer cells.
Collapse
|
21
|
Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13040554. [PMID: 33920031 PMCID: PMC8071053 DOI: 10.3390/pharmaceutics13040554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) controls several cancer aggressive potentials of cell movement and dissemination. As epithelial–mesenchymal transition (EMT) and the migratory-associated integrins, known influencers of metastasis, have been found to be linked with FAK activity, this study unraveled the potential pharmacological effect of artocarpin in targeting FAK resulting in the suppression of EMT and migratory behaviors of lung cancer cells. Treatment with artocarpin was applied at concentrations of 0–10 μM, and the results showed non-cytotoxicity in lung cancer cell lines (A549 and H460), normal lung (BEAS-2B) cells and primary metastatic lung cancer cells (ELC12, ELC16, and ELC20). We also found that artocarpin (0–10 µM) had no effect on cell viability, proliferation, and migration in BEAS-2B cells. For metastasis-related approaches, artocarpin significantly inhibited cell migration, invasion, and filopodia formation. Artocarpin also dramatically suppressed anchorage-independent growth, cancer stem cell (CSC) spheroid formation, and viability of CSC-rich spheroids. For molecular targets of artocarpin action, computational molecular docking revealed that artocarpin had the best binding affinity of −8.0 kcal/mol with FAK protein. Consistently, FAK-downstream proteins, namely active Akt (phosphorylated Akt), active mTOR (phosphorylated mTOR), and Cdc42, and EMT marker and transcription factor (N-cadherin, Vimentin, and Slug), were found to be significantly depleted in response to artocarpin treatment. Furthermore, we found the decrease of Caveolin-1 (Cav-1) accompanied by the reduction of integrin-αν and integrin-β3. Taken together, these findings support the anti-metastasis potentials of the compound to be further developed for cancer therapy.
Collapse
|
22
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
23
|
Zhu MX, Wan WL, Hong Y, Wang YF, Dong F, Jing HM. Expression and role of MIG/CXCR3 axis in mantle cell lymphoma. Exp Cell Res 2020; 397:112365. [PMID: 33197439 DOI: 10.1016/j.yexcr.2020.112365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
Mantle cell lymphoma (MCL) is a unique subtype of B-cell non-Hodgkin lymphoma with a generally aggressive and heterogeneous clinical course. Chemokines are one of the complex components in the tumor microenvironment (TME), and they play a vital role in tumor progression and metastasis. There is no information about the monokine induced by gamma interferon (MIG)/CXC chemokine receptor 3 (CXCR3) axis in patients with MCL. In the present study, we discovered that CXCR3 was highly expressed in MCL tissues and some cell lines including Maver, Z138, and Jeko-1, and significantly associated with clinical factors reflecting high tumor burden in MCL patients. Moreover, elevated serum MIG at diagnosis showed a close relationship with advanced disease and poor prognosis in MCL patients. Additionally, the role of CXCR3 in promoting the proliferation and inhibiting the apoptosis of primary MCL cells and Jeko-1 cells was validated by in vitro experiments. Further research indicated that the MIG/CXCR3 axis mediated MCL cell migration to the TME through the PI3K/AKT signaling pathway. Therefore, the MIG/CXCR3 axis might be a potential target with fewer off-target side effects than other targets in MCL.
Collapse
Affiliation(s)
- Ming-Xia Zhu
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Wen-Li Wan
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yun Hong
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Yan-Fang Wang
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Fei Dong
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China
| | - Hong-Mei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Complete Response of Synchronous Liver Metastasis in a Pancreatic Ductal Adenocarcinoma, When Surgery Could Represent a Therapeutic Option. Can J Gastroenterol Hepatol 2020; 2020:8679751. [PMID: 33102398 PMCID: PMC7569435 DOI: 10.1155/2020/8679751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and short survival. Today, the use of new polytherapeutic regimens increases clinical outcome of these patients opening new clinical scenario. A crucial issue related to the actual improvement achieved with these new regimens is represented by the occasional possibility to observe a radiological complete response of metastatic lesions in patients with synchronous primary tumor. What could be the best therapeutic management of these patients? Could surgery represent an indication? Herein, we reported a case of a patient with PDAC of the head with multiple liver metastases, who underwent first-line chemotherapy with mFOLFIRINOX. After 10 cycles, he achieved a complete radiological response of liver metastases and a partial response of pancreatic lesion. A duodenocephalopancreasectomy was performed. Due to liver a lung metastases after 8 months from surgery, a second-line therapy was started with a disease-free survival and overall survival of 8 months and 45 months, respectively. Improvement in the molecular characterization of PDAC could help in the selection of patients suitable for multimodal treatments. This trial is registered with NCT02892305 and NCT00855634.
