1
|
Lauhasurayotin S, Moonla C, Ittiwut R, Ittiwut C, Songthawee N, Komvilaisak P, Natesirinilkul R, Sirachainan N, Rojnuckarin P, Sosothikul D, Suphapeetiporn K. Genetic variations of type 2 and type 3 von Willebrand diseases in Thailand. J Clin Pathol 2024; 78:57-63. [PMID: 38053262 DOI: 10.1136/jcp-2023-209123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/28/2023] [Indexed: 12/07/2023]
Abstract
AIMS Von Willebrand disease (VWD) is an inherited haemostatic disorder with a wide range of bleeding phenotypes based on von Willebrand factor (VWF) levels. Multiple assays including VWF gene analysis are employed to correctly diagnose VWD and its subtypes. However, data on VWF mutations among Southeast Asian populations are lacking. We, therefore, aimed to explore genetic variations in Thai patients with type 2 and type 3 VWD by whole exome sequencing (WES). METHODS In this multicentre study, Thai patients with type 2 and type 3 VWD, according to the definitions and VWF levels recommended by the international guidelines, were recruited. WES was performed using DNA extracted from peripheral blood in all cases. The novel variants were verified by Sanger sequencing. RESULTS Fifteen patients (73% females; median age at diagnosis 3.0 years) with type 2 (n=12) and type 3 VWD (n=3) from 14 families were enrolled. All patients harboured at least one VWF variant. Six missense (p.Arg1374Cys, p.Arg1374His, p.Arg1399Cys, p.Arg1597Trp, p.Ser1613Pro, p.Pro1648Arg) and one splice-site (c.3379+1G>A) variants in the VWF gene were formerly described. Notably, six VWF variants, including three missense (p.Met814Ile, p.Trp856Cys, p.Pro2032Leu), one deletion (c.2251delG) and two splice-site (c.7729+4A>C, c.8115+2delT) mutations were novelly identified. Compound heterozygosity contributed to type 2 and type 3 VWD phenotypes in two and one patients, respectively. CONCLUSIONS Type 2 and type 3 VWD in Thailand demonstrate the mutational variations among VWF exons/introns with several unique variants. The WES-based approach potentially provides helpful information to verify VWD diagnosis and facilitate genetic counselling in clinical practice.
Collapse
Affiliation(s)
- Supanun Lauhasurayotin
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Natsaruth Songthawee
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Patcharee Komvilaisak
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Nongnuch Sirachainan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Darintr Sosothikul
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Integrative and Innovative Hematology/Oncology Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
2
|
Liang Q, Zhang Z, Ding B, Shao Y, Ding Q, Dai J, Hu X, Wu W, Wang X. A noncanonical splicing variant c.875-5 T > G in von Willebrand factor causes in-frame exon skipping and type 2A von Willebrand disease. Thromb Res 2024; 236:51-60. [PMID: 38387303 DOI: 10.1016/j.thromres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION A novel variant involving noncanonical splicing acceptor site (c.875-5 T > G) in propeptide coding region of von Willebrand factor (VWF) was identified in a patient with type 2A von Willebrand disease (VWD), who co-inherited with a null variant (p.Tyr271*) and presented characteristic discrepancy of plasma level of VWF antigen and activity, and a selective reduction of both intermediate-molecular-weight (IMWMs) and high-molecular-weight VWF multimers (HMWMs). MATERIALS AND METHODS VWF mRNA transcripts obtained from peripheral leukocytes and platelets of the patients were investigated to analyze the consequence of c.875-5 T > G on splicing. The impact of the variant on expression and multimer assembly was further analyzed by in vitro expression studies in AtT-20 cells. The intracellular processing of VWF mutant and the Weibel-Palade bodies (WPBs) formation was evaluated by immunofluorescence staining and electron microscopy. RESULTS The mRNA transcript analysis revealed that c.875-5 T > G variant led to exon 8 skipping and an in-frame deletion of 41 amino acids in the D1 domain of VWF (p.Ser292_Glu333delinsLys), yielding a truncated propeptide. Consistent with the patient's laboratory manifestations, the AtT-20 cells transfected with mutant secreted less VWF, with the VWF antigen level in conditioned medium 47 % of wild-type. A slight retention in the endoplasmic reticulum was observed for the mutant. Almost complete loss of IMWMs and HMWMs in the medium and impaired WPBs formation in the cell, indicating truncated VWF propeptide lost its chaperon-like function for VWF multimerization and tubular storage. CONCLUSIONS The VWF splicing site variant (c.875-5 T > G) causes propeptide truncation, severely compromising VWF multimer assembly and tubular storage.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqi Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Biying Ding
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobo Hu
- Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, China.
