1
|
Arunachalam PS, Ha N, Dennison SM, Spreng RL, Seaton KE, Xiao P, Feng Y, Zarnitsyna VI, Kazmin D, Hu M, Santagata JM, Xie X, Rogers K, Shirreff LM, Chottin C, Spencer AJ, Dutta S, Prieto K, Julien JP, Tomai M, Fox CB, Villinger F, Hill AVS, Tomaras GD, Pulendran B. A comparative immunological assessment of multiple clinical-stage adjuvants for the R21 malaria vaccine in nonhuman primates. Sci Transl Med 2024; 16:eadn6605. [PMID: 39083589 DOI: 10.1126/scitranslmed.adn6605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - NaYoung Ha
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Rachel L Spreng
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jordan M Santagata
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lisa M Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Claire Chottin
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research and Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Venhuizen J, van Bergen MGJM, Bergevoet SM, Gilissen D, Spruijt CG, Wingens L, van den Akker E, Vermeulen M, Jansen JH, Martens JHA, van der Reijden BA. GFI1B and LSD1 repress myeloid traits during megakaryocyte differentiation. Commun Biol 2024; 7:374. [PMID: 38548886 PMCID: PMC10978956 DOI: 10.1038/s42003-024-06090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.
Collapse
Affiliation(s)
- Jeron Venhuizen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Daan Gilissen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Laura Wingens
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Amsterdam, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Heuts BMH, Martens JHA. Understanding blood development and leukemia using sequencing-based technologies and human cell systems. Front Mol Biosci 2023; 10:1266697. [PMID: 37886034 PMCID: PMC10598665 DOI: 10.3389/fmolb.2023.1266697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023] Open
Abstract
Our current understanding of human hematopoiesis has undergone significant transformation throughout the years, challenging conventional views. The evolution of high-throughput technologies has enabled the accumulation of diverse data types, offering new avenues for investigating key regulatory processes in blood cell production and disease. In this review, we will explore the opportunities presented by these advancements for unraveling the molecular mechanisms underlying normal and abnormal hematopoiesis. Specifically, we will focus on the importance of enhancer-associated regulatory networks and highlight the crucial role of enhancer-derived transcription regulation. Additionally, we will discuss the unprecedented power of single-cell methods and the progression in using in vitro human blood differentiation system, in particular induced pluripotent stem cell models, in dissecting hematopoietic processes. Furthermore, we will explore the potential of ever more nuanced patient profiling to allow precision medicine approaches. Ultimately, we advocate for a multiparameter, regulatory network-based approach for providing a more holistic understanding of normal hematopoiesis and blood disorders.
Collapse
Affiliation(s)
- Branco M H Heuts
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Berna-Erro A, Granados MP, Rosado JA, Redondo PC. Thrombotic Alterations under Perinatal Hypoxic Conditions: HIF and Other Hypoxic Markers. Int J Mol Sci 2023; 24:14541. [PMID: 37833987 PMCID: PMC10572648 DOI: 10.3390/ijms241914541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxia is considered to be a stressful physiological condition, which may occur during labor and the later stages of pregnancy as a result of, among other reasons, an aged placenta. Therefore, when gestation or labor is prolonged, low oxygen supply to the tissues may last for minutes, and newborns may present breathing problems and may require resuscitation maneuvers. As a result, poor oxygen supply to tissues and to circulating cells may last for longer periods of time, leading to life-threatening conditions. In contrast to the well-known platelet activation that occurs after reperfusion of the tissues due to an ischemia/reperfusion episode, platelet alterations in response to reduced oxygen exposition following labor have been less frequently investigated. Newborns overcome temporal hypoxic conditions by changing their organ functions or by adaptation of the intracellular molecular pathways. In the present review, we aim to analyze the main platelet modifications that appear at the protein level during hypoxia in order to highlight new platelet markers linked to complications arising from temporal hypoxic conditions during labor. Thus, we demonstrate that hypoxia modifies the expression and activity of hypoxic-response proteins (HRPs), including hypoxia-induced factor (HIF-1), endoplasmic reticulum oxidase 1 (Ero1), and carbonic anhydrase (CIX). Finally, we provide updates on research related to the regulation of platelet function due to HRP activation, as well as the role of HRPs in intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (Phycell), University of Extremadura, Avd de la Universidad s/n, 10003 Caceres, Spain; (A.B.-E.); (P.C.R.)