Collapse
|
25
|
Navarro A, Beà S, Jares P, Campo E. Molecular Pathogenesis of Mantle Cell Lymphoma. Hematol Oncol Clin North Am 2020; 34:795-807. [PMID: 32861278 DOI: 10.1016/j.hoc.2020.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with heterogeneous clinical behavior molecularly characterized by the constitutive overexpression of cyclin D1 and deregulation of different signaling pathways. SOX11 expression determines an aggressive phenotype associated with accumulation of many chromosomal alterations and somatic gene mutations. A subset of patients with the SOX11-negative leukemic non-nodal MCL subtype follows an initial indolent clinical evolution and may not require treatment at diagnosis, although eventually may progress to an aggressive disease. We discuss the genetic and molecular alterations with impact on the cancer hallmarks that characterize the lymphomagenesis of the 2 MCL subtypes.
Collapse
Affiliation(s)
- Alba Navarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149-153, Barcelona 08036, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain; Hematopathology Unit, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, Barcelona 08036, Spain.
| |
Collapse
|
26
|
Solimando AG, Annese T, Tamma R, Ingravallo G, Maiorano E, Vacca A, Specchia G, Ribatti D. New Insights into Diffuse Large B-Cell Lymphoma Pathobiology. Cancers (Basel) 2020; 12:cancers12071869. [PMID: 32664527 PMCID: PMC7408689 DOI: 10.3390/cancers12071869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL), accounting for about 40% of all cases of NHL. Analysis of the tumor microenvironment is an important aspect of the assessment of the progression of DLBCL. In this review article, we analyzed the role of different cellular components of the tumor microenvironment, including mast cells, macrophages, and lymphocytes, in the tumor progression of DLBCL. We examined several approaches to confront the available pieces of evidence, whereby three key points emerged. DLBCL is a disease of malignant B cells spreading and accumulating both at nodal and at extranodal sites. In patients with both nodal and extranodal lesions, the subsequent induction of a cancer-friendly environment appears pivotal. The DLBCL cell interaction with mature stromal cells and vessels confers tumor protection and inhibition of immune response while delivering nutrients and oxygen supply. Single cells may also reside and survive in protected niches in the nodal and extranodal sites as a source for residual disease and relapse. This review aims to molecularly and functionally recapitulate the DLBCL–milieu crosstalk, to relate niche and pathological angiogenic constitution and interaction factors to DLBCL progression.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080.5478326 (D.R.)
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70100 Bari, Italy; (G.I.); (E.M.)
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, 70100 Bari, Italy; (G.I.); (E.M.)
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, 70100 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; (T.A.); (R.T.)
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080.5478326 (D.R.)
| |
Collapse
|
27
|
Anti-angiogenesis and Immunotherapy: Novel Paradigms to Envision Tailored Approaches in Renal Cell-Carcinoma. J Clin Med 2020; 9:jcm9051594. [PMID: 32456352 PMCID: PMC7291047 DOI: 10.3390/jcm9051594] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Although decision making strategy based on clinico-histopathological criteria is well established, renal cell carcinoma (RCC) represents a spectrum of biological ecosystems characterized by distinct genetic and molecular alterations, diverse clinical courses and potential specific therapeutic vulnerabilities. Given the plethora of drugs available, the subtype-tailored treatment to RCC subtype holds the potential to improve patient outcome, shrinking treatment-related morbidity and cost. The emerging knowledge of the molecular taxonomy of RCC is evolving, whilst the antiangiogenic and immunotherapy landscape maintains and reinforces their potential. Although several prognostic factors of survival in patients with RCC have been described, no reliable predictive biomarkers of treatment individual sensitivity or resistance have been identified. In this review, we summarize the available evidence able to prompt more precise and individualized patient selection in well-designed clinical trials, covering the unmet need of medical choices in the era of next-generation anti-angiogenesis and immunotherapy.