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Cao Q, Hao Z, Li C, Chen X, Gao M, Jiang N, Liu H, Shen Y, Yang H, Zhang S, Yang A, Li W, Tie JK, Shen G. Molecular basis of inherited protein C deficiency results from genetic variations in the signal peptide and propeptide regions. J Thromb Haemost 2023; 21:3124-3137. [PMID: 37393002 PMCID: PMC10592384 DOI: 10.1016/j.jtha.2023.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Inherited protein C deficiency (PCD) caused by mutations in protein C (PC) gene (PROC) increases the risk of thrombosis. Missense mutations in PC's signal peptide and propeptide have been reported in patients with PCD, but their pathogenic mechanisms, except mutations in R42 residue, remain unclear. OBJECTIVES To investigate the pathogenic mechanisms of inherited PCD caused by 11 naturally occurring missense mutations in PC's signal peptide and propeptide. METHODS Using cell-based assays, we evaluated the impact of these mutations on various aspects such as activities and antigens of secreted PC, intracellular PC expression, subcellular localization of a reporter protein, and propeptide cleavage. Additionally, we investigated their effect on pre-messenger RNA (pre-mRNA) splicing using a minigene splicing assay. RESULTS Our data revealed that certain missense mutations (L9P, R32C, R40C, R38W, and R42C) disrupted PC secretion by impeding cotranslational translocation to the endoplasmic reticulum or causing endoplasmic reticulum retention. Additionally, some mutations (R38W and R42L/H/S) resulted in abnormal propeptide cleavage. However, a few missense mutations (Q3P, W14G, and V26M) did not account for PCD. Using a minigene splicing assay, we observed that several variations (c.8A>C, c.76G>A, c.94C>T, and c.112C>T) increased the incidence of aberrant pre-mRNA splicing. CONCLUSION Our findings suggest that variations in PC's signal peptide and propeptide have varying effects on the biological process of PC, including posttranscriptional pre-mRNA splicing, translation, and posttranslational processing. Additionally, a variation could affect the biological process of PC at multiple levels. Except for W14G, our results provide a clear understanding of the relationship between PROC genotype and inherited PCD.
Collapse
Affiliation(s)
- Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhenyu Hao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Cheng Li
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Xuejie Chen
- Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Nan Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hongli Liu
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; Department of Cell Biology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yan Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Haiping Yang
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Shujuan Zhang
- Department of Cell Biology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Aiying Yang
- Department of Cell Biology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Jian-Ke Tie
- Department of Biology, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; Department of Cell Biology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Zhao W, Ye G, Li Q, Zhou Y, Yu X, Li Y, Yu M, Wang H. Pathogenic variant of
DYNC2H1
associated with lingual hamartoma in a Chinese pedigree. J Oral Pathol Med 2022; 51:755-761. [DOI: 10.1111/jop.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Wenquan Zhao
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang China
| | - Guanchen Ye
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Qi Li
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Yu Zhou
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Xiaowen Yu
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Yining Li
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| | - Huiming Wang
- Department of Oral and Maxillofacial Surgery The First Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang China
- Stomatology Hospital, School of Stomatology Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
5
|
Sarkar A, Panati K, Narala VR. Code inside the codon: The role of synonymous mutations in regulating splicing machinery and its impact on disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108444. [PMID: 36307006 DOI: 10.1016/j.mrrev.2022.108444] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, precise pre-mRNA processing, including alternative splicing, is essential to carry out the intricate protein translation process. Both point mutations (that alter the translated protein sequence) and synonymous mutations (that do not alter the translated protein sequence) are capable of affecting the splicing process. Synonymous mutations are known to affect gene expression via altering mRNA stability, mRNA secondary structure, splicing processes, and translational kinetics. In higher eukaryotes, precise splicing is regulated by three weakly conserved cis-elements, 5' and 3' splice sites and the branch site. Many other cis-acting elements (exonic/intronic splicing enhancers and silencers) and trans-acting splicing factors (serine and arginine-rich proteins and heterogeneous nuclear ribonucleoproteins) have also been found to enhance or suppress the splicing process. The appearance of synonymous mutations in cis-acting elements can alter the splicing process by changing the binding pattern of splicing factors to exonic splicing enhancers or silencer motifs. This results in exon skipping, intron retention, and various other forms of alternative splicing, eventually leading to the emergence of a wide range of diseases. The focus of this review is to elucidate the role of synonymous mutations and their impact on abnormal splicing mechanisms. Further, this study highlights the function of synonymous mutation in mediating abnormal splicing in cancer and development of X-linked, and autosomal inherited diseases.