| | | | - Juan Antonio Rosado
- Department of Physiology (Phycell), University of Extremadura, Avd de la Universidad s/n, 10003 Caceres, Spain; (A.B.-E.); (P.C.R.)
| | - Pedro Cosme Redondo
- Department of Physiology (Phycell), University of Extremadura, Avd de la Universidad s/n, 10003 Caceres, Spain; (A.B.-E.); (P.C.R.)
| |
Collapse
|
5
|
Liu L, Patnana PK, Xie X, Frank D, Nimmagadda SC, Su M, Zhang D, Koenig T, Rosenbauer F, Liebmann M, Klotz L, Xu W, Vorwerk J, Neumann F, Hüve J, Unger A, Okun JG, Opalka B, Khandanpour C. GFI1B acts as a metabolic regulator in hematopoiesis and acute myeloid leukemia. Leukemia 2022; 36:2196-2207. [PMID: 35804097 PMCID: PMC9417998 DOI: 10.1038/s41375-022-01635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion. Here we explored the role of Gfi1b in metabolism reprogramming during hematopoiesis and leukemogenesis. We demonstrated that Gfi1b deletion remarkably activated mitochondrial respiration and altered energy metabolism dependence toward oxidative phosphorylation (OXPHOS). Mitochondrial substrate dependency was shifted from glucose to fatty acids upon Gfi1b deletion via upregulating fatty acid oxidation (FAO). On a molecular level, Gfi1b epigenetically regulated multiple FAO-related genes. Moreover, we observed that metabolic phenotypes evolved as cells progressed from preleukemia to leukemia, and the correlation between Gfi1b expression level and metabolic phenotype was affected by genetic variations in AML cells. FAO or OXPHOS inhibition significantly impeded leukemia progression of Gfi1b-KO MLL/AF9 cells. Finally, we showed that Gfi1b-deficient AML cells were more sensitive to metformin as well as drugs implicated in OXPHOS and FAO inhibition, opening new potential therapeutic strategies.
Collapse
Affiliation(s)
- Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany.,Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Minhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300052, Tianjin, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Thorsten Koenig
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, 48149, Muenster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Muenster, 48149, Muenster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149, Muenster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Muenster (FM)2, Institute of Medical Physics and Biophysics, University of Muenster, 48149, Muenster, Germany.,evorion biotechnologies GmbH, 48149, Muenster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Muenster (FM)2, Institute of Medical Physics and Biophysics, University of Muenster, 48149, Muenster, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, 48149, Muenster, Germany
| | - Jürgen Günther Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, Dietmar-Hopp-Metabolic Center, 69120, Heidelberg, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, 48149, Muenster, Germany. .,Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Luebeck, 23538, Luebeck, Germany.