Collapse
|
28
|
George B, Mullick Chowdhury S, Hart A, Sircar A, Singh SK, Nath UK, Mamgain M, Singhal NK, Sehgal L, Jain N. Ibrutinib Resistance Mechanisms and Treatment Strategies for B-Cell lymphomas. Cancers (Basel) 2020; 12:E1328. [PMID: 32455989 PMCID: PMC7281539 DOI: 10.3390/cancers12051328] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
Chronic activation of B-cell receptor (BCR) signaling via Bruton tyrosine kinase (BTK) is largely considered to be one of the primary mechanisms driving disease progression in B-Cell lymphomas. Although the BTK-targeting agent ibrutinib has shown promising clinical responses, the presence of primary or acquired resistance is common and often leads to dismal clinical outcomes. Resistance to ibrutinib therapy can be mediated through genetic mutations, up-regulation of alternative survival pathways, or other unknown factors that are not targeted by ibrutinib therapy. Understanding the key determinants, including tumor heterogeneity and rewiring of the molecular networks during disease progression and therapy, will assist exploration of alternative therapeutic strategies. Towards the goal of overcoming ibrutinib resistance, multiple alternative therapeutic agents, including second- and third-generation BTK inhibitors and immunomodulatory drugs, have been discovered and tested in both pre-clinical and clinical settings. Although these agents have shown high response rates alone or in combination with ibrutinib in ibrutinib-treated relapsed/refractory(R/R) lymphoma patients, overall clinical outcomes have not been satisfactory due to drug-associated toxicities and incomplete remission. In this review, we discuss the mechanisms of ibrutinib resistance development in B-cell lymphoma including complexities associated with genomic alterations, non-genetic acquired resistance, cancer stem cells, and the tumor microenvironment. Furthermore, we focus our discussion on more comprehensive views of recent developments in therapeutic strategies to overcome ibrutinib resistance, including novel BTK inhibitors, clinical therapeutic agents, proteolysis-targeting chimeras and immunotherapy regimens.
Collapse
Affiliation(s)
- Bhawana George
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sayan Mullick Chowdhury
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Amber Hart
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Anuvrat Sircar
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Satish Kumar Singh
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Uttam Kumar Nath
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Mukesh Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Naveen Kumar Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India; (M.M.); (N.K.S.)
| | - Lalit Sehgal
- Department of Internal Medicine, the Ohio State University, Columbus, OH 43210, USA; (S.M.C.); (A.H.); (A.S.); (S.K.S.)
| | - Neeraj Jain
- Department of Medical Oncology & Hematology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
29
|
A Comprehensive Biological and Clinical Perspective Can Drive a Patient-Tailored Approach to Multiple Myeloma: Bridging the Gaps between the Plasma Cell and the Neoplastic Niche. JOURNAL OF ONCOLOGY 2020; 2020:6820241. [PMID: 32508920 PMCID: PMC7251466 DOI: 10.1155/2020/6820241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
There is a broad spectrum of diseases labeled as multiple myeloma (MM). This is due not only to the composite prognostic risk factors leading to different clinical outcomes and responses to treatments but also to the composite tumor microenvironment that is involved in a vicious cycle with the MM plasma cells. New therapeutic strategies have improved MM patients' chances of survival. Nevertheless, certain patients' subgroups have a particularly unfavorable prognosis. Biological stratification can be subdivided into patient, disease, or therapy-related factors. Alternatively, the biological signature of aggressive disease and dismal therapeutic response can promote a dynamic, comprehensive strategic approach, better tailoring the clinical management of high-risk profiles and refractoriness to therapy and taking into account the role played by the MM milieu. By means of an extensive literature search, we have reviewed the state-of-the-art pathophysiological insights obtained from translational investigations of the MM-bone marrow microenvironment. A good knowledge of the MM niche pathophysiological dissection is crucial to tailor personalized approaches in a bench-bedside fashion. The discussion in this review pinpoints two main aspects that appear fundamental in order to gain novel and definitive results from the biology of MM. A systematic knowledge of the plasma cell disorder, along with greater efforts to face the unmet needs present in MM evolution, promises to open a new therapeutic window looking out onto the plethora of scientific evidence about the myeloma and the bystander cells.
