1
|
Creignou M, Bernard E, Gasparini A, Tranberg A, Todisco G, Moura PL, Ejerblad E, Nilsson L, Garelius H, Antunovic P, Lorenz F, Rasmussen B, Walldin G, Mortera-Blanco T, Jansson M, Tobiasson M, Elena C, Ferrari J, Gallì A, Pozzi S, Malcovati L, Edgren G, Crowther MJ, Jädersten M, Papaemmanuil E, Hellström-Lindberg E. Early transfusion patterns improve the Molecular International Prognostic Scoring System (IPSS-M) prediction in myelodysplastic syndromes. J Intern Med 2024; 296:53-67. [PMID: 38654517 DOI: 10.1111/joim.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND The Molecular International Prognostic Scoring System (IPSS-M) is the new gold standard for diagnostic outcome prediction in patients with myelodysplastic syndromes (MDS). This study was designed to assess the additive prognostic impact of dynamic transfusion parameters during early follow-up. METHODS We retrieved complete transfusion data from 677 adult Swedish MDS patients included in the IPSS-M cohort. Time-dependent erythrocyte transfusion dependency (E-TD) was added to IPSS-M features and analyzed regarding overall survival and leukemic transformation (acute myeloid leukemia). A multistate Markov model was applied to assess the prognostic value of early changes in transfusion patterns. RESULTS Specific clinical and genetic features were predicted for diagnostic and time-dependent transfusion patterns. Importantly, transfusion state both at diagnosis and within the first year strongly predicts outcomes in both lower (LR) and higher-risk (HR) MDSs. In multivariable analysis, 8-month landmark E-TD predicted shorter survival independently of IPSS-M (p < 0.001). A predictive model based on IPSS-M and 8-month landmark E-TD performed significantly better than a model including only IPSS-M. Similar trends were observed in an independent validation cohort (n = 218). Early transfusion patterns impacted both future transfusion requirements and outcomes in a multistate Markov model. CONCLUSION The transfusion requirement is a robust and available clinical parameter incorporating the effects of first-line management. In MDS, it provides dynamic risk information independently of diagnostic IPSS-M and, in particular, clinical guidance to LR MDS patients eligible for potentially curative therapeutic intervention.
Collapse
Affiliation(s)
- Maria Creignou
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Phase 1 Unit, Center for Clinical Cancer Studies, Karolinska University Hospital, Stockholm, Sweden
| | - Elsa Bernard
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- INSERM U981 & Precision Medicine Cancer Center, Gustave Roussy, Villejuif, France
| | | | - Anna Tranberg
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gabriele Todisco
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Pedro Luis Moura
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth Ejerblad
- Unit of Hematology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Nilsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Hege Garelius
- Department of Medicine, Section of Hematology and Coagulation, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Petar Antunovic
- Department of Hematology, University Hospital in Linköping, Linköping, Sweden
| | - Fryderyk Lorenz
- Department of Hematology, University Hospital of Umeå, Umeå, Sweden
| | - Bengt Rasmussen
- Department of Hematology, Örebro University Hospital, Örebro, Sweden
| | - Gunilla Walldin
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Monika Jansson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Chiara Elena
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Jacqueline Ferrari
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Anna Gallì
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Sara Pozzi
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Luca Malcovati
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Gustaf Edgren
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | | | - Martin Jädersten
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Boccia R, Xiao H, von Wilamowitz-Moellendorff C, Raorane R, Deshpande S, Klijn SL, Yucel A. A Systematic Literature Review of Predictors of Erythropoiesis-Stimulating Agent Failure in Lower-Risk Myelodysplastic Syndromes. J Clin Med 2024; 13:2702. [PMID: 38731231 PMCID: PMC11084325 DOI: 10.3390/jcm13092702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Erythropoiesis-stimulating agents (ESAs) are the first-line treatment option for anemia in patients with lower-risk myelodysplastic syndromes (LR-MDS). A systematic literature review was conducted to identify evidence of the association between prognostic factors and ESA response/failure in LR-MDS. MEDLINE, Embase, and relevant conferences were searched systematically for studies assessing the association between prognostic factors and ESA response/failure in adult patients. Of 1566 citations identified, 38 were included. Patient risk status in studies published from 2000 onwards was commonly assessed using the International Prognostic Scoring System (IPSS) or revised IPSS. ESA response was generally assessed using the International Working Group MDS criteria. Among the included studies, statistically significant relationships were found, in both univariate and multivariate analyses, between ESA response and the following prognostic factors: higher hemoglobin levels, lower serum erythropoietin levels, and transfusion independence. Furthermore, other prognostic factors such as age, bone marrow blasts, serum ferritin level, IPSS risk status, and karyotype status did not demonstrate statistically significant relationships with ESA response. This systematic literature review has confirmed prognostic factors of ESA response/failure. Guidance to correctly identify patients with these characteristics could be helpful for clinicians to provide optimal treatment.
