1
|
Laurent C, Trisal P, Tesson B, Seth S, Beyou A, Roulland S, Lesne B, Van Acker N, Cerapio JP, Chartier L, Guille A, Stokes ME, Huang CC, Huet S, Gandhi AK, Morschhauser F, Xerri L. Follicular lymphoma comprises germinal center-like and memory-like molecular subtypes with prognostic significance. Blood 2024; 144:2503-2516. [PMID: 39374535 DOI: 10.1182/blood.2024024496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT A robust prognostic and biological classification for newly diagnosed follicular lymphoma (FL) using molecular profiling remains challenging. FL tumors from patients treated in the RELEVANCE trial with rituximab-chemotherapy (R-chemo) or rituximab-lenalidomide (R2) were analyzed using RNA sequencing, DNA sequencing, immunohistochemistry (IHC), and/or fluorescence in situ hybridization. Unsupervised gene clustering identified 2 gene expression signatures (GSs) enriched in normal memory (MEM) B cells and germinal center (GC) B-cell signals, respectively. These 2 GSs were combined into a 20-gene predictor (FL20) to classify patients into MEM-like (n = 160) or GC-like (n = 164) subtypes, which also displayed different mutational profiles. In the R-chemo arm, patients with MEM-like FL had significantly shorter progression-free survival (PFS) than patients with GC-like FL (hazard ratio [HR], 2.13; P = .0023). In the R2 arm, both subtypes had comparable PFS, demonstrating that R2 has a benefit over R-chemo for patients with MEM-like FL (HR, 0.54; P = .011). The prognostic value of FL20 was validated in an independent FL cohort with R-chemo treatment (GSE119214 [n = 137]). An IHC algorithm (FLcm) that used FOXP1, LMO2, CD22, and MUM1 antibodies was developed with significant prognostic correlation with FL20. These data indicate that FL tumors can be classified into MEM-like and GC-like subtypes that are biologically distinct and clinically different in their risk profile. The FLcm assay can be used in routine clinical practice to identify patients with MEM-like FL who might benefit from therapies other than R-chemo, such as the R2 combination. This trial was registered at www.clinicaltrials.gov as #NCT01476787 and #NCT01650701.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Preeti Trisal
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Bruno Tesson
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Sahil Seth
- Division of Integrative Predictive Sciences, Bristol Myers Squibb, Cambridge, MA
| | - Alicia Beyou
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre National de la Recherche Scientifique, INSERM, Marseille, France
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre National de la Recherche Scientifique, INSERM, Marseille, France
| | - Bastien Lesne
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Nathalie Van Acker
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Juan-Pablo Cerapio
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Loïc Chartier
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Arnaud Guille
- Department of Predictive Oncology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Matthew E Stokes
- Integrative Predictive Sciences, Bristol Myers Squibb, Summit, NJ
| | - C Chris Huang
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Sarah Huet
- Department of Hematology, Hospices Civils De Lyon, Pierre Bénite, France
| | - Anita K Gandhi
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | | | - Luc Xerri
- Department of Pathology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, Marseille, France
| |
Collapse
|
2
|
Johnson N, Morin RD. FL molecular subgroups come of age. Blood 2024; 144:2465-2466. [PMID: 39666327 DOI: 10.1182/blood.2024026548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
|
3
|
Enemark MH, Jensen ML, Andersen MD, Plesner TL, Hamilton-Dutoit S, Ludvigsen M. Impact of the Immune Landscape in Follicular Lymphoma: Insights into Histological Transformation in the Rituximab Era. Cancers (Basel) 2024; 16:3553. [PMID: 39456647 PMCID: PMC11506075 DOI: 10.3390/cancers16203553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Follicular lymphoma (FL) presents significant clinical heterogeneity, with some patients experiencing transformation into an aggressive disease, a key contributor to FL-related mortality. Based on gene expression profiles, this study aimed to provide insights into immunological differences associated with transformation. Methods: Gene expression analysis using the NanoString nCounter Tumor Signaling 360 Panel was performed on diagnostic lymphoma samples from 70 FL patients diagnosed in the rituximab era, either non-transforming FL (nt-FL, n = 34) or subsequently transforming FL (st-FL, n = 36), with paired high-grade transformed FL (tFL, n = 36) samples available. In silico immunophenotyping was performed to infer immune cell infiltration using the CIBERSORTx algorithm. Results: The gene expression analysis revealed 164 significantly differentially expressed genes, distinguishing st-FL from nt-FL and generally presenting an upregulation of B cell-related genes (CD40, IRF4, RELB), immunosuppressive molecules (IL10, SOCS3), and immune checkpoint molecules (CD276, TIM3). Analysis of immune cell proportions indicated significant differences in infiltrates of M1-like macrophages (p = 0.007) and neutrophils (p = 0.012) in nt-FL versus st-FL samples. Transformation-free survival (TFS) was associated with high numbers of both these cellular subsets (p = 0.006 and 0 = 0.002, respectively). This was even more evident when combined with inferior TFS in lymphomas with high infiltrates of both cell types (p < 0.001). After transformation, tFL samples showed a reduction in T follicular helper cells (p = 0.008) and an increase in immunosuppressive M2-like macrophages and neutrophils (p < 0.001 and p = 0.028, respectively). Conclusion: By elucidating the distinct molecular and immune landscapes of FL at the time of diagnosis and transformation, this study underscores the importance of immune microenvironment in FL transformation and patient outcome.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.H.E.); (M.L.J.); (M.D.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Maja Lund Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.H.E.); (M.L.J.); (M.D.A.)
| | - Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.H.E.); (M.L.J.); (M.D.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.H.E.); (M.L.J.); (M.D.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
4
|
Enemark MH, Hemmingsen JK, Jensen ML, Kridel R, Ludvigsen M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. Int J Mol Sci 2024; 25:11179. [PMID: 39456961 PMCID: PMC11508793 DOI: 10.3390/ijms252011179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Follicular lymphoma (FL) is the most prevalent indolent B-cell lymphoma entity, often characterized by the t(14;18) BCL2-IGH translocation. The malignancy represents a clinically and biologically highly heterogeneous disease. Most patients have favorable prognoses; however, despite therapeutic advancements, the disease remains incurable, with recurrent relapses or early disease progression. Moreover, transformation to an aggressive histology, most often diffuse large-B-cell lymphoma, remains a critical event in the disease course, which is associated with poor outcomes. Understanding the individual patient's risk of transformation remains challenging, which has motivated much research on novel biomarkers within the past four decades. This review systematically assessed the research on molecular biomarkers in FL transformation and outcome. Following the PRISMA guidelines for systemic reviews, the PubMed database was searched for English articles published from January 1984 through September 2024, yielding 6769 results. The identified publications were carefully screened and reviewed, of which 283 original papers met the inclusion criteria. The included studies focused on investigating molecular biomarkers as predictors of transformation or as prognostic markers of time-related endpoints (survival, progression, etc.). The effects of each biomarker were categorized based on their impact on prognosis or risk of transformation as none, favorable, or inferior. The biomarkers included genetic abnormalities, gene expression, microRNAs, markers of B cells/FL tumor cells, markers of the tumor microenvironment, and soluble biomarkers. This comprehensive review provides an overview of the research conducted in the past four decades, underscoring the persistent challenge in risk anticipation of FL patients.
Collapse
Affiliation(s)
- Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Klejs Hemmingsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Maja Lund Jensen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.H.E.); (J.K.H.); (M.L.J.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Shelton V, Detroja R, Liu T, Isaev K, Silva A, Passerini V, Bakhtiari M, Calvente L, Hong M, He MY, Modi S, Hershenfeld SA, Ludvigsen M, Madsen C, Hamilton-Dutoit S, d'Amore FA, Brodtkorb M, Johnson NA, Baetz T, LeBrun D, Tobin JWD, Gandhi MK, Mungall AJ, Xu W, Ben-Neriah S, Steidl C, Delabie J, Tremblay-LeMay R, Jegede O, Weigert O, Kahl B, Evens AM, Kridel R. Identification of genetic subtypes in follicular lymphoma. Blood Cancer J 2024; 14:128. [PMID: 39112453 PMCID: PMC11306633 DOI: 10.1038/s41408-024-01111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Follicular lymphoma (FL) exhibits considerable variability in biological features and clinical trajectories across patients. To dissect the diversity of FL, we utilized a Bernoulli mixture model to identify genetic subtypes in 713 pre-treatment tumor tissue samples. Our analysis revealed the existence of five subtypes with unique genetic profiles that correlated with clinicopathological characteristics. The clusters were enriched in specific mutations as follows: CS (CREBBP and STAT6), TT (TNFAIP3 and TP53), GM (GNA13 and MEF2B), Q (quiescent, for low mutation burden), and AR (mutations of mTOR pathway-related genes). The subtype Q was enriched for patients with stage I disease and associated with a lower proliferative history than the other subtypes. The AR subtype was unique in its enrichment for IgM-expressing FL cases and was associated with advanced-stage and more than 4 nodal sites. The existence of subtypes was validated in an independent cohort of 418 samples from the GALLIUM trial. Notably, patients assigned to the TT subtype consistently experienced inferior progression-free survival when treated with immunochemotherapy. Our findings offer insight into core pathways distinctly linked with each FL cluster and are expected to be informative in the era of targeted therapies.