Collapse
|
30
|
Sadeghi L, Arvidsson G, Merrien M, Wasik AM, Görgens A, Smith CE, Sander B, P. Wright A. Differential B-Cell Receptor Signaling Requirement for Adhesion of Mantle Cell Lymphoma Cells to Stromal Cells. Cancers (Basel) 2020; 12:cancers12051143. [PMID: 32370190 PMCID: PMC7281289 DOI: 10.3390/cancers12051143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023] Open
Abstract
Interactions between lymphoma cells and stromal cells play a key role in promoting tumor survival and development of drug resistance. We identified differences in key signaling pathways between the JeKo-1 and REC-1 mantle cell lymphoma (MCL) cell lines, displaying different patterns of stromal cell adhesion and chemotaxis towards stroma-conditioned medium. The identified adhesion-regulated genes reciprocated important aspects of microenvironment-mediated gene modulation in MCL patients. Five-hundred and ninety genes were differently regulated between the cell lines upon adhesion to stromal cells, while 32 genes were similarly regulated in both cell lines. Regulation of B-cell Receptor (BCR) signature genes in adherent cells was specific for JeKo-1. Inhibition of BCR using siRNA or clinically approved inhibitors, Ibrutinib and Acalabrutinib, decreased adhesion of JeKo-1, but not REC-1 cells. Cell surface levels of chemokine receptor CXCR4 were higher in JeKo-1, facilitating migration and adhesion of JeKo-1 but not REC-1 cells. Surface levels of ICAM1 adhesion protein differ for REC-1 and JeKo-1. While ICAM1 played a positive role in adherence of both cell lines to stromal cells, S1PR1 had an inhibitory effect. Our results provide a model framework for further investigation of mechanistic differences in patient-response to new pathway-specific drugs.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden; (L.S.); (G.A.); (A.G.); (C.I.E.S.)
| | - Gustav Arvidsson
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden; (L.S.); (G.A.); (A.G.); (C.I.E.S.)
| | - Magali Merrien
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 141 52 Stockholm, Sweden; (M.M.); (A.M.W.); (B.S.)
| | - Agata M. Wasik
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 141 52 Stockholm, Sweden; (M.M.); (A.M.W.); (B.S.)
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden; (L.S.); (G.A.); (A.G.); (C.I.E.S.)
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg, 45 147 Essen, Germany
| | - C.I. Edvard Smith
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden; (L.S.); (G.A.); (A.G.); (C.I.E.S.)
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 141 52 Stockholm, Sweden; (M.M.); (A.M.W.); (B.S.)
| | - Anthony P. Wright
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden; (L.S.); (G.A.); (A.G.); (C.I.E.S.)
- Correspondence:
| |
Collapse
|
31
|
Inflammatory Infiltrate and Angiogenesis in Mantle Cell Lymphoma. Transl Oncol 2020; 13:100744. [PMID: 32120334 PMCID: PMC7052512 DOI: 10.1016/j.tranon.2020.100744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive and rare B-cell non-Hodgkin lymphoma classified in two clinicopathological subtypes according to SOX11 expression and mutation state of immunoglobulin variable region heavy chain (IgVH) gene. The transcription factor SOX11, overexpressed in 78%-93% of MCL patients, plays a central role in modulating tumor microenvironment prosurvival signals and angiogenic genes. In this work, we have explored the lymph node microenvironment of three subgroups of MCL patients classified according to SOX11 expression as negative, light, and strong. CD34+ microvessels, CD4+ and CD8+ T-lymphocytes, CD68+ and CD163+ macrophages, and the oncogene p53 expression were evaluated by immunohistochemistry. Moreover, STAT3 mRNA expression was analyzed by RNA-scope assay. Our results confirmed increased angiogenesis in the sample of patients positive to SOX11 compared to the negative ones and demonstrated that angiogenesis and SOX11 expression positively correlate to a higher T-lymphocytes inflammatory infiltrate. On the contrary, angiogenesis and SOX11 expression negatively correlate with macrophage's inflammatory infiltrate and p53 expression. STAT3 mRNA expression level was not relevant concerning angiogenesis or SOX11 expression. Overall, our data indicate that, in MCL, SOX11 expression is associated with increased angiogenesis and a high CD4+ and CD8+ T-cell infiltration, which are not sustained by CD163+ macrophages infiltrate and p53 expression.