Collapse
Affiliation(s)
- Avik Sarkar
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa 516004, India
| | | |
Collapse
|
6
|
Batlle J, Pérez-Rodríguez A, Corrales I, Borràs N, Pinto JC, López-Fernández MF, Vidal F. IX international curse of continuing formation in haemophilia and other congenital coagulopathies. The role of the Laboratory in coagulation disorders. Diagnosis of von Willebrand disease. Blood Coagul Fibrinolysis 2022; 33:S12-S14. [PMID: 34783692 DOI: 10.1097/mbc.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Von Willebrand disease (VWD) is the most frequent inherited bleeding disorder caused by quantitative or qualitative defects of von Willebrand factor (VWF). This protein far from simplicity constitutes a very complex molecular model, remaining unravelled yet many aspects of it, even though the VWF gene (VWF) was cloned already in 1985 and the structure of VWF well defined. VWD diagnosis is difficult to achieve in a significant proportion of patients due to both disease heterogeneity and limitations in existing test processes. The cornerstone of diagnosis relies on interpretation of VWF test results, the presence of clinical manifestations of bleeding, especially mucocutaneous, and (in most cases) a positive family history. However, even with a significant bleeding history, a family history may not be positive due to factors of incomplete penetrance and variable expressivity that affect genetic changes. The laboratory diagnosis of VWD can be difficult, as the disease is heterogeneous and an array of assays is required to describe the phenotype. Basic classification of quantitative (type 1 and 3) and qualitative (type 2 variants) VWD requires determination of VWF antigenic (VWF:Ag) levels and assaying of VWF ristocetin cofactor (VWF:RCo) activity. The latter is required for identifying and subtyping VWD, but the assay is poorly standardized. For that reason, novel VWF activity assays have been developed awaiting more extensive comparison data between different methodologies and requiring validation on larger patient series. The qualitative type 2 VWF deficiency can be further divided into four different subtypes (A, B, M and N) using specific assays that measure other activities or the size distribution of VWF multimers. However, frequently, it may be difficult to correctly classify the VWD phenotype, and genetic analysis is through mutation identification may provide a tool to clarify the disorder.