Collapse
Affiliation(s)
- Victoria Shelton
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Rajesh Detroja
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Ting Liu
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Keren Isaev
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Anjali Silva
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | - Verena Passerini
- Department of Internal Medicine III, Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
| | - Mehran Bakhtiari
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Lourdes Calvente
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Michael Hong
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Michael Y He
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | - Saloni Modi
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada
| | | | - Maja Ludvigsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Francesco Annibale d'Amore
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Tara Baetz
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - David LeBrun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Josh W D Tobin
- Mater Research University of Queensland, Brisbane, QLD, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Maher K Gandhi
- Mater Research University of Queensland, Brisbane, QLD, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Jan Delabie
- Laboratory and Medicine Program, University Health Network, Toronto, ON, Canada
| | | | | | - Oliver Weigert
- Department of Internal Medicine III, Ludwig-Maximilians-University (LMU) Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brad Kahl
- Washington University, St. Louis, MO, USA
| | | | - Robert Kridel
- Princess Margaret Cancer Centre-University Health Network, Toronto, ON, Canada.
| |
Collapse
|
6
|
Bobée V, Viennot M, Rainville V, Veresezan L, Drieux F, Viailly P, Michel V, Sater V, Lanic M, Bohers E, Camus V, Tilly H, Jardin F, Ruminy P. Analysis of immunoglobulin/T-cell receptor repertoires by high-throughput RNA sequencing reveals a continuous dynamic of positive clonal selection in follicular lymphoma. Hemasphere 2024; 8:e50. [PMID: 38435425 PMCID: PMC10896008 DOI: 10.1002/hem3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Follicular lymphoma (FL) course is highly variable, making its clinical management challenging. In this incurable and recurring pathology, the interval between relapses tends to decrease while aggressiveness increases, sometimes resulting in the transformation to higher-grade lymphoma. These evolutions are particularly difficult to anticipate, resulting from complex clonal evolutions where multiple subclones compete and thrive due to their capacity to proliferate and resist therapies. Here, to apprehend further these processes, we used a high-throughput RNA sequencing approach to address simultaneously the B-cell immunoglobulin repertoires and T-cell immunoglobulin repertoires repertoires of lymphoma cells and their lymphoid microenvironment in a large cohort of 131 FL1/2-3A patients. Our data confirm the existence of a high degree of intra-clonal heterogeneity in this pathology, resulting from ongoing somatic hyper-mutation and class switch recombination. Through the evaluation of the Simpson ecological-diversity index, we show that the contribution of the cancerous cells increases during the course of the disease to the detriment of the reactive compartment, a phenomenon accompanied by a concomitant decrease in the diversity of the tumoral population. Clonal evolution in FL thus contrasts with many tumors, where clonal heterogeneity steadily increases over time and participates in treatment evasion. In this pathology, the selection of lymphoma subclones with proliferative advantages progressively outweighs clonal diversification, ultimately leading in extreme cases to transformation to high-grade lymphoma resulting from the rapid emergence of homogeneous subpopulations.