Collapse
|
32
|
Sircar A, Chowdhury SM, Hart A, Bell WC, Singh S, Sehgal L, Epperla N. Impact and Intricacies of Bone Marrow Microenvironment in B-cell Lymphomas: From Biology to Therapy. Int J Mol Sci 2020; 21:E904. [PMID: 32019190 PMCID: PMC7043222 DOI: 10.3390/ijms21030904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphoma, a group of widely prevalent hematological malignancies of lymphocyte origin, has become the focus of significant clinical research due to their high propensity for refractory/relapsed (R/R) disease, leading to poor prognostic outcomes. The complex molecular circuitry in lymphomas, especially in the aggressive phenotypes, has made it difficult to find a therapeutic option that can salvage R/R disease. Furthermore, the association of lymphomas with the Bone Marrow (BM) microenvironment has been found to portend worse outcomes in terms of heightened chances of relapse and acquired resistance to chemotherapy. This review assesses the current therapy options in three distinct types of lymphomas: diffuse large B-cell lymphoma, follicular lymphoma and mantle cell lymphoma. It also explores the role of the BM tumor microenvironment as a secure 'niche' for lymphoma cells to grow, proliferate and survive. It further evaluates potential mechanisms through which the tumor cells can establish molecular connections with the BM cells to provide pro-tumor benefits, and discusses putative therapeutic strategies for disrupting the BM-lymphoma cell communication.
Collapse
Affiliation(s)
| | | | | | | | | | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.S.); (S.M.C.); (A.H.); (W.C.B.); (S.S.)
| | - Narendranath Epperla
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (A.S.); (S.M.C.); (A.H.); (W.C.B.); (S.S.)
| |
Collapse
|
33
|
In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment. Cancers (Basel) 2019; 11:cancers11121939. [PMID: 31817171 PMCID: PMC6966457 DOI: 10.3390/cancers11121939] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
The bone marrow microenvironment promotes proliferation and drug resistance in chronic lymphocytic leukemia (CLL). Although ibrutinib is active in CLL, it is rarely able to clear leukemic cells protected by bone marrow mesenchymal stromal cells (BMSCs) within the marrow niche. We investigated the modulation of JAK2/STAT3 pathway in CLL by BMSCs and its targeting with AG490 (JAK2 inhibitor) or Stattic (STAT3 inhibitor). B cells collected from controls and CLL patients, were treated with medium alone, ibrutinib, JAK/Signal Transducer and Activator of Transcription (STAT) inhibitors, or both drugs, in the presence of absence of BMSCs. JAK2/STAT3 axis was evaluated by western blotting, flow cytometry, and confocal microscopy. We demonstrated that STAT3 was phosphorylated in Tyr705 in the majority of CLL patients at basal condition, and increased following co-cultures with BMSCs or IL-6. Treatment with AG490, but not Stattic, caused STAT3 and Lyn dephosphorylation, through re-activation of SHP-1, and triggered CLL apoptosis even when leukemic cells were cultured on BMSC layers. Moreover, while BMSCs hamper ibrutinib activity, the combination of ibrutinib+JAK/STAT inhibitors increase ibrutinib-mediated leukemic cell death, bypassing the pro-survival stimuli derived from BMSCs. We herein provide evidence that JAK2/STAT3 signaling might play a key role in the regulation of CLL-BMSC interactions and its inhibition enhances ibrutinib, counteracting the bone marrow niche.
Collapse
|
34
|
Argentiero A, Calabrese A, Solimando AG, Notaristefano A, Panarelli MM, Brunetti O. Bone metastasis as primary presentation of pancreatic ductal adenocarcinoma: A case report and literature review. Clin Case Rep 2019; 7:1972-1976. [PMID: 31624620 PMCID: PMC6787833 DOI: 10.1002/ccr3.2412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
PDAC bone metastases represent a clinical challenge characterized by multifaceted biological entity.
