1
|
Okuyan O, Dumur S, Elgormus N, Uzun H. Evaluation of Glucose 6-Phosphate Dehydrogenase, Pyruvate Kinase, and New Generation Inflammation Biomarkers in Prolonged Neonatal Jaundice. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1491. [PMID: 39336532 PMCID: PMC11434528 DOI: 10.3390/medicina60091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: To evaluate the clinical findings of glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PK) deficiency in prolonged jaundice and to determine whether the systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) can be used in the diagnosis of neonatal prolonged jaundice. Materials and Methods: Among full-term neonates with hyperbilirubinemia who were admitted to Medicine Hospital between January 2019 and January 2024 with the complaint of jaundice, 167 infants with a serum bilirubin level above 10 mg/dL, whose jaundice persisted after the 10th day, were included in this study. Results: G6PD activity was negatively correlated with NLR, SII, age, and hematocrit (Hct). There was a weak negative correlation between G6PD and NLR and a moderate negative correlation between G6PD activity and SII when adjusted for age and Hct. PK activity showed no significant correlation with G6PD, NLR, PLR, SII, age, and Hct. A linear relationship was observed between G6PD activity and SII and NLR. Conclusions: NLR and SII can be easily calculated in the evaluation of prolonged jaundice in G6PD deficiency has a considerable advantage. NLR and SII levels may contribute by preventing further tests for prolonged jaundice and regulating its treatment. It may be useful to form an opinion in emergencies and in early diagnostic period.
Collapse
Affiliation(s)
- Omer Okuyan
- Department of Pediatrics, Medicine Hospital, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Turkey;
| | - Seyma Dumur
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Turkey;
| | - Neval Elgormus
- Department of Microbiology, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Turkey;
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34408 Istanbul, Turkey;
| |
Collapse
|
2
|
Russo R, Iolascon A, Andolfo I, Marra R, Rosato BE. Updates on clinical and laboratory aspects of hereditary dyserythropoietic anemias. Int J Lab Hematol 2024; 46:595-605. [PMID: 38747503 DOI: 10.1111/ijlh.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Hereditary dyserythropoietic anemias, or congenital dyserythropoietic anemias (CDAs), are rare disorders disrupting normal erythroid lineage development, resulting in ineffective erythropoiesis and monolinear cytopenia. CDAs include three main types (I, II, III), transcription-factor-related forms, and syndromic forms. The widespread use of next-generation sequencing in the last decade has unveiled novel causative genes and unexpected genotype-phenotype correlations. The discovery of the genetic defects underlying the CDAs not only facilitates accurate diagnosis but also enhances understanding of CDA pathophysiology. Notable advancements include identifying a hepatic-specific role of the SEC23B loss-of-function in iron metabolism dysregulation in CDA II, deepening CDIN1 dysfunction during erythroid differentiation, and uncovering a recessive CDA III form associated with RACGAP1 variants. Current treatments primarily rely on supportive measures tailored to disease severity and clinical features. Comparative studies with pyruvate kinase deficiency have illuminated new therapeutic avenues by elucidating iron dyshomeostasis and dyserythropoiesis mechanisms. We herein discuss recent progress in diagnostic methodologies, novel gene discoveries, and enhanced comprehension of CDA pathogenesis and molecular genetics.