Collapse
Affiliation(s)
- Ralph Boccia
- The Center for Cancer and Blood Disorders, 6410 Rockledge Drive, Suite 660, Bethesda, MD 20817, USA
| | - Hong Xiao
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrence Township, NJ 08648, USA; (H.X.)
| | | | - Renuka Raorane
- Evidera, Ltd., UK Office, The Ark, 201 Talgarth Rd, London W6 8BJ, UK; (C.v.W.-M.); (R.R.)
| | - Sohan Deshpande
- Evidera, Ltd., UK Office, The Ark, 201 Talgarth Rd, London W6 8BJ, UK; (C.v.W.-M.); (R.R.)
| | - Sven L. Klijn
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrence Township, NJ 08648, USA; (H.X.)
| | - Aylin Yucel
- Bristol Myers Squibb, 3401 Princeton Pike, Lawrence Township, NJ 08648, USA; (H.X.)
| |
Collapse
|
3
|
Park S. [Treatment of lower risk myelodysplastic syndromes]. Bull Cancer 2023; 110:1156-1161. [PMID: 37500385 DOI: 10.1016/j.bulcan.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 07/29/2023]
Abstract
For low-risk myelodysplastic syndromes, the goal of treatment is to correct cytopenias or their consequences. Erythropoiesis-stimulating agents have an important role in the management of anemia. In this chapter, we will detail the response to ESAs, the factors predictive of response to ESAs. However, the search for new therapeutic options for low-risk, ESA-resistant MDS remains necessary as the incidence of AML transformation of the patients is higher. We can retain luspatercept for MDS with excess ring of sideroblasts, lenalidomide, and some molecules currently being tested such as imetelstat or roxedustat. However, the search for new therapeutic options for ESA-resistant low-risk MDS remains necessary. We can use androgenotherapy or TPO agonists in limited access for symptomatic thrombocytopenia.
Collapse
Affiliation(s)
- Sophie Park
- CHU de Grenoble, service d'hématologie, CS 10217, 38043 Grenoble cedex 09, France.
| |
Collapse
|
4
|
Sorigue M. Diagnosis of erythroid dysplasia by flow cytometry: a review. Expert Rev Hematol 2023; 16:1049-1062. [PMID: 38018383 DOI: 10.1080/17474086.2023.2289534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION The diagnosis of myelodysplastic syndrome (MDS) is complex. Flow cytometric analysis of the myelomonocytic compartment can be helpful, but it is highly subjective and reproducibility by non-specialized groups is unclear. Analysis of the erythroid lineage by flow cytometry is emerging as potentially more reproducible and easier to conduct, while keeping a high diagnostic performance. AREAS COVERED We review the evidence in this area, including 1) the use of well-established markers - CD71 and CD36 - and other less well-established markers and parameters; 2) the use of flow cytometric scores for the erythroid lineage; and 3) additional aspects, including the emergence of computational tools and the roles of flow cytometry beyond diagnosis. Finally, we discuss the limitations with the current evidence, including 1) the impact of the sample processing protocol and reagents on the results, 2) the lack of a standard gating strategy, and 3) conceptualization and design issues in the available publications. EXPERT OPINION We end by offering our recommendations for the current use - and our personal take on the value - of the analysis of erythroid lineage by flow cytometry.