Collapse
Affiliation(s)
- Antonella Argentiero
- Medical Oncology UnitNational Cancer Research CentreIstituto Tumori "Giovanni Paolo II"BariItaly
| | - Angela Calabrese
- Radiology UnitNational Cancer Research CentreIstituto Tumori "Giovanni Paolo II"BariItaly
| | - Antonio Giovanni Solimando
- Medical Oncology UnitNational Cancer Research CentreIstituto Tumori "Giovanni Paolo II"BariItaly
- Department of Biomedical Sciences and Human OncologySection of Internal Medicine “G. Baccelli”University of Bari Medical SchoolBariItaly
| | | | | | - Oronzo Brunetti
- Medical Oncology UnitNational Cancer Research CentreIstituto Tumori "Giovanni Paolo II"BariItaly
| |
Collapse
|
35
|
Skeletal Metastases of Unknown Primary: Biological Landscape and Clinical Overview. Cancers (Basel) 2019; 11:cancers11091270. [PMID: 31470608 PMCID: PMC6770264 DOI: 10.3390/cancers11091270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal metastases of unknown primary (SMUP) represent a clinical challenge in dealing with patients diagnosed with bone metastases. Management of these patients has improved significantly in the past few years. however, it is fraught with a lack of evidence. While some patients have achieved impressive gains, a more systematic and tailored treatment is required. Nevertheless, in real-life practice, the outlook at the beginning of treatment for SMUP is decidedly somber. An incomplete translational relevance of pathological and clinical data on the mortality and morbidity rate has had unsatisfactory consequences for SMUP patients and their physicians. We examined several approaches to confront the available evidence; three key points emerged. The characterization of the SMUP biological profile is essential to driving clinical decisions by integrating genetic and molecular profiles into a multi-step diagnostic work-up. Nonetheless, a pragmatic investigation plan and therapy of SMUP cannot follow a single template; it must be adapted to different pathophysiological dynamics and coordinated with efforts of a systematic algorithm and high-quality data derived from statistically powered clinical trials. The discussion in this review points out that greater efforts are required to face the unmet needs present in SMUP patients in oncology.
Collapse
|
36
|
Federmann B, Frauenfeld L, Pertsch H, Borgmann V, Steinhilber J, Bonzheim I, Fend F, Quintanilla-Martinez L. Highly sensitive and specific in situ hybridization assay for quantification of SOX11 mRNA in mantle cell lymphoma reveals association of TP53 mutations with negative and low SOX11 expression. Haematologica 2019; 105:754-764. [PMID: 31296581 PMCID: PMC7049372 DOI: 10.3324/haematol.2019.219543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
SOX11 is a valuable marker to identify biologically and clinically relevant groups of mantle cell lymphoma such as cyclin D1 negative and leukemic non-nodal mantle cell lymphoma (MCL). We aimed to establish a sensitive in situ hybridization analysis of SOX11 mRNA allowing its quantification within the histopathological context and compare it with immunohistochemistry and real-time quantitative reverse transcription-PCR (RT-qPCR). Furthermore, TP53 status was correlated with SOX11 mRNA levels. Sixty-six cases were investigated; 58 conventional mantle cell lymphomas (cMCL), including six cyclin D1 negative (46 classic, 12 blas-toid) and eight leukemic non-nodal mantle cell lymphomas (nnMCL). RNAscope was used for the in situ hybridization and the results scored as 0 to 4. MCL cases with SOX11 positivity by immunohistochemistry (IHC) were positive by RNA in situ hybridization (RNAscope) but with different scores. RT-qPCR showed a good correlation with the median of the grouped scores but had a wide variation in individual cases. The SOX11 negative leukemic non-nodal mantle cell lymphomas were also negative by RNAscope. TP53 was mutated in 13/63 (21%) cases, including 5/7 (71%) leukemic non-nodal and 8/56 (14%) cMCL. Interestingly, of the TP53 mutated cases, nine were in the RNAscope negative/low SOX11 group (9/15; 60%) and four in the high SOX11 group (4/36; 11%) (P=0.0007). In conclusion, RNAscope is a reliable method to evaluate SOX11 mRNA levels. This study demonstrates the broad range of SOX11 mRNA levels in MCL. An important finding is the significant correlation of TP53 mutations with negative/low SOX11 mRNA level both in leukemic nnMCL and cMCL.
Collapse
Affiliation(s)
- Birgit Federmann
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Leonie Frauenfeld
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Helga Pertsch
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Vanessa Borgmann
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Julia Steinhilber
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center and University Hospital Tübingen, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. J Clin Med 2019; 8:jcm8070997. [PMID: 31323969 PMCID: PMC6678140 DOI: 10.3390/jcm8070997] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10–15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients’ management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.