Collapse
Affiliation(s)
- Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
3
|
Glenthøj A. Beyond adenosine triphosphate: unveiling the pleiotropic effects of pyruvate kinase activation in sickle cell anemia. Haematologica 2024; 109:2398-2400. [PMID: 38634127 PMCID: PMC11290498 DOI: 10.3324/haematol.2024.285390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Chueh HW, Shim YJ, Jung HL, Kim N, Hwang SM, Kim M, Choi HS. Current Status of Molecular Diagnosis of Hereditary Hemolytic Anemia in Korea. J Korean Med Sci 2024; 39:e162. [PMID: 38742293 PMCID: PMC11091231 DOI: 10.3346/jkms.2024.39.e162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hereditary hemolytic anemia (HHA) is considered a group of rare hematological diseases in Korea, primarily because of its unique ethnic characteristics and diagnostic challenges. Recently, the prevalence of HHA has increased in Korea, reflecting the increasing number of international marriages and increased awareness of the disease. In particular, the diagnosis of red blood cell (RBC) enzymopathy experienced a resurgence, given the advances in diagnostic techniques. In 2007, the RBC Disorder Working Party of the Korean Society of Hematology developed the Korean Standard Operating Procedure for the Diagnosis of Hereditary Hemolytic Anemia, which has been continuously updated since then. The latest Korean clinical practice guidelines for diagnosing HHA recommends performing next-generation sequencing as a preliminary step before analyzing RBC membrane proteins and enzymes. Recent breakthroughs in molecular genetic testing methods, particularly next-generation sequencing, are proving critical in identifying and providing insight into cases of HHA with previously unknown diagnoses. These innovative molecular genetic testing methods have now become important tools for the management and care planning of patients with HHA. This review aims to provide a comprehensive overview of recent advances in molecular genetic testing for the diagnosis of HHA, with particular emphasis on the Korean context.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
5
|
Nasiri A, Haroon A, Alzahrani H. Clinical and Demographic Characteristics of Pyruvate Kinase Deficiency Patients: A Comprehensive Case Series Analysis. Cureus 2024; 16:e60035. [PMID: 38736761 PMCID: PMC11085967 DOI: 10.7759/cureus.60035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disorder characterized by mutations in the PKLR gene, causing impaired glycolysis in red blood cells and leading to diverse clinical manifestations. The prevalence of PKD in Saudi Arabia remains understudied, particularly in the context of consanguinity and non-specialized medical facilities. Methods We conducted a retrospective analysis of seven PKD patients of Arab ethnicity, focusing on demographics, medical history, clinical features, laboratory results, treatments, and outcomes. Results Our patient cohort comprised five males and two females, aged 10 to 38 years, of Arab ethnicity. Consanguinity was prevalent, and hereditary connections were identified in five patients. PKD exhibited varying clinical presentations, with early-onset symptoms including neonatal jaundice and symptomatic anemia. One patient experienced severe hepatic disease progression leading to multiorgan failure. Blood transfusions were universally required, indicating the severity of the disorder. Anemia severity varied among patients, with diverse hematological irregularities. Splenectomy was performed for most patients, improving hemoglobin levels and transfusion needs in some cases. Iron chelation was administered, although iron overload persisted. Thrombocytosis and venous thromboembolism were observed post splenectomy. Jaundice and gallstones were common, leading to cholecystectomy. Laboratory findings remained consistent, with heightened reticulocyte counts and altered enzyme levels. Discussion PKD is a rare disorder characterized by diverse clinical manifestations. Prevalence estimation is complex due to various factors, and its diagnosis is challenged by clinical similarities with other disorders. Our cohort exhibited a spectrum of complications, highlighting the necessity for tailored interventions. Iron overload remained a concern, necessitating continuous monitoring. Although endocrine disorders and osteoporosis were absent in our cohort, vigilance is essential due to the disease's progressive nature. Genetic factors were prominent, supporting the genetic basis of PKD. Splenectomy improved anemia but had a limited impact on gallstones. Iron overload management and bone health remain crucial considerations. Conclusion This study offers comprehensive insights into the clinical and demographic characteristics of PKD patients, illustrating the complex nature of the disorder. The findings underscore the need for personalized management strategies and vigilant monitoring to address the diverse clinical manifestations and challenges associated with PKD.
Collapse
Affiliation(s)
- Abdulrahman Nasiri
- Department of Internal Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Alfadil Haroon
- Section of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Hazzaa Alzahrani
- Section of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| |
Collapse
|
6
|
Abouelkheer Y, Ladel L, Boxer D, Shafique S. Mitapivat-Associated Rib Fracture in a Hemolytic Anemia Patient. Cureus 2024; 16:e55658. [PMID: 38586665 PMCID: PMC10997202 DOI: 10.7759/cureus.55658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Hereditary hemolytic anemia associated with pyruvate kinase deficiency is a rare hematological disorder that affects the glycolic pathway within red blood cells. The standard of care includes splenectomy, transfusions, and hematopoietic stem cell transplantation. However, these treatments can lead to common iatrogenic side effects such as infections, surgical complications, and iron overload. The novel drug therapy Mitapivat has shown promising results in terms of both efficacy and safety, but it can cause rare side effects such as fractures. In this report, we present the case of a 75-year-old female with hereditary hemolytic anemia caused by pyruvate kinase deficiency who suffered rib and vertebral body fractures after the initiation of Mitapivat. Screening for key risk factors of bone mineral disease can help identify patients who are at higher risk of developing fractures before starting therapy. In the future, gene therapy may provide an alternative treatment option for patients with hereditary hemolytic anemia with metabolic bone disorders.