Collapse
Affiliation(s)
- Marc Sorigue
- Medical Department, Trialing Health, Barcelona, Spain
| |
Collapse
|
5
|
Randall MP, DeZern AE. The Management of Low-Risk Myelodysplastic Syndromes-Current Standards and Recent Advances. Cancer J 2023; 29:152-159. [PMID: 37195771 DOI: 10.1097/ppo.0000000000000655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT The myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic neoplasms with varied natural histories and prognoses. Specific to this review, treatment of low-risk MDS most often focuses on improving quality of life by correcting cytopenias, as opposed to urgent disease modification to avoid acute myeloid leukemia. These treatments include transfusion support with iron chelation when necessary, growth factors including novel maturation agents such as luspatercept, lenalidomide for del(5q) disease, and, increasingly, low-dose hypomethylating agents. Recent advances in the understanding of the genetic lesions that drive MDS have prompted a reassessment of how low-risk disease is defined and helped to identify a subset of low-risk MDS patients who may benefit from a more aggressive treatment paradigm, including hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Michael P Randall
- From the Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Amy E DeZern
- Division of Hematologic Malignancies, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Meunier M, Park S. Lower-risk myelodysplastic syndromes: Current treatment options for anemia. EJHAEM 2022; 3:1091-1099. [PMID: 36467818 PMCID: PMC9713208 DOI: 10.1002/jha2.523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/17/2023]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological disorders. Treatment options are classified and defined by prognostic risk based on the International Prognostic Scoring System (IPSS) and, more recently, the revised IPSS (IPSS-R). The treatment goal for lower-risk MDS is to correct cytopenias or their consequences, with the goal of maintaining or improving quality of life. Erythropoiesis-stimulating agents (ESAs) play an important role in treating anemia. Individuals with MDS who have a 5q deletion are particularly sensitive to treatment with lenalidomide; however, this comprises the minority of patients with MDS. Luspatercept was recently approved in the United States and the European Union for the treatment of ESA-refractory MDS with ring sideroblasts. Research into new treatment options, especially after ESA failure, is needed. In this review, we will focus on the current therapeutic options for MDS-related anemia.
Collapse
Affiliation(s)
- Mathieu Meunier
- Department of HaematologyCHU Grenoble AlpesGrenobleFrance
- Institute for Advanced BioscienceUniversité Grenoble AlpesGrenobleFrance
| | - Sophie Park
- Department of HaematologyCHU Grenoble AlpesGrenobleFrance
- Institute for Advanced BioscienceUniversité Grenoble AlpesGrenobleFrance
| |
Collapse
|
7
|
Mathieu M, Friedrich C, Ducrot N, Zannoni J, Sylvie T, Jerraya N, Rousseaux S, Chuffart F, Kosmider O, Karim Z, Park S. Luspatercept (RAP-536) modulates oxidative stress without affecting mutation burden in myelodysplastic syndromes. Ann Hematol 2022; 101:2633-2643. [PMID: 36195681 DOI: 10.1007/s00277-022-04993-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
In low-risk myelodysplastic syndrome (LR-MDS), erythropoietin (EPO) is widely used for the treatment of chronic anemia. However, initial response to EPO has time-limited effects. Luspatercept reduces red blood cell transfusion dependence in LR-MDS patients. Here, we investigated the molecular action of luspatercept (RAP-536) in an in vitro model of erythroid differentiation of MDS, and also in a in vivo PDX murine model with primary samples of MDS patients carrying or not SF3B1 mutation. In our in vitro model, RAP-536 promotes erythroid proliferation by increasing the number of cycling cells without any impact on apoptosis rates. RAP-536 promoted late erythroid precursor maturation while decreasing intracellular reactive oxygen species level. RNA sequencing of erythroid progenitors obtained under RAP-536 treatment showed an enrichment of genes implicated in positive regulation of response to oxidative stress and erythroid differentiation. In our PDX model, RAP-536 induces a higher hemoglobin level. RAP-536 did not modify variant allele frequencies in vitro and did not have any effect against leukemic burden in our PDX model. These results suggest that RAP-536 promotes in vivo and in vitro erythroid cell differentiation by decreasing ROS level without any remarkable impact on iron homeostasis and on mutated allele burden.
Collapse
Affiliation(s)
- Meunier Mathieu
- Department of Hematology, CHU Grenoble Alpes, CS10217, 38043, Grenoble cedex 09, France.