Collapse
|
38
|
Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol 2019; 94:710-725. [PMID: 30963600 DOI: 10.1002/ajh.25487] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
Unprecedented advances in our understanding of the pathobiology, prognostication, and therapeutic options in mantle cell lymphoma (MCL) have taken place in the last few years. Heterogeneity in the clinical course of MCL-indolent vs aggressive-is further delineated by a correlation with the mutational status of the variable region of immunoglobulin heavy chain, methylation status, and SOX-11 expression. Cyclin-D1 negative MCL, in situ MCL neoplasia, and impact of the karyotype on prognosis are distinguished. Apart from Ki-67% and morphology pattern (classic vs blastoid/pleomorphic), the proliferation gene signature has helped to further refine prognostication. Studies focusing on mutational dynamics and clonal evolution on Bruton's tyrosine kinase (BTK) inhibitors (ibrutinib, acalabrutinib) and/or Bcl2 antagonists (venetoclax) have further clarified the prognostic impact of somatic mutations in TP53, BIRC3, CDKN2A, MAP3K14, NOTCH2, NSD2, and SMARCA4 genes. In therapy, long-term follow-up on chemo-immunotherapy studies has demonstrated durable remissions in some patients; however, long-term toxicities, especially from second cancers, are a serious concern with chemotherapy. The therapeutic options in MCL are constantly evolving, with dramatic responses from nonchemotherapeutic agents (ibrutinib, acalabrutinib, and venetoclax). Chimeric antigen receptor therapy and combinations of nonchemotherapeutic agents are actively being studied and our focus is shifting toward making the treatment of MCL chemotherapy-free. Still, MCL remains incurable. The following aspects of MCL continue to pose a challenge: disease transformation, role of the cytokine-microenvironmental milieu, incorporation of positron emission tomography-computerized tomography imaging, minimal residual disease in the prognosis, circulating tumor DNA testing for clonal evolution, predicting resistance to BTK inhibitors, and optimal management of patients who progress on BTK/Bcl2 inhibitors. Next-generation clinical trials should incorporate nonchemotherapeutic agents and personalize the treatment based upon the genomic profile of individual patient. Recent advances in the field of MCL are reviewed.
Collapse
Affiliation(s)
- Preetesh Jain
- Division of Cancer Medicine, Department of Lymphoma/MyelomaThe University of Texas MD Anderson Cancer Center Houston Texas
| | - Michael Wang
- Division of Cancer Medicine, Department of Lymphoma/MyelomaThe University of Texas MD Anderson Cancer Center Houston Texas
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW SOX11 has emerged as a key transcription factor in the pathogenesis of mantle cell lymphoma (MCL) whereas it is not expressed in normal B cells or virtually in any other mature B-cell neoplasm. This review will examine the role of SOX11 as a biomarker in MCL, the new information on its transcriptional targets, and the mechanisms regulating its expression in MCL. RECENT FINDINGS SOX11 is highly expressed in conventional MCL, including cyclin D1-negative cases, but it is not expressed in the indolent leukemic nonnodal MCL subtype. These two MCL subtypes also differ in their cell-of-origin, IGHV mutational status and genomic instability. SOX11 promotes tumor growth of MCL cells in vivo and regulates a broad transcriptional program that includes B-cell differentiation pathways and tumor-microenvironment interactions, among others. The mechanisms upregulating SOX11 in MCL are not well understood but are mediated in part by the three-dimensional reconfiguration of the DNA, bringing together a distant enhancer region and the SOX11 promoter. SUMMARY SOX11 is a relevant element in the pathogenesis of MCL and has been instrumental to identify two distinct clinicobiological subtypes of this tumor. Further studies should clarify the mechanisms mediating its oncogenic potential and leading to its intriguing expression in these tumors.
Collapse
|
40
|
Physiological Hypoxia (Physioxia) Impairs the Early Adhesion of Single Lymphoma Cell to Marrow Stromal Cell and Extracellular Matrix. Optical Tweezers Study. Int J Mol Sci 2018; 19:ijms19071880. [PMID: 29949925 PMCID: PMC6073489 DOI: 10.3390/ijms19071880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022] Open
Abstract
Adhesion is critical for the maintenance of cellular structures as well as intercellular communication, and its dysfunction occurs prevalently during cancer progression. Recently, a growing number of studies indicated the ability of oxygen to regulate adhesion molecules expression, however, the influence of physiological hypoxia (physioxia) on cell adhesion remains elusive. Thus, here we aimed: (i) to develop an optical tweezers based assay to precisely evaluate single diffuse large B-cell lymphoma (DLBCL) cell adhesion to neighbor cells (mesenchymal stromal cells) and extracellular matrix (Matrigel) under normoxia and physioxia; and, (ii) to explore the role of integrins in adhesion of single lymphoma cell. We identified the pronouncedly reduced adhesive properties of lymphoma cell lines and primary lymphocytes B under physioxia to both stromal cells and Matrigel. Corresponding effects were shown in bulk adhesion assays. Then we emphasized that impaired β1, β2 integrins, and cadherin-2 expression, studied by confocal microscopy, account for reduction in lymphocyte adhesion in physioxia. Additionally, the blockade studies conducted with anti-integrin antibodies have revealed the critical role of integrins in lymphoma adhesion. To summarize, the presented approach allows for precise confirmation of the changes in single cell adhesion properties provoked by physiological hypoxia. Thus, our findings reveal an unprecedented role of using physiologically relevant oxygen conditioning and single cell adhesion approaches when investigating tumor adhesion in vitro.