Collapse
Affiliation(s)
| | - Luisa Ladel
- Internal Medicine, Norwalk Hospital/Yale University, Norwalk, USA
| | - Daniel Boxer
- Hematology and Oncology, Norwalk Hospital, Norwalk, USA
| | | |
Collapse
|
7
|
Al-Samkari H, Shehata N, Lang-Robertson K, Bianchi P, Glenthøj A, Sheth S, Neufeld EJ, Rees DC, Chonat S, Kuo KHM, Rothman JA, Barcellini W, van Beers EJ, Pospíšilová D, Shah AJ, van Wijk R, Glader B, Mañú Pereira MDM, Andres O, Kalfa TA, Eber SW, Gallagher PG, Kwiatkowski JL, Galacteros F, Lander C, Watson A, Elbard R, Peereboom D, Grace RF. Diagnosis and management of pyruvate kinase deficiency: international expert guidelines. Lancet Haematol 2024; 11:e228-e239. [PMID: 38330977 DOI: 10.1016/s2352-3026(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
Pyruvate kinase (PK) deficiency is the most common cause of chronic congenital non-spherocytic haemolytic anaemia worldwide, with an estimated prevalence of one in 100 000 to one in 300 000 people. PK deficiency results in chronic haemolytic anaemia, with wide ranging and serious consequences affecting health, quality of life, and mortality. The goal of the International Guidelines for the Diagnosis and Management of Pyruvate Kinase Deficiency was to develop evidence-based guidelines for the clinical care of patients with PK deficiency. These clinical guidelines were developed by use of GRADE methodology and the AGREE II framework. Experts were invited after consideration of area of expertise, scholarly contributions in PK deficiency, and country of practice for global representation. The expert panel included 29 expert physicians (including adult and paediatric haematologists and other subspecialists), geneticists, laboratory specialists, nurses, a guidelines methodologist, patients with PK deficiency, and caregivers from ten countries. Five key topic areas were identified, the panel prioritised key questions, and a systematic literature search was done to generate evidence summaries that were used in the development of draft recommendations. The expert panel then met in person to finalise and vote on recommendations according to a structured consensus procedure. Agreement of greater than or equal to 67% among the expert panel was required for inclusion of a recommendation in the final guideline. The expert panel agreed on 31 total recommendations across five key topics: diagnosis and genetics, monitoring and management of chronic complications, standard management of anaemia, targeted and advanced therapies, and special populations. These new guidelines should facilitate best practices and evidence-based PK deficiency care into clinical practice.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nadine Shehata
- Departments of Medicine and Laboratory Medicine and Pathobiology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Paola Bianchi
- Hematology Unit, Pathophysiology of Anemias Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Sujit Sheth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ellis J Neufeld
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Satheesh Chonat
- Pediatric Hematology/Oncology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Kevin H M Kuo
- Division of Medical Oncology and Hematology, University Health Network, University of Toronto, ON, Canada
| | | | - Wilma Barcellini
- Hematology Unit, Pathophysiology of Anemias Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eduard J van Beers
- Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Dagmar Pospíšilová
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children Hospital, Stanford School of Medicine, Palo Alto, CA, USA
| | - Richard van Wijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Bertil Glader
- Division of Pediatric Hematology/Oncology, Lucile Packard Children Hospital, Stanford School of Medicine, Palo Alto, CA, USA
| | - Maria Del Mar Mañú Pereira
- Rare Anaemia Disorders Research Laboratory, Institut de Recerca - Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Oliver Andres
- Centre of Inherited Blood Cell Disorders, University Hospital Würzburg, Würzburg, Germany
| | - Theodosia A Kalfa
- Division of Hematology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stefan W Eber
- Department of Pediatrics, Practice for Pediatric Hematology and Hemostaseology, University Children's Hospital, Technical University, Munich, Germany
| | - Patrick G Gallagher
- Department of Pediatrics, Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Janet L Kwiatkowski
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carl Lander
- Thrive with Pyruvate Kinase Deficiency Foundation, Bloomington, MN, USA
| | | | - Riyad Elbard
- Thalassemia International Federation, Nicosia, Cyprus