Collapse
Affiliation(s)
- Victor Bobée
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Biological HematologyRouen University HospitalRouenFrance
| | - Mathieu Viennot
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vinciane Rainville
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Liana Veresezan
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | - Fanny Drieux
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of PathologyCentre Henri BecquerelRouenFrance
| | | | - Victor Michel
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Sater
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Marie‐Delphine Lanic
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Elodie Bohers
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| | - Vincent Camus
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Hervé Tilly
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Fabrice Jardin
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
- Department of Clinical HematologyCentre Henri BecquerelRouenFrance
| | - Philippe Ruminy
- INSERM U1245, Centre Henri Becquerel, UNIROUENUniversity of NormandieRouenFrance
| |
Collapse
|
7
|
Enemark MBH, Sørensen EF, Hybel TE, Andersen MD, Madsen C, Lauridsen KL, Honoré B, d'Amore F, Plesner TL, Hamilton-Dutoit SJ, Ludvigsen M. IDO1 Protein Is Expressed in Diagnostic Biopsies from Both Follicular and Transformed Follicular Patients. Int J Mol Sci 2023; 24:ijms24087314. [PMID: 37108483 PMCID: PMC10139172 DOI: 10.3390/ijms24087314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Follicular lymphoma (FL) is a lymphoid neoplasia characterized by an indolent clinical nature. Despite generally favorable prognoses, early progression and histological transformation (HT) to a more aggressive lymphoma histology remain the leading causes of death among FL patients. To provide a basis for possible novel treatment options, we set out to evaluate the expression levels of indoleamine 2,3-dioxygenase 1 (IDO1), an immunoinhibitory checkpoint molecule, in follicular and transformed follicular biopsies. The expression levels of IDO1 were assessed using immunohistochemical staining and digital image analysis in lymphoma biopsies from 33 FL patients without subsequent HT (non-transforming FL, nt-FL) and 20 patients with subsequent HT (subsequently transforming FL, st-FL) as well as in paired high-grade biopsies from the time of HT (transformed FL, tFL). Despite no statistical difference in IDO1 expression levels seen between the groups, all diagnostic and transformed lymphomas exhibited positive expression, indicating its possible role in novel treatment regimens. In addition, IDO1 expression revealed a positive correlation with another immune checkpoint inhibitor, namely programmed death 1 (PD-1). In summary, we report IDO1 expression in all cases of FL and tFL, which provides the grounds for future investigations of anti-IDO1 therapy as a possible treatment for FL patients.
Collapse
Affiliation(s)
- Marie Beck Hairing Enemark
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Maja Dam Andersen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Charlotte Madsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | - Bent Honoré
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
8
|
Rai S, Inoue H, Sakai K, Hanamoto H, Matsuda M, Maeda Y, Haeno T, Watatani Y, Kumode T, Serizawa K, Taniguchi Y, Hirase C, Espinoza JL, Morita Y, Tanaka H, Ashida T, Tatsumi Y, Nishio K, Matsumura I. Decreased expression of T-cell-associated immune markers predicts poor prognosis in patients with follicular lymphoma. Cancer Sci 2021; 113:660-673. [PMID: 34837284 PMCID: PMC8819350 DOI: 10.1111/cas.15224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/24/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
We previously examined the utility of rituximab-bendamustine (RB) in patients with follicular lymphoma (FL) exhibiting less than optimal responses to 2 cycles of the R-CHOP chemotherapy regimen. The aim of this study was to identify molecular biomarkers that can predict prognosis in RB-treated patients in the context of the prospective cohort. We first analyzed the mutational status of 410 genes in diagnostic tumor specimens by target capture and Sanger sequencing. CREBBP, KMT2D, MEF2B, BCL2, EZH2, and CARD11 were recurrently mutated as reported before, however none was predictive for progression-free survival (PFS) in the RB-treated patients (n = 34). A gene expression analysis by nCounter including 800 genes associated with carcinogenesis and/or the immune response showed that expression levels of CD8+ T-cell markers and half of the genes regulating Th1 and Th2 responses were significantly lower in progression of disease within the 24-mo (POD24) group (n = 8) than in the no POD24 group (n = 31). Collectively, we selected 10 genes (TBX21, CXCR3, CCR4, CD8A, CD8B, GZMM, FLT3LG, CD3E, EOMES, GZMK), and generated an immune infiltration score (IIS) for predicting PFS using principal component analysis, which dichotomized the RB-treated patients into immune IIShigh (n = 19) and IISlow (n = 20) groups. The 3-y PFS rate was significantly lower in the IISlow group than in the IIShigh group (50.0% [95% CI: 27.1-69.2%] vs. 84.2% [95% CI: 58.7-94.6%], P = .0237). Furthermore, the IIS was correlates with absolute lymphocyte counts at diagnosis (r = 0.460, P = .00355). These results suggest that the T-cell-associated immune markers could be useful to predict prognosis in RB-treated FL patients. (UMIN:000 013 795, jRCT:051 180 181).