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France.
| | - Chloé Friedrich
- Institut Cochin, Department Development, Reproduction and Cancer, 75014, Paris, France
| | - Nicolas Ducrot
- Université de Paris, INSERM, CNRS, Centre de Recherche Sur L'Inflammation (CRI), 75018, Paris, France
| | - Johanna Zannoni
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Tondeur Sylvie
- Laboratoire de Génétique Des Hémopathies, CHU Grenoble Alpes, Grenoble, France
| | - Nelly Jerraya
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Sophie Rousseaux
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Florent Chuffart
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France
| | - Olivier Kosmider
- Institut Cochin, Department Development, Reproduction and Cancer, 75014, Paris, France
- Hematology Department, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université de Paris (APHP-CUP), 75014, Paris, France
| | - Zoubida Karim
- Université de Toulouse, INSERM, CNRS, Institut Toulousain Des Maladies Infectieuses Et Inflammatoires (Infinity), Université Paul Sabatier (UPS), Toulouse, France
| | - Sophie Park
- Department of Hematology, CHU Grenoble Alpes, CS10217, 38043, Grenoble cedex 09, France.
- CNRS UMR 5309, INSERM, U1209, Université Grenoble Alpes, Institute for Advanced Bioscience, 38700, Grenoble, France.
| |
Collapse
|
8
|
EnvIRONmental Aspects in Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms22105202. [PMID: 34068996 PMCID: PMC8156755 DOI: 10.3390/ijms22105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Systemic iron overload is multifactorial in patients suffering from myelodysplastic syndrome (MDS). Disease-immanent ineffective erythropoiesis together with chronic red blood cell transfusion represent the main underlying reasons. However, like the genetic heterogeneity of MDS, iron homeostasis is also diverse in different MDS subtypes and can no longer be generalized. While a certain amount of iron and reactive oxygen species (ROS) are indispensable for proper hematological output, both are harmful if present in excess. Consequently, iron overload has been increasingly recognized as an important player in MDS, which is worth paying attention to. This review focuses on iron- and ROS-mediated effects in the bone marrow niche, their implications for hematopoiesis and their yet unclear involvement in clonal evolution. Moreover, we provide recent insights into hepcidin regulation in MDS and its interaction between erythropoiesis and inflammation. Based on Tet methylcytosine dioxygenase 2 (TET2), representing one of the most frequently mutated genes in MDS, leading to disturbances in both iron homeostasis and hematopoiesis, we highlight that different genetic alteration may have different implications and that a comprehensive workup is needed for a complete understanding and development of future therapies.
Collapse
|
9
|
Riabov V, Mossner M, Stöhr A, Jann JC, Streuer A, Schmitt N, Knaflic A, Nowak V, Weimer N, Obländer J, Palme I, Schumann C, Baldus CD, Schulze TJ, Wuchter P, Röhl H, Jawhar A, Weiss C, Boch T, Metzgeroth G, Neumann M, Hofmann WK, Nolte F, Nowak D. High erythroferrone expression in CD71 + erythroid progenitors predicts superior survival in myelodysplastic syndromes. Br J Haematol 2021; 192:879-891. [PMID: 33486765 DOI: 10.1111/bjh.17314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71+ erythroid progenitors of n = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1wt and SF3B1mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int-1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.