Collapse
|
41
|
Xie Y, Li B, Bu W, Gao L, Zhang Y, Lan X, Hou J, Xu Z, Chang S, Yu D, Xie B, Wang Y, Wang H, Zhang Y, Wu X, Zhu W, Shi J. Dihydrocelastrol exerts potent antitumor activity in mantle cell lymphoma cells via dual inhibition of mTORC1 and mTORC2. Int J Oncol 2018; 53:823-834. [PMID: 29901111 DOI: 10.3892/ijo.2018.4438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a distinct and highly aggressive subtype of B-cell non-Hodgkin lymphoma. Dihydrocelastrol (DHCE) is a dihydro-analog of celastrol, which is isolated from the traditional Chinese medicinal plant Tripterygium wilfordii. The present study aimed to investigate the effects of DHCE treatment on MCL cells, and to determine the mechanism underlying its potent antitumor activity in vitro and in vivo using the Cell Counting kit-8 assay, clonogenic assay, apoptosis assay, cell cycle analysis, immunofluorescence staining, western blotting and tumor xenograft models. The results demonstrated that DHCE treatment exerted minimal cytotoxic effects on normal cells, but markedly suppressed MCL cell proliferation by inducing G0/G1 phase cell cycle arrest, and inhibited MCL cell viability by stimulating apoptosis via extrinsic and intrinsic pathways. In addition, the results revealed that DHCE suppressed cell growth and proliferation by inhibiting mammalian target of rapamycin complex (mTORC)1-mediated phosphorylation of ribosomal protein S6 kinase and eukaryotic initiation factor 4E binding protein. Simultaneously, DHCE induced apoptosis and inhibited cell survival by suppressing mTORC2-mediated phosphorylation of protein kinase B and nuclear factor-κB activity. In addition to in vitro findings, DHCE treatment reduced the MCL tumor burden in a xenograft mouse model, without indications of toxicity. Furthermore, combined treatment with DHCE and bortezomib, a proteasome inhibitor, induced a synergistic cytotoxic effect on MCL cells. These findings indicated that DHCE may have the potential to serve as a novel therapeutic agent for the treatment of MCL through dually inhibiting mTORC1 and mTORC2.
Collapse
Affiliation(s)
- Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wenxuan Bu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xiucai Lan
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jun Hou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
42
|
Chronic lymphocytic leukemia and mantle cell lymphoma: crossroads of genetic and microenvironment interactions. Blood 2018; 131:2283-2296. [PMID: 29666114 DOI: 10.1182/blood-2017-10-764373] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are 2 well-defined entities that diverge in their basic pathogenic mechanisms and clinical evolution but they share epidemiological characteristics, cells of origin, molecular alterations, and clinical features that differ from other lymphoid neoplasms. CLL and MCL are classically considered indolent and aggressive neoplasms, respectively. However, the clinical evolution of both tumors is very heterogeneous, with subsets of patients having stable disease for a long time whereas others require immediate intervention. Both CLL and MCL include 2 major molecular subtypes that seem to derive from antigen-experienced CD5+ B cells that retain a naive or memory-like epigenetic signature and carry a variable load of immunoglobulin heavy-chain variable region somatic mutations from truly unmutated to highly mutated, respectively. These 2 subtypes of tumors differ in their molecular pathways, genomic alterations, and clinical behavior, being more aggressive in naive-like than memory-like-derived tumors in both CLL and MCL. The pathogenesis of the 2 entities integrates the relevant influence of B-cell receptor signaling, tumor cell microenvironment interactions, genomic alterations, and epigenome modifications that configure the evolution of the tumors and offer new possibilities for therapeutic intervention. This review will focus on the similarities and differences of these 2 tumors based on recent studies that are enhancing the understanding of their pathogenesis and creating solid bases for new management strategies.
Collapse
|