Collapse
Affiliation(s)
- Javier Batlle
- Servicio Hematología, Complexo Hospitalario Universitario A Coruña, INIBIC, A Coruña
| | | | - Irene Corrales
- Banc de Sang iTeixits
- Medicina transfusional, Valld'Hebron Research Institute, UniversitatAutònoma de Barcelona (VHIR-UAB)
| | - Nina Borràs
- Banc de Sang iTeixits
- Medicina transfusional, Valld'Hebron Research Institute, UniversitatAutònoma de Barcelona (VHIR-UAB)
| | - Joana Costa Pinto
- Servicio Hematología, Complexo Hospitalario Universitario A Coruña, INIBIC, A Coruña
| | | | - Francisco Vidal
- Banc de Sang iTeixits
- Medicina transfusional, Valld'Hebron Research Institute, UniversitatAutònoma de Barcelona (VHIR-UAB)
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Barcelona, Spain
| |
Collapse
|
7
|
Liang Q, Lin X, Wu X, Shao Y, Chen C, Dai J, Lu Y, Wu W, Ding Q, Wang X. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Hum Mutat 2021; 43:215-227. [PMID: 34882887 DOI: 10.1002/humu.24312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Conboy JG. A Deep Exon Cryptic Splice Site Promotes Aberrant Intron Retention in a Von Willebrand Disease Patient. Int J Mol Sci 2021; 22:13248. [PMID: 34948044 PMCID: PMC8706089 DOI: 10.3390/ijms222413248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
A translationally silent single nucleotide mutation in exon 44 (E44) of the von Willebrand factor (VWF) gene is associated with inefficient removal of intron 44 in a von Willebrand disease (VWD) patient. This intron retention (IR) event was previously attributed to reordered E44 secondary structure that sequesters the normal splice donor site. We propose an alternative mechanism: the mutation introduces a cryptic splice donor site that interferes with the function of the annotated site to favor IR. We evaluated both models using minigene splicing reporters engineered to vary in secondary structure and/or cryptic splice site content. Analysis of splicing efficiency in transfected K562 cells suggested that the mutation-generated cryptic splice site in E44 was sufficient to induce substantial IR. Mutations predicted to vary secondary structure at the annotated site also had modest effects on IR and shifted the balance of residual splicing between the cryptic site and annotated site, supporting competition among the sites. Further studies demonstrated that introduction of cryptic splice donor motifs at other positions in E44 did not promote IR, indicating that interference with the annotated site is context dependent. We conclude that mutant deep exon splice sites can interfere with proper splicing by inducing IR.
Collapse
Affiliation(s)
- John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
The CDH1 c.1901C>T Variant: A Founder Variant in the Portuguese Population with Severe Impact in mRNA Splicing. Cancers (Basel) 2021; 13:cancers13174464. [PMID: 34503274 PMCID: PMC8430675 DOI: 10.3390/cancers13174464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary An unexpectedly high number of early-onset diffuse gastric and lobular breast cancer in apparently unrelated families carrying the same CDH1 c.1901C>T variant (formerly known as missense p.A634V) in Northern Portugal suggested a founder effect in this region. We demonstrated that c.1901C>T is a truncating variant triggered by cryptic splicing, calculated its mutational age, and characterized the tumour spectrum and age of onset in affected families. Abstract Hereditary diffuse gastric cancer (HDGC) caused by CDH1 variants predisposes to early-onset diffuse gastric (DGC) and lobular breast cancer (LBC). In Northern Portugal, the unusually high number of HDGC cases in unrelated families carrying the c.1901C>T variant (formerly known as p.A634V) suggested this as a CDH1-founder variant. We aimed to demonstrate that c.1901C>T is a bona fide truncating variant inducing cryptic splicing, to calculate the timing of a potential founder effect, and to characterize tumour spectrum and age of onset in carrying families. The impact in splicing was proven by using carriers’ RNA for PCR-cloning sequencing and allelic expression imbalance analysis with SNaPshot. Carriers and noncarriers were haplotyped for 12 polymorphic markers, and the decay of haplotype sharing (DHS) method was used to estimate the time to the most common ancestor of c.1901C>T. Clinical information from 58 carriers was collected and analysed. We validated the cryptic splice site within CDH1-exon 12, which was preferred over the canonical one in 100% of sequenced clones. Cryptic splicing induced an out-of-frame 37bp deletion in exon 12, premature truncation (p.Ala634ProfsTer7), and consequently RNA mediated decay. The haplotypes carrying the c.1901C>T variant were found to share a common ancestral estimated at 490 years (95% Confidence Interval 445–10,900). Among 58 carriers (27 males (M)–31 females (F); 13–83 years), DGC occurred in 11 (18.9%; 4M–7F; average age 33 ± 12) and LBC in 6 females (19.4%; average age 50 ± 8). Herein, we demonstrated that the c.1901C>T variant is a loss-of-function splice-site variant that underlies the first CDH1-founder effect in Portugal. Knowledge on this founder effect will drive genetic testing of this specific variant in HDGC families in this geographical region and allow intrafamilial penetrance analysis and better estimation of variant-associated tumour risks, disease age of onset, and spectrum.