Collapse
Affiliation(s)
- Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Hiroaki Inoue
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Hitoshi Hanamoto
- Department of Hematology, Faculty of Medicine, Nara Hospital Kindai University, Ikoma, Japan
| | | | - Yasuhiro Maeda
- Department of Hematology, Minami Sakai Hospital, Sakai, Japan
| | - Takahiro Haeno
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Yosaku Watatani
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Chikara Hirase
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Takashi Ashida
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Yoichi Tatsumi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-sayama, Japan
| |
Collapse
|
9
|
Zhou Y, Wang S, Tao Y, Chen H, Qin Y, He X, Zhou S, Liu P, Yang J, Yang S, Gui L, Lou N, Zhang Z, Yao J, Han X, Shi Y. Low CCL19 expression is associated with adverse clinical outcomes for follicular lymphoma patients treated with chemoimmunotherapy. J Transl Med 2021; 19:399. [PMID: 34544443 PMCID: PMC8454033 DOI: 10.1186/s12967-021-03078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background This study aimed to recognize the hub genes associated with prognosis in follicular lymphoma (FL) treated with first-line rituximab combined with chemotherapy. Method RNA sequencing data of dataset GSE65135 (n = 24) were included in differentially expressed genes (DEGs) analysis. Weighted gene co-expression network analysis (WGCNA) was applied for exploring the coexpression network and identifying hub genes. Validation of hub genes expression and prognosis were applied in dataset GSE119214 (n = 137) and independent patient cohort from Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (n = 32), respectively, by analyzing RNAseq expression data and serum protein concentration quantified by ELISA. The Gene Set Enrichment Analysis (GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments analysis were performed. CIBERSORT was applied for tumor-infiltrating immune cells (TIICs) subset analysis. Results A total of 3260 DEGs were obtained, with 1861 genes upregulated and 1399 genes downregulated. Using WGCNA, eight hub genes, PLA2G2D, MMP9, PTGDS, CCL19, NFIB, YAP1, RGL1, and TIMP3 were identified. Kaplan–Meier analysis and multivariate COX regression analysis indicated that CCL19 independently associated with overall survival (OS) for FL patients treated with rituximab and chemotherapy (HR = 0.47, 95% CI [0.25–0.86], p = 0.014). Higher serum CCL19 concentration was associated with longer progression-free survival (PFS, p = 0.014) and OS (p = 0.039). TIICs subset analysis showed that CCL19 expression had a positive correlation with monocytes and macrophages M1, and a negative correlation with naïve B cells and plasma cells. Conclusion CCL19 expression was associated with survival outcomes and might be a potential prognostic biomarker for FL treated with first-line chemoimmunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03078-9.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shasha Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yunxia Tao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Qin
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohui He
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shengyu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Peng Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jianliang Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Sheng Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Gui
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 41 Damucang Hutong, Xicheng District, Beijing, 100032, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
10
|
Alonso-Alonso R, Rodriguez M, Morillo D, Cordoba R, Piris MA. An analysis of genetic targets for guiding clinical management of follicular lymphoma. Expert Rev Hematol 2020; 13:1361-1372. [PMID: 33176509 DOI: 10.1080/17474086.2020.1850252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Follicular lymphoma (FL) is one of the most common non-Hodgkin lymphoma (NHL) types, where genomic studies have accumulated potentially useful information about frequently mutated genes and deregulated pathways, which has allowed to a better understanding of the molecular pathogenesis of this tumor and the complex interrelationship between the tumoral cells and the stroma. Areas covered: The results of the molecular studies performed on Follicular Lymphoma have been here reviewed, summarizing the results of the clinical trials so far developed on this basis and discussing the reasons for the successes and failures. Searches were performed on June 1st, 2020, in PubMed and ClinicalTrials.gov. Expert opinion: Targeted therapy for follicular lymphoma has multiple opportunities including the use of epigenetic drugs, PI3K inhibitors, modifiers of the immune stroma and others. Data currently known on FL pathogenesis suggest that combining these treatments with immunotherapy should be explored in clinical trials, mainly for patients with clinical progression or adverse prognostic markers. Association of targeted trials with dynamic molecular studies of the tumor and serum samples is advised. Chemotherapy-free approaches should also be explored as first-line therapy for FL patients.