| | | | - Rachael F Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Xu JZ. Pyruvate kinase activators: targeting red cell metabolism in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:107-113. [PMID: 38066891 PMCID: PMC10727103 DOI: 10.1182/hematology.2023000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Hemoglobin S (HbS) polymerization, red blood cell (RBC) sickling, chronic anemia, and vaso-occlusion are core to sickle cell disease (SCD) pathophysiology. Pyruvate kinase (PK) activators are a novel class of drugs that target RBC metabolism by reducing the buildup of the glycolytic intermediate 2,3-diphosphoglycerate (2,3-DPG) and increasing production of adenosine triphosphate (ATP). Lower 2,3-DPG level is associated with an increase in oxygen affinity and reduction in HbS polymerization, while increased RBC ATP may improve RBC membrane integrity and survival. There are currently 3 PK activators in clinical development for SCD: mitapivat (AG-348), etavopivat (FT-4202), and the second-generation molecule AG-946. Preclinical and clinical data from these 3 molecules demonstrate the ability of PK activators to lower 2,3-DPG levels and increase ATP levels in animal models and patients with SCD, as well as influence a number of potential pathways in SCD, including hemoglobin oxygen affinity, RBC sickling, RBC deformability, RBC hydration, inflammation, oxidative stress, hypercoagulability, and adhesion. Furthermore, early-phase clinical trials of mitapivat and etavopivat have demonstrated the safety and tolerability of PK activators in patients with SCD, and phase 2/3 trials for both drugs are ongoing. Additional considerations for this novel therapeutic approach include the balance between increasing hemoglobin oxygen affinity and tissue oxygen delivery, the cost and accessibility of these drugs, and the potential of multimodal therapy with existing and novel therapies targeting different disease mechanisms in SCD.
Collapse
Affiliation(s)
- Julia Z. Xu
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Grace RF. Pyruvate kinase activators for treatment of pyruvate kinase deficiency. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:97-106. [PMID: 38066940 PMCID: PMC10985542 DOI: 10.1182/hematology.2023000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Pyruvate kinase (PK) deficiency is a congenital hemolytic anemia with wide-ranging clinical symptoms and complications associated with significant morbidity and reduced health-related quality of life in both children and adults. The management of patients with PK deficiency has been historically challenging due to difficulties in the diagnostic evaluation, heterogeneity of clinical manifestations, and treatment options limited to supportive care with transfusions and splenectomy. An oral allosteric PK activator, mitapivat, is now a clinically available disease-modifying treatment for adults with PK deficiency. Phase 2 and 3 clinical trials of mitapivat have demonstrated sustained improvements in hemolytic anemia, hematopoiesis, and quality of life in many adults with PK deficiency and a generally reassuring safety profile with continued dosing. Additional long-term benefits include rapid and ongoing reduction in iron overload and potential stabilization of bone health. Clinical trials of treatment with mitapivat in children with PK deficiency are ongoing. In addition to disease-modifying treatment with PK activators, gene therapy is a potentially curative treatment currently under evaluation in clinical trials. With the availability of disease-targeted therapies, accurately diagnosing PK deficiency in patients with chronic hemolytic anemia is critical. PK activation and gene therapy have the potential to change the natural history of PK deficiency by improving clinical manifestations and patient quality of life and decreasing the risk of long-term complications.
Collapse
Affiliation(s)
- Rachael F. Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Zhuang-Yan A, Shirley M. Mitapivat: A Review in Pyruvate Kinase Deficiency in Adults. Drugs 2023; 83:1613-1620. [PMID: 37991635 DOI: 10.1007/s40265-023-01961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/23/2023]
Abstract
Mitapivat (Pyrukynd®), an oral, allosteric activator of pyruvate kinase (PK), is approved in the USA for the treatment of haemolytic anaemia in adults with PK deficiency and in the EU and UK for the treatment of PK deficiency in adults. Mitapivat acts by restoring activity of the red blood cell (RBC) PK enzyme, which is dysfunctional due to genetic mutations in the PKLR gene in patients with PK deficiency. In the double-blind placebo-controlled phase III ACTIVATE trial in adults with PK deficiency who were not regularly RBC transfused, mitapivat was superior to placebo in improving haemoglobin levels. In the single-arm phase III ACTIVATE-T trial in adults with PK deficiency who were regularly RBC transfused, a reduction in RBC transfusion burden was observed with mitapivat. In both trials, mitapivat improved other clinical parameters of haemolysis and patient-reported health-related quality of life. At the approved twice-daily dosage range, mitapivat was generally well tolerated, with adverse events generally being mild to moderate in severity. Results from an ongoing extension study in previously enrolled phase III trial patients will be of interest. Currently available data indicate that mitapivat, the first approved disease-modifying drug for PK deficiency in adults, is a valuable treatment option for this rare disease.