| |
Collapse
|
6
|
Yunga ST, Gower AJ, Melrose AR, Fitzgerald MK, Rajendran A, Lusardi TA, Armstrong RJ, Minnier J, Jordan KR, McCarty OJT, David LL, Wilmarth PA, Reddy AP, Aslan JE. Effects of ex vivo blood anticoagulation and preanalytical processing time on the proteome content of platelets. J Thromb Haemost 2022; 20:1437-1450. [PMID: 35253976 PMCID: PMC9887642 DOI: 10.1111/jth.15694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ex vivo assays of platelet function critically inform mechanistic and clinical hematology studies, where effects of divergent blood processing methods on platelet composition are apparent, but unspecified. OBJECTIVE Here, we evaluate how different blood anticoagulation options and processing times affect platelet function and protein content ex vivo. METHODS Parallel blood samples were collected from healthy human donors into sodium citrate, acid citrate dextrose, EDTA or heparin, and processed over an extended time course for functional and biochemical experiments, including platelet proteome quantification with multiplexed tandem mass tag (TMT) labeling and triple quadrupole mass spectrometry (MS). RESULTS Each anticoagulant had time-dependent effects on platelet function in whole blood. For instance, heparin enhanced platelet agonist reactivity, platelet-monocyte aggregate formation and platelet extracellular vesicle release, while EDTA increased platelet α-granule secretion. Following platelet isolation, TMT-MS quantified 3357 proteins amongst all prepared platelet samples. Altogether, >400 proteins were differentially abundant in platelets isolated from blood processed at 24 h versus 1 h post-phlebotomy, including proteins pertinent to membrane trafficking and exocytosis. Anticoagulant-specific effects on platelet proteomes included increased complement system and decreased α-granule proteins in platelets from EDTA-anticoagulated blood. Platelets prepared from heparinized blood had higher levels of histone and neutrophil-associated proteins in a manner related to neutrophil extracellular trap (NET) formation and platelet:NET interactions in whole blood ex vivo. CONCLUSION Our results demonstrate that different anticoagulants routinely used for blood collection have varying effects on platelets ex vivo, where methodology-associated alterations in platelet proteome may influence mechanistic, translational and biomarker studies.
Collapse
Affiliation(s)
- Samuel Tassi Yunga
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
- Department of Biomedical Engineering, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Austin J. Gower
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Alexander R. Melrose
- Knight Cardiovascular Institute, Division of Cardiology, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Meghan K. Fitzgerald
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Ashmitha Rajendran
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Theresa A. Lusardi
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Randall J. Armstrong
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Jessica Minnier
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
- Knight Cardiovascular Institute, Division of Cardiology, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Kelley R. Jordan
- Department of Biomedical Engineering, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Larry L. David
- Proteomics Shared Resource; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
- Department of Chemical Physiology & Biochemistry, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Ashok P. Reddy
- Proteomics Shared Resource; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| | - Joseph E. Aslan
- Department of Biomedical Engineering, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
- Knight Cardiovascular Institute, Division of Cardiology, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
- Department of Chemical Physiology & Biochemistry, School of Medicine; Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239; USA
| |
Collapse
|
7
|
Nicolet BP, Jansen SBG, Heideveld E, Ouwehand WH, van den Akker E, von Lindern M, Wolkers MC. Circular RNAs exhibit limited evidence for translation, or translation regulation of the mRNA counterpart in terminal hematopoiesis. RNA (NEW YORK, N.Y.) 2022; 28:194-209. [PMID: 34732567 PMCID: PMC8906552 DOI: 10.1261/rna.078754.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hematopoietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs) contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we provide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expression not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation. To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribosome-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation, yet their contribution to regulate cellular processes remains enigmatic.
Collapse
Affiliation(s)
- Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sjoert B G Jansen
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0AW, United Kingdom
| | - Esther Heideveld
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge CB2 0AW, United Kingdom
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
8
|
Characterization of a genomic region 8 kb downstream of GFI1B associated with myeloproliferative neoplasms. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166259. [PMID: 34450246 DOI: 10.1016/j.bbadis.2021.166259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022]
Abstract
A genomic locus 8 kb downstream of the transcription factor GFI1B (Growth Factor Independence 1B) predisposes to clonal hematopoiesis and myeloproliferative neoplasms. One of the most significantly associated polymorphisms in this region is rs621940-G. GFI1B auto-represses GFI1B, and altered GFI1B expression contributes to myeloid neoplasms. We studied whether rs621940-G affects GFI1B expression and growth of immature cells. GFI1B ChIP-seq showed clear binding to the rs621940 locus. Preferential binding of various hematopoietic transcription factors to either the rs621940-C or -G allele was observed, but GFI1B showed no preference. In gene reporter assays the rs621940 region inhibited GFI1B promoter activity with the G-allele having less suppressive effects compared to the C-allele. However, CRISPR-Cas9 mediated deletion of the locus in K562 cells did not alter GFI1B expression nor auto-repression. In healthy peripheral blood mononuclear cells GFI1B expression did not differ consistently between the rs621940 alleles. Long range and targeted deep sequencing did not detect consistent effects of rs621940-G on allelic GFI1B expression either. Finally, we observed that myeloid colony formation was not significantly affected by either rs621940 allele in 193 healthy donors. Together, these findings show no evidence that rs621940 or its locus affect GFI1B expression, auto-repression or growth of immature myeloid cells.