Collapse
Affiliation(s)
- Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Mossner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexandra Stöhr
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Antje Knaflic
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Schumann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Claudia D Baldus
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Torsten J Schulze
- Institute Springe, German Red Cross Blood Service NSTOB, Springe, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Henning Röhl
- Department of Orthopedic Surgery, Diakonissen Hospital, Mannheim, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Boch
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Neumann
- Department of Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Wu L, Li Y, Gu N. Nano-sensing and nano-therapy targeting central players in iron homeostasis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1667. [PMID: 32893493 DOI: 10.1002/wnan.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022]
Abstract
Iron plays vital roles in many life activities and it is strictly controlled via elaborate metabolic system. Growing evidence has suggested that the dysfunctional iron homeostasis is implicated to many refractory diseases including cancers and neurodegenerations. Systemic and cellular iron are regulated through different pathways but are meanwhile interconnecting with each other via a few key regulators, whose abnormal expressions are often found to be the root causes of many iron disorders. Nano-sensing techniques have enabled the detection and monitoring of such central players, which provide rich information for the iron homeostasis profile through multiplexing and flexible designs. In addition to general sensing, nanoprobes are capable of target imaging and precise local access, which are particularly beneficial for revealing the conditions of intra-/extracellular environments. Nanomaterials have also been applied in some therapies, targeting the aberrant iron metabolism. Various iron uptake pathways have been utilized for target drug delivery and iron level manipulation, while abnormal iron content is notably useful in tumor killing. With brief introduction to the significance of iron homeostasis, this review includes recent works regarding the nanotechnology that has been applied in iron-related diagnostic and therapeutic applications. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Linyuan Wu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Bondu S, Alary AS, Lefèvre C, Houy A, Jung G, Lefebvre T, Rombaut D, Boussaid I, Bousta A, Guillonneau F, Perrier P, Alsafadi S, Wassef M, Margueron R, Rousseau A, Droin N, Cagnard N, Kaltenbach S, Winter S, Kubasch AS, Bouscary D, Santini V, Toma A, Hunault M, Stamatoullas A, Gyan E, Cluzeau T, Platzbecker U, Adès L, Puy H, Stern MH, Karim Z, Mayeux P, Nemeth E, Park S, Ganz T, Kautz L, Kosmider O, Fontenay M. A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome. Sci Transl Med 2020; 11:11/500/eaav5467. [PMID: 31292266 DOI: 10.1126/scitranslmed.aav5467] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Myelodysplastic syndromes (MDS) with ring sideroblasts are hematopoietic stem cell disorders with erythroid dysplasia and mutations in the SF3B1 splicing factor gene. Patients with MDS with SF3B1 mutations often accumulate excessive tissue iron, even in the absence of transfusions, but the mechanisms that are responsible for their parenchymal iron overload are unknown. Body iron content, tissue distribution, and the supply of iron for erythropoiesis are controlled by the hormone hepcidin, which is regulated by erythroblasts through secretion of the erythroid hormone erythroferrone (ERFE). Here, we identified an alternative ERFE transcript in patients with MDS with the SF3B1 mutation. Induction of this ERFE transcript in primary SF3B1-mutated bone marrow erythroblasts generated a variant protein that maintained the capacity to suppress hepcidin transcription. Plasma concentrations of ERFE were higher in patients with MDS with an SF3B1 gene mutation than in patients with SF3B1 wild-type MDS. Thus, hepcidin suppression by a variant ERFE is likely responsible for the increased iron loading in patients with SF3B1-mutated MDS, suggesting that ERFE could be targeted to prevent iron-mediated toxicity. The expression of the variant ERFE transcript that was restricted to SF3B1-mutated erythroblasts decreased in lenalidomide-responsive anemic patients, identifying variant ERFE as a specific biomarker of clonal erythropoiesis.
Collapse
Affiliation(s)
- Sabrina Bondu
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Anne-Sophie Alary
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'hématologie biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Carine Lefèvre
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Human Genetics and Oncogenesis, Paris 75005, France
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Thibaud Lefebvre
- Université de Paris, Paris 75006, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,INSERM, UMR 1149/ERL CNRS 8252, Centre de Recherches sur l'inflammation, Université de Paris, Paris 75018, France
| | - David Rombaut
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Ismael Boussaid
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Abderrahmane Bousta