Collapse
Affiliation(s)
- Amy Zhuang-Yan
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Matt Shirley
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
11
|
Luke N, Hillier K, Al-Samkari H, Grace RF. Updates and advances in pyruvate kinase deficiency. Trends Mol Med 2023; 29:406-418. [PMID: 36935283 PMCID: PMC11088755 DOI: 10.1016/j.molmed.2023.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Mutations in the PKLR gene lead to pyruvate kinase (PK) deficiency, causing chronic hemolytic anemia secondary to reduced red cell energy, which is crucial for maintenance of the red cell membrane and function. Heterogeneous clinical manifestations can result in significant morbidity and reduced health-related quality of life. Treatment options have historically been limited to supportive care, including red cell transfusions and splenectomy. Current disease-modifying treatment considerations include an oral allosteric PK activator, mitapivat, which was recently approved for adults with PK deficiency, and gene therapy, which is currently undergoing clinical trials. Studies evaluating the role of PK activators in other congenital hemolytic anemias are ongoing. The long-term effect of treatment with disease-modifying therapy in PK deficiency will require continued evaluation.
Collapse
Affiliation(s)
- Neeti Luke
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Kirsty Hillier
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachael F Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Grace RF, van Beers EJ, Vives Corrons JL, Glader B, Glenthøj A, Kanno H, Kuo KHM, Lander C, Layton DM, Pospíŝilová D, Viprakasit V, Li J, Yan Y, Boscoe AN, Bowden C, Bianchi P. The Pyruvate Kinase Deficiency Global Longitudinal (Peak) Registry: rationale and study design. BMJ Open 2023; 13:e063605. [PMID: 36958777 PMCID: PMC10040033 DOI: 10.1136/bmjopen-2022-063605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION Pyruvate kinase (PK) deficiency is a rare, under-recognised, hereditary condition that leads to chronic haemolytic anaemia and potentially serious secondary complications, such as iron overload, cholecystitis, pulmonary hypertension and extramedullary haematopoiesis. It is an autosomal recessive disease caused by homozygous or compound heterozygous mutations in the PKLR gene. Due to its rarity and clinical heterogeneity, information on the natural history and long-term clinical course of PK deficiency is limited, presenting major challenges to patient management, the development of new therapies and establishing disease-specific treatment recommendations. The Pyruvate Kinase Deficiency Global Longitudinal (Peak) Registry is an initiative to address the gaps in the knowledge of PK deficiency. This manuscript describes the objectives, study design and methodology for the Peak Registry. METHODS AND ANALYSIS The Peak Registry is an observational, longitudinal, global registry of adult and paediatric patients with a genetically confirmed diagnosis of PK deficiency. The Peak Steering Committee is composed of 11 clinicians and researchers with experience in the diagnosis and management of PK deficiency from 10 countries, a patient representative and representatives from the sponsor (Agios Pharmaceuticals). The registry objective is to foster an understanding of the longitudinal clinical implications of PK deficiency, including its natural history, treatments and outcomes, and variability in clinical care. The aim is to enrol up to 500 participants from approximately 60 study centres across 20 countries over 7 years, with between 2 and 9 years of follow-up. Data will include demographics, diagnosis history, genotyping, transfusion history, relevant clinical events, medications, emergency room visits and hospitalisations. ETHICS AND DISSEMINATION Registry protocol and informed consent forms are approved by institutional review boards/independent ethics committees at each study site. The study is being conducted in accordance with the Declaration of Helsinki. Registry data will be published in peer-reviewed journal articles and conference publications. TRIAL REGISTRATION NUMBER NCT03481738.