Collapse
|
9
|
Mehrpouri M, Pourbagheri-Sigaroodi A, Bashash D. The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol 2021; 100:108114. [PMID: 34492531 DOI: 10.1016/j.intimp.2021.108114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Although the definitive role of epigenetic modulations in a wide range of hematologic malignancies, spanning from leukemia to lymphoma and multiple myeloma, has been evidenced, few articles reviewed the task. Given the high accessibility of histone deacetylase (HDACs) to necessary transcription factors involved in hematopoiesis, this review aims to outline physiologic impacts of these enzymes in normal hematopoiesis, and also to outline the original data obtained from international research laboratories on their regulatory role in the differentiation and maturation of different hematopoietic lineages. Questions on how aberrant expression of HDACs contributes to the formation of hematologic malignancies are also responded, because these classes of enzymes have a respectable share in the development, progression, and recurrence of leukemia, lymphoma, and multiple myeloma. The last section provides a special focus on the therapeutic perspectiveof HDACs inhibitors, either as single agents or in a combined-modal strategy, in these neoplasms. In conclusion, optimizing the dose and the design of more patient-tailored inhibitors, while maintaining low toxicity against normal cells, will help improve clinical outcomes of HDAC inhibitors in hematologic malignancies.
Collapse
Affiliation(s)
- Mahdieh Mehrpouri
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Blom T, Meinsma R, di Summa F, van den Akker E, van Kuilenburg ABP, Hansen M, Tytgat GAM. Thrombocytopenia after meta-iodobenzylguanidine (MIBG) therapy in neuroblastoma patients may be caused by selective MIBG uptake via the serotonin transporter located on megakaryocytes. EJNMMI Res 2021; 11:81. [PMID: 34424429 PMCID: PMC8382772 DOI: 10.1186/s13550-021-00823-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic use of [131I]meta-iodobenzylguanidine ([131I]MIBG) is often accompanied by hematological toxicity, primarily consisting of severe and persistent thrombocytopenia. We hypothesize that this is caused by selective uptake of MIBG via the serotonin transporter (SERT) located on platelets and megakaryocytes. In this study, we have investigated whether in vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG and whether pharmacological intervention with selective serotonin reuptake inhibitors (SSRIs) may prevent this radiotoxic MIBG uptake. Methods Peripheral blood CD34+ cells were differentiated to human megakaryocytic cells using a standardized culture protocol. Prior to [3H]serotonin and [125I]MIBG uptake experiments, the differentiation status of megakaryocyte cultures was assessed by flow cytometry. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to assess SERT and NET (norepinephrine transporter) mRNA expression. On day 10 of differentiation, [3H]serotonin and [125I]MIBG uptake assays were conducted. Part of the samples were co-incubated with the SSRI citalopram to assess SERT-specific uptake. HEK293 cells transfected with SERT, NET, and empty vector served as controls. Results In vitro cultured human megakaryocytes are capable of selective plasma membrane transport of MIBG. After 10 days of differentiation, megakaryocytic cell culture batches from three different hematopoietic stem and progenitor cell donors showed on average 9.2 ± 2.4 nmol of MIBG uptake per milligram protein per hour after incubation with 10–7 M MIBG (range: 6.6 ± 1.0 to 11.2 ± 1.0 nmol/mg/h). Co-incubation with the SSRI citalopram led to a significant reduction (30.1%—41.5%) in MIBG uptake, implying SERT-specific uptake of MIBG. A strong correlation between the number of mature megakaryocytes and SERT-specific MIBG uptake was observed. Conclusion Our study demonstrates that human megakaryocytes cultured in vitro are capable of MIBG uptake. Moreover, the SSRI citalopram selectively inhibits MIBG uptake via the serotonin transporter. The concomitant administration of citalopram to neuroblastoma patients during [131I]MIBG therapy might be a promising strategy to prevent the onset of thrombocytopenia. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00823-5.