Collapse
|
10
|
Dubois MD, Pierre-Louis S, Rabout J, Denis CV, Christophe O, Susen S, Goudemand J, Boisseau P, Neviere R, Pierre-Louis O. A Combination of Two Variants p. (Val510 =) and p. (Pro2145Thrfs * 5), Responsible for von Willebrand Disease Type 3 in a Caribbean Patient. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2020; 4:e318-e321. [PMID: 33134807 PMCID: PMC7591350 DOI: 10.1055/s-0040-1718703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022]
Affiliation(s)
| | - Serge Pierre-Louis
- Ressources and Competence Center for Constitutional Hemorrhagic Diseases (CRC-MHC), CHU Martinique, Martinique, France
| | - Johalène Rabout
- Ressources and Competence Center for Constitutional Hemorrhagic Diseases (CRC-MHC), CHU Martinique, Martinique, France
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre cedex, France
| | - Olivier Christophe
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre cedex, France
| | - Sophie Susen
- Department of Hematology and Transfusion, CHU Lille, Lille, France
| | - Jenny Goudemand
- Department of Hematology and Transfusion, CHU Lille, Lille, France
| | - Pierre Boisseau
- Department of Medical Genetics, Hôtel-Dieu Hospital, CHU Nantes, Nantes, France
| | - Rémi Neviere
- EA 7525 VPMC, Université des Antilles, Schoelcher, Martinique, France.,Fort-de-France, CHU Martinique, Martinique, France
| | | |
Collapse
|
11
|
Elucidating the roles of naturally occurring silent mutations in Polycystic Ovary Syndrome (PCOS). Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Daidone V, Galletta E, De Marco L, Casonato A. Cryptic non-canonical splice site activation is part of the mechanism that abolishes multimer organization in the c.2269_2270del von Willebrand factor. Haematologica 2019; 105:1120-1128. [PMID: 31320553 PMCID: PMC7109749 DOI: 10.3324/haematol.2019.222679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
We report a new pathogenic mechanism in von Willebrand disease involving the use of a non-canonical splicing site. The proband, carrying the homozygous c.2269_2270del mutation previously classified as a type 3 mutation, showed severely reduced plasma and platelet von Willebrand factor antigen levels and functions, and no factor VIII binding capacity. A particular von Willebrand factor multimer pattern emerged in plasma, characterized by the presence of only two oligomers: the dimer and an unusually large band, with no intermediate components. There were von Willebrand factor multimers in platelets, but each band ran more slowly than the normal counterpart. No anti-von Willebrand factor antibodies were detectable. The proband was classified as having severe type 1 von Willebrand disease. Seeking the relationship between phenotype and genotype, we found the c.2269_2270del mutation associated with three different RNA: r.2269_2270del (RNAI), giving a truncated von Willebrand factor protein; r.[2269_2270del;2282_2288del] (RNAII), resulting from activation of a cryptic “AG” splicing site; and r.[2269_2270del;2281_2282insAG] (RNAIII), where the wild-type “AG” acceptor of exon 18 was retained due to the non-canonical 2279-2280 “CG” acceptor splicing site being used. The aberrant RNAII and RNAIII caused the alteration of the furin cleavage and binding sites, respectively, both resulting in a von Willebrand factor protein characterized by the persistence of von Willebrand factor propeptide, as confirmed by western blot analysis of the recombinant mutated von Willebrand factor molecules produced in vitro. Taken together, these findings explain the residual von Willebrand factor synthesis, slower-running multimers, and absent factor VIII binding capacity. The apparently pure gene null mutation c.2269_2270del profoundly alters von Willebrand factor gene splicing, inducing a complex RNA expression pattern.
Collapse
Affiliation(s)
- Viviana Daidone
- University of Padua Medical School, Depar tment of Medicine, First Chair of Internal Medicine, Padua
| | - Eva Galletta
- University of Padua Medical School, Depar tment of Medicine, First Chair of Internal Medicine, Padua
| | - Luigi De Marco
- IRCCS, C.R.O. Aviano, Depar tment of Translational Research, Stem Cells Unit, Aviano, Italy
| | - Alessandra Casonato
- University of Padua Medical School, Depar tment of Medicine, First Chair of Internal Medicine, Padua
| |
Collapse
|