Collapse
Affiliation(s)
- Ruth Alonso-Alonso
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Marta Rodriguez
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Daniel Morillo
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Raul Cordoba
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| | - Miguel A Piris
- Services of Pathology and Haematology, Fundación Jimenez Diaz , Madrid, Spain
| |
Collapse
|
11
|
Dheilly E, Battistello E, Katanayeva N, Sungalee S, Michaux J, Duns G, Wehrle S, Sordet-Dessimoz J, Mina M, Racle J, Farinha P, Coukos G, Gfeller D, Mottok A, Kridel R, Correia BE, Steidl C, Bassani-Sternberg M, Ciriello G, Zoete V, Oricchio E. Cathepsin S Regulates Antigen Processing and T Cell Activity in Non-Hodgkin Lymphoma. Cancer Cell 2020; 37:674-689.e12. [PMID: 32330455 DOI: 10.1016/j.ccell.2020.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/14/2019] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Genomic alterations in cancer cells can influence the immune system to favor tumor growth. In non-Hodgkin lymphoma, physiological interactions between B cells and the germinal center microenvironment are coopted to sustain cancer cell proliferation. We found that follicular lymphoma patients harbor a recurrent hotspot mutation targeting tyrosine 132 (Y132D) in cathepsin S (CTSS) that enhances protein activity. CTSS regulates antigen processing and CD4+ and CD8+ T cell-mediated immune responses. Loss of CTSS activity reduces lymphoma growth by limiting communication with CD4+ T follicular helper cells while inducing antigen diversification and activation of CD8+ T cells. Overall, our results suggest that CTSS inhibition has non-redundant therapeutic potential to enhance anti-tumor immune responses in indolent and aggressive lymphomas.
Collapse
Affiliation(s)
- Elie Dheilly
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland
| | - Elena Battistello
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Natalya Katanayeva
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland
| | - Stephanie Sungalee
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland
| | - Justine Michaux
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Gerben Duns
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada
| | - Sarah Wehrle
- Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | | | - Marco Mina
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Julien Racle
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada
| | - George Coukos
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anja Mottok
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Germany
| | | | - Bruno E Correia
- Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland; Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, BC, Canada
| | - Michal Bassani-Sternberg
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Vincent Zoete
- Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne 1015, Switzerland; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland; Molecular Modeling Group, SIB, Lausanne, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, 1015 Switzerland.
| |
Collapse
|
12
|
Sorigue M. Immune Infiltration and the Potential for a Biology-Guided Approach to Follicular Lymphoma. J Clin Oncol 2020; 38:647-648. [DOI: 10.1200/jco.19.02398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marc Sorigue
- Marc Sorigue, MD, Hematology Laboratory, ICO-Hospital Germans Trias i Pujol, IJC, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
13
|
Carbone A, Roulland S, Gloghini A, Younes A, von Keudell G, López-Guillermo A, Fitzgibbon J. Follicular lymphoma. Nat Rev Dis Primers 2019; 5:83. [PMID: 31831752 DOI: 10.1038/s41572-019-0132-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Follicular lymphoma (FL) is a systemic neoplasm of the lymphoid tissue displaying germinal centre (GC) B cell differentiation. FL represents ~5% of all haematological neoplasms and ~20-25% of all new non-Hodgkin lymphoma diagnoses in western countries. Tumorigenesis starts in precursor B cells and becomes full-blown tumour when the cells reach the GC maturation step. FL is preceded by an asymptomatic preclinical phase in which premalignant B cells carrying a t(14;18) chromosomal translocation accumulate additional genetic alterations, although not all of these cells progress to the tumour phase. FL is an indolent lymphoma with largely favourable outcomes, although a fraction of patients is at risk of disease progression and adverse outcomes. Outcomes for FL in the rituximab era are encouraging, with ~80% of patients having an overall survival of >10 years. Patients with relapsed FL have a wide range of treatment options, including several chemoimmunotherapy regimens, phosphoinositide 3-kinase inhibitors, and lenalidomide plus rituximab. Promising new treatment approaches include epigenetic therapeutics and immune approaches such as chimeric antigen receptor T cell therapy. The identification of patients at high risk who require alternative therapies to the current standard of care is a growing need that will help direct clinical trial research. This Primer discusses the epidemiology of FL, its molecular and cellular pathogenesis and its diagnosis, classification and treatment.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Italy.
| | - Sandrine Roulland
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Anas Younes
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Jude Fitzgibbon
- Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|