Collapse
Affiliation(s)
- Thomas Blom
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rutger Meinsma
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Franca di Summa
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marten Hansen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
11
|
Specific proteome changes in platelets from individuals with GATA1-, GFI1B-, and RUNX1-linked bleeding disorders. Blood 2021; 138:86-90. [PMID: 33690840 DOI: 10.1182/blood.2020008118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Mutations in the transcription factors GATA binding factor 1 (GATA1), growth factor independence 1B (GFI1B), and Runt-related transcription factor 1 (RUNX1) cause familial platelet and bleeding disorders. Mutant platelets exhibit common abnormalities including an α-granule reduction resulting in a grayish appearance in blood smears. This suggests that similar pathways are deregulated by different transcription factor mutations. To identify common factors, full platelet proteomes from 11 individuals with mutant GATA1R216Q, GFI1BQ287*, RUNX1Q154Rfs, or RUNX1TD2-6 and 28 healthy controls were examined by label-free quantitative mass spectrometry. In total, 2875 platelet proteins were reliably quantified. Clustering analysis of more than 300 differentially expressed proteins revealed profound differences between cases and controls. Among cases, 44 of 143 significantly downregulated proteins were assigned to platelet function, hemostasis, and granule biology, in line with platelet dysfunction and bleedings. Remarkably, none of these proteins were significantly diminished in all affected cases. Similarly, no proteins were commonly overrepresented in all affected cases compared with controls. These data indicate that the studied transcription factor mutations alter platelet proteomes in distinct largely nonoverlapping manners. This work provides the quantitative landscape of proteins that affect platelet function when deregulated by mutated transcription factors in inherited bleeding disorders.
Collapse
|
12
|
Beauchemin H, Möröy T. Multifaceted Actions of GFI1 and GFI1B in Hematopoietic Stem Cell Self-Renewal and Lineage Commitment. Front Genet 2020; 11:591099. [PMID: 33193732 PMCID: PMC7649360 DOI: 10.3389/fgene.2020.591099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
Growth factor independence 1 (GFI1) and the closely related protein GFI1B are small nuclear proteins that act as DNA binding transcriptional repressors. Both recognize the same consensus DNA binding motif via their C-terminal zinc finger domains and regulate the expression of their target genes by recruiting chromatin modifiers such as histone deacetylases (HDACs) and demethylases (LSD1) by using an N-terminal SNAG domain that comprises only 20 amino acids. The only region that is different between both proteins is the region that separates the zinc finger domains and the SNAG domain. Both proteins are co-expressed in hematopoietic stem cells (HSCs) and, to some extent, in multipotent progenitors (MPPs), but expression is specified as soon as early progenitors and show signs of lineage bias. While expression of GFI1 is maintained in lymphoid primed multipotent progenitors (LMPPs) that have the potential to differentiate into both myeloid and lymphoid cells, GFI1B expression is no longer detectable in these cells. By contrast, GFI1 expression is lost in megakaryocyte precursors (MKPs) and in megakaryocyte-erythrocyte progenitors (MEPs), which maintain a high level of GFI1B expression. Consequently, GFI1 drives myeloid and lymphoid differentiation and GFI1B drives the development of megakaryocytes, platelets, and erythrocytes. How such complementary cell type- and lineage-specific functions of GFI1 and GFI1B are maintained is still an unresolved question in particular since they share an almost identical structure and very similar biochemical modes of actions. The cell type-specific accessibility of GFI1/1B binding sites may explain the fact that very similar transcription factors can be responsible for very different transcriptional programming. An additional explanation comes from recent data showing that both proteins may have additional non-transcriptional functions. GFI1 interacts with a number of proteins involved in DNA repair and lack of GFI1 renders HSCs highly susceptible to DNA damage-induced death and restricts their proliferation. In contrast, GFI1B binds to proteins of the beta-catenin/Wnt signaling pathway and lack of GFI1B leads to an expansion of HSCs and MKPs, illustrating the different impact that GFI1 or GFI1B has on HSCs. In addition, GFI1 and GFI1B are required for endothelial cells to become the first blood cells during early murine development and are among those transcription factors needed to convert adult endothelial cells or fibroblasts into HSCs. This role of GFI1 and GFI1B bears high significance for the ongoing effort to generate hematopoietic stem and progenitor cells de novo for the autologous treatment of blood disorders such as leukemia and lymphoma.