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - François Guillonneau
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Proteomic platform 3P5, Université de Paris, Paris 75014, France
| | - Prunelle Perrier
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM U1220, Institut National de la Recherche Agronomique U1416, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse 31024, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Department of Translational Research, Paris 75005, France
| | - Michel Wassef
- Institut Curie, PSL Research University, INSERM 934/UMR 3215, Genetics and biology of Development, Paris 75005 France
| | - Raphaël Margueron
- Institut Curie, PSL Research University, INSERM 934/UMR 3215, Genetics and biology of Development, Paris 75005 France
| | - Alice Rousseau
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France
| | - Nathalie Droin
- Institut Gustave Roussy, Genomic platform, Villejuif 94805, France
| | - Nicolas Cagnard
- Université de Paris, Paris 75006, France.,Platform Bioinformatics, Université de Paris, Paris 75015, France
| | - Sophie Kaltenbach
- Université de Paris, Paris 75006, France.,Laboratoire de Génétique, AP-HP, Hôpital Necker, Paris 75015, France
| | - Susann Winter
- Medical Clinic und Policlinic 1, Technische Universität Dresden, Dresden 01307, Germany
| | - Anne-Sophie Kubasch
- Medical Clinic und Policlinic 1, Hematology and Cellular Therapy, University Hospital, Leipzig 04103, Germany
| | - Didier Bouscary
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'Hématologie clinique, AP-HP, Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France
| | - Valeria Santini
- MDS unit, Hematology, AOU Careggi, University of Florence, Florence 50134, Italy
| | - Andrea Toma
- Département d'Hématologie, AP-HP, Hôpital Henri-Mondor, Université Paris 12, Créteil 94000, France
| | - Mathilde Hunault
- Service des Maladies du Sang, Centre hospitalo-universitaire, Angers 49100, France
| | | | - Emmanuel Gyan
- Service d'hématologie et thérapie cellulaire, Centre hospitalo-universitaire, CNRS ERL 7001 LNOx, Université de Tours, Tours 37044, France
| | - Thomas Cluzeau
- Côte d'Azur University, CHU of Nice, Hematology department and INSERM U1065, Mediterranean Center of Molecular Medecine, Nice 06204, France
| | - Uwe Platzbecker
- Medical Clinic und Policlinic 1, Hematology and Cellular Therapy, University Hospital, Leipzig 04103, Germany
| | - Lionel Adès
- Université de Paris, Paris 75006, France.,Service d'Hématologie Senior, AP-HP, Hôpital Saint-Louis, Paris 75010, France
| | - Hervé Puy
- Université de Paris, Paris 75006, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,INSERM, UMR 1149/ERL CNRS 8252, Centre de Recherches sur l'inflammation, Université de Paris, Paris 75018, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, INSERM U830, Genetics and biology of cancers, DNA repair and uveal melanoma (D.R.U.M.), Équipe labellisée par la Ligue nationale contre le cancer, Paris 75005, France
| | - Zoubida Karim
- Université de Paris, Paris 75006, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,INSERM, UMR 1149/ERL CNRS 8252, Centre de Recherches sur l'inflammation, Université de Paris, Paris 75018, France
| | - Patrick Mayeux
- Université de Paris, Paris 75006, France.,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France.,Proteomic platform 3P5, Université de Paris, Paris 75014, France
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sophie Park
- Département d'Hématologie, Centre Hospitalier Universitaire, Université de Grenoble Alpes, La Tronche 38700, France
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Léon Kautz
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM U1220, Institut National de la Recherche Agronomique U1416, Ecole Nationale Vétérinaire de Toulouse, Université Paul Sabatier, Toulouse 31024, France
| | - Olivier Kosmider
- Université de Paris, Paris 75006, France. .,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'hématologie biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France
| | - Michaëla Fontenay
- Université de Paris, Paris 75006, France. .,Institut Cochin, Département Développement, Reproduction, Cancer, Paris 75014, France.,Institut National de la Santé et de la Recherche médicale (INSERM) U1016, Paris 75014, France.,Centre National de la Recherche Scientifique (CNRS) Unité Mixte de recherche (UMR) 8104, Paris 75014, France.,Service d'hématologie biologique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre-Cochin, Paris 75014, France.,Laboratoire d'excellence du Globule Rouge GR-Ex, Paris 75015, France
| |
Collapse
|
12
|
Brissot E, Bernard DG, Loréal O, Brissot P, Troadec MB. Too much iron: A masked foe for leukemias. Blood Rev 2020; 39:100617. [DOI: 10.1016/j.blre.2019.100617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
13
|
Serum ferritin levels at diagnosis predict prognosis in patients with low blast count myelodysplastic syndromes. Int J Hematol 2019; 110:533-542. [DOI: 10.1007/s12185-019-02710-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
|
14
|
Affiliation(s)
- Emmanuel Gyan
- Service d'hématologie et thérapie cellulaire, Centre Hospitalier Universitaire, Tours, France.,«Leukemic Niche and Redox Metabolism», CNRS ERL 7001, Faculté de Médecine, Université de Tours, Tours, France
| | | |
Collapse
|