Collapse
Affiliation(s)
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Hollebecque A, Salvagni S, Plummer R, Isambert N, Niccoli P, Capdevila J, Curigliano G, Moreno V, Martin-Romano P, Baudin E, Arias M, Mora S, de Alvaro J, Di Martino J, Parra-Palau JL, Sánchez-Pérez T, Aronchik I, Filvaroff EH, Lamba M, Nikolova Z, de Bono JS. Phase I Study of Lysine-Specific Demethylase 1 Inhibitor, CC-90011, in Patients with Advanced Solid Tumors and Relapsed/Refractory Non-Hodgkin Lymphoma. Clin Cancer Res 2020; 27:438-446. [DOI: 10.1158/1078-0432.ccr-20-2380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
|
14
|
Beauchemin H, Shooshtharizadeh P, Pinder J, Dellaire G, Möröy T. Dominant negative Gfi1b mutations cause moderate thrombocytopenia and an impaired stress thrombopoiesis associated with mild erythropoietic abnormalities in mice. Haematologica 2020; 105:2457-2470. [PMID: 33054086 PMCID: PMC7556681 DOI: 10.3324/haematol.2019.222596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022] Open
Abstract
GFI1B-related thrombocytopenia (GFI1B-RT) is a rare bleeding disorder mainly caused by the presence of truncated GFI1B proteins with dominant-negative properties. The disease is characterized by low platelet counts, the presence of abnormal platelets, a megakaryocytic expansion and mild erythroid defects. However, no animal models faithfully reproducing the GFI1B-RT phenotype observed in patients exist. We had previously generated mice with floxed Gfi1b alleles that can be eliminated by Cre recombinase, but those animals developed a much more severe phenotype than GFI1B-RT patients and were of limited interest in assessing the disease. Using CRISPR/Cas9 technology, we have now established three independent mouse lines that carry mutated Gfi1b alleles producing proteins lacking DNA binding zinc fingers and thereby acting in a dominant negative (DN) manner. Mice heterozygous for these Gfi1b-DN alleles show reduced platelet counts and an expansion of megakaryocytes similar to features of human GFI1B-RT but lacking the distinctively large agranular platelets. In addition, Gfi1b-DN mice exhibit an expansion of erythroid precursors indicative of a mildly abnormal erythropoiesis but without noticeable red blood cell defects. When associated with megakaryocyte-specific ablation of the remaining allele, the Gfi1b-DN alleles triggered erythroid-specific deleterious defects. Gfi1b-DN mice also showed a delayed recovery from platelet depletion, indicating a defect in stress thrombopoiesis. However, injecting Gfi1b-DN mice with romiplostim, a thrombopoietin receptor super agonist, increased platelet numbers even beyond normal levels. Thus, our data support a causal link between DN mutations in GFI1B and thrombocytopenia and suggest that patients with GFI1B-RT could be treated successfully with thrombopoietin agonists.
Collapse
Affiliation(s)
- Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Quebec
| | | | - Jordan Pinder
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia
| | - Graham Dellaire
- Departments of Pathology and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, Quebec
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec
- Division of Experimental Medicine, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
15
|
Veninga A, De Simone I, Heemskerk JWM, Cate HT, van der Meijden PEJ. Clonal hematopoietic mutations linked to platelet traits and the risk of thrombosis or bleeding. Haematologica 2020; 105:2020-2031. [PMID: 32554558 PMCID: PMC7395290 DOI: 10.3324/haematol.2019.235994] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are key elements in thrombosis, particularly in atherosclerosis-associated arterial thrombosis (atherothrombosis), and hemostasis. Megakaryocytes in the bone marrow, differentiated from hematopoietic stem cells are generally considered as a uniform source of platelets. However, recent insights into the causes of malignancies, including essential thrombocytosis, indicate that not only inherited but also somatic mutations in hematopoietic cells are linked to quantitative or qualitative platelet abnormalities. In particular cases, these form the basis of thrombo-hemorrhagic complications regularly observed in patient groups. This has led to the concept of clonal hematopoiesis of indeterminate potential (CHIP), defined as somatic mutations caused by clonal expansion of mutant hematopoietic cells without evident disease. This concept also provides clues regarding the importance of platelet function in relation to cardiovascular disease. In this summative review, we present an overview of genes associated with clonal hematopoiesis and altered platelet production and/or functionality, like mutations in JAK2 We consider how reported CHIP genes can influence the risk of cardiovascular disease, by exploring the consequences for platelet function related to (athero)thrombosis, or the risk of bleeding. More insight into the functional consequences of the CHIP mutations may favor personalized risk assessment, not only with regard to malignancies but also in relation to thrombotic vascular disease.
Collapse
Affiliation(s)
- Alicia Veninga
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Ilaria De Simone
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht
| | - Hugo Ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht.,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht .,Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht
| |
Collapse
|
16
|
Karampini E, Bierings R, Voorberg J. Orchestration of Primary Hemostasis by Platelet and Endothelial Lysosome-Related Organelles. Arterioscler Thromb Vasc Biol 2020; 40:1441-1453. [PMID: 32375545 DOI: 10.1161/atvbaha.120.314245] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Megakaryocyte-derived platelets and endothelial cells store their hemostatic cargo in α- and δ-granules and Weibel-Palade bodies, respectively. These storage granules belong to the lysosome-related organelles (LROs), a heterogeneous group of organelles that are rapidly released following agonist-induced triggering of intracellular signaling pathways. Following vascular injury, endothelial Weibel-Palade bodies release their content into the vascular lumen and promote the formation of long VWF (von Willebrand factor) strings that form an adhesive platform for platelets. Binding to VWF strings as well as exposed subendothelial collagen activates platelets resulting in the release of α- and δ-granules, which are crucial events in formation of a primary hemostatic plug. Biogenesis and secretion of these LROs are pivotal for the maintenance of proper hemostasis. Several bleeding disorders have been linked to abnormal generation of LROs in megakaryocytes and endothelial cells. Recent reviews have emphasized common pathways in the biogenesis and biological properties of LROs, focusing mainly on melanosomes. Despite many similarities, LROs in platelet and endothelial cells clearly possess distinct properties that allow them to provide a highly coordinated and synergistic contribution to primary hemostasis by sequentially releasing hemostatic cargo. In this brief review, we discuss in depth the known regulators of α- and δ-granules in megakaryocytes/platelets and Weibel-Palade bodies in endothelial cells, starting from transcription factors that have been associated with granule formation to protein complexes that promote granule maturation. In addition, we provide a detailed view on the interplay between platelet and endothelial LROs in controlling hemostasis as well as their dysfunction in LRO related bleeding disorders.
Collapse
Affiliation(s)
- Ellie Karampini
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| | - Ruben Bierings
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands (R.B.)
| | - Jan Voorberg
- From the Department of Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory (E.K., R.B., J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands.,Experimental Vascular Medicine (J.V.), Amsterdam University Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
17
|
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer 2020; 19:5. [PMID: 31910827 PMCID: PMC6945581 DOI: 10.1186/s12943-019-1127-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Normal hematopoiesis requires the accurate orchestration of lineage-specific patterns of gene expression at each stage of development, and epigenetic regulators play a vital role. Disordered epigenetic regulation has emerged as a key mechanism contributing to hematological malignancies. Histone deacetylases (HDACs) are a series of key transcriptional cofactors that regulate gene expression by deacetylation of lysine residues on histone and nonhistone proteins. In normal hematopoiesis, HDACs are widely involved in the development of various lineages. Their functions involve stemness maintenance, lineage commitment determination, cell differentiation and proliferation, etc. Deregulation of HDACs by abnormal expression or activity and oncogenic HDAC-containing transcriptional complexes are involved in hematological malignancies. Currently, HDAC family members are attractive targets for drug design, and a variety of HDAC-based combination strategies have been developed for the treatment of hematological malignancies. Drug resistance and limited therapeutic efficacy are key issues that hinder the clinical applications of HDAC inhibitors (HDACis). In this review, we summarize the current knowledge of how HDACs and HDAC-containing complexes function in normal hematopoiesis and highlight the etiology of HDACs in hematological malignancies. Moreover, the implication and drug resistance of HDACis are also discussed. This review presents an overview of the physiology and pathology of HDACs in the blood system.
Collapse
Affiliation(s)
- Pan Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China.,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- The Xiangya Hospital, Central South University, Changsha, 410005, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
18
|
Thom CS, Chou ST, French DL. Mechanistic and Translational Advances Using iPSC-Derived Blood Cells. JOURNAL OF EXPERIMENTAL PATHOLOGY 2020; 1:36-44. [PMID: 33768218 PMCID: PMC7990314 DOI: 10.33696/pathology.1.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-based model systems can be used to produce blood cells for the study of both hematologic and non-hematologic disorders. This commentary discusses recent advances that have utilized iPSC-derived red blood cells, megakaryocytes, myeloid cells, and lymphoid cells to model hematopoietic disorders. In addition, we review recent studies that have defined how microglial cells differentiated from iPSC-derived monocytes impact neurodegenerative disease. Related translational insights highlight the utility of iPSC models for studying pathologic anemia, bleeding, thrombosis, autoimmunity, immunodeficiency, blood cancers, and neurodegenerative disease such as Alzheimer's.
Collapse
Affiliation(s)
- Christopher S Thom
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
19
|
van Bergen MGJM, van der Reijden BA. Targeting the GFI1/1B-CoREST Complex in Acute Myeloid Leukemia. Front Oncol 2019; 9:1027. [PMID: 31649884 PMCID: PMC6794713 DOI: 10.3389/fonc.2019.01027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation. Recent studies have shown that small molecules targeting Lysine Specific Demethylase 1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a core component of the chromatin binding CoREST complex. Together with histone deacetylases CoREST regulates gene expression by histone 3 demethylation and deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence) are major interaction partners of KDM1A and recruit the CoREST complex to chromatin in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt the GFI1/1B-CoREST interaction and that this is key to inducing terminal differentiation of leukemia cells.
Collapse
Affiliation(s)
| | - Bert A. van der Reijden
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
van Oorschot R, Marneth AE, Bergevoet SM, van Bergen MGJM, Peerlinck K, Lentaigne CE, Millar CM, Westbury SK, Favier R, Erber WN, Turro E, Jansen JH, Ouwehand WH, McKinney HL, Downes K, Freson K, van der Reijden BA. Inherited missense variants that affect GFI1B function do not necessarily cause bleeding diatheses. Haematologica 2018; 104:e260-e264. [PMID: 30573501 DOI: 10.3324/haematol.2018.207712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rinske van Oorschot
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Maaike G J M van Bergen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Kathelijne Peerlinck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | - Claire E Lentaigne
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, UK
| | - Carolyn M Millar
- Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, UK.,Imperial College Healthcare NHS Trust, London, UK
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Remi Favier
- Service d'Hematologie Biologique, Assistance-Publique Hôpitaux de Paris, Centre de Référence des Pathologies Plaquettaires, Hôpital Armand Trousseau, Paris, France
| | - Wendy N Erber
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia.,PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, UK
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.,Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, UK
| | - Harriet L McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | | | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Belgium.,NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboudumc, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| |
Collapse
|