Collapse
Affiliation(s)
- Rachael F Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Eduard J van Beers
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Joan-Lluis Vives Corrons
- Institute for Leukaemia Research Josep Carreras ENERCA Coordinator, University of Barcelona, Barcelona, Spain
| | - Bertil Glader
- Stanford University School of Medicine, Stanford, California, USA
| | - Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Kevin H M Kuo
- Division of Hematology, University of Toronto, Toronto, Ontario, Canada
| | | | - D Mark Layton
- Hammersmith Hospital, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Dagmar Pospíŝilová
- Department of Pediatrics, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Vip Viprakasit
- Siriaj Hospital, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Junlong Li
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Yan Yan
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Audra N Boscoe
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Chris Bowden
- Agios Pharmaceuticals Inc, Cambridge, Massachusetts, USA
| | - Paola Bianchi
- Hematology Unit, Pathophysiology of Anemias Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Evaluation of the main regulators of systemic iron homeostasis in pyruvate kinase deficiency. Sci Rep 2023; 13:4395. [PMID: 36927785 PMCID: PMC10020532 DOI: 10.1038/s41598-023-31571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Iron homeostasis and dyserythropoiesis are poorly investigated in pyruvate kinase deficiency (PKD), the most common glycolytic defect of erythrocytes. Herein, we studied the main regulators of iron balance and erythropoiesis, as soluble transferrin receptor (sTfR), hepcidin, erythroferrone (ERFE), and erythropoietin (EPO), in a cohort of 41 PKD patients, compared with 42 affected by congenital dyserythropoietic anemia type II (CDAII) and 50 with hereditary spherocytosis (HS). PKD patients showed intermediate values of hepcidin and ERFE between CDAII and HS, and clear negative correlations between log-transformed hepcidin and log-EPO (Person's r correlation coefficient = - 0.34), log-hepcidin and log-ERFE (r = - 0.47), and log-hepcidin and sTfR (r = - 0.44). sTfR was significantly higher in PKD; EPO levels were similar in PKD and CDAII, both higher than in HS. Finally, genotype-phenotype correlation in PKD showed that more severe patients, carrying non-missense/non-missense genotypes, had lower hepcidin and increased ERFE, EPO, and sTFR compared with the others (missense/missense and missense/non-missense), suggesting a higher rate of ineffective erythropoiesis. We herein investigated the main regulators of systemic iron homeostasis in the largest cohort of PKD patients described so far, opening new perspectives on the molecular basis and therapeutic approaches of this disease.
Collapse
|
14
|
Mehrabi Sisakht J, Mehri M, Najmabadi H, Azarkeivan A, Neishabury M. Genetic Diagnosis of Pyruvate Kinase Deficiency in Undiagnosed Iranian Patients with Severe Hemolytic Anemia, using Whole Exome Sequencing. ARCHIVES OF IRANIAN MEDICINE 2022; 25:691-697. [PMID: 37542401 PMCID: PMC10685872 DOI: 10.34172/aim.2022.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/28/2021] [Indexed: 08/06/2023]
Abstract
BACKGROUND After ruling out the most common causes of severe hemolytic anemia by routine diagnostic tests, certain patients remain without a diagnosis. The aim of this study was to elucidate the genetic cause of the disease in these patients using next generation sequencing (NGS). METHODS Four unrelated Iranian families including six blood transfusion dependent cases and their parents were referred to us from a specialist center in Tehran. There was no previous history of anemia in the families and the parents had no abnormal hematological presentations. All probands presented severe congenital hemolytic anemia, neonatal jaundice and splenomegaly. Common causes of hemolytic anemia were ruled out prior to this investigation in these patients and they had no diagnosis. Whole exome sequencing (WES) was performed in the probands and the results were confirmed by Sanger sequencing and subsequent family studies. RESULTS We identified five variants in the PKLR gene, including a novel unpublished frameshift in these families. These variants were predicted as pathogenic according to the ACMG guidelines by Intervar and/or Varsome prediction tools. Subsequent family studies by Sanger sequencing supported the diagnosis of pyruvate kinase deficiency (PKD) in six affected individuals and the carrier status of disease in their parents. CONCLUSION These findings show that PKD is among the rare blood disorders that could remain undiagnosed or even ruled out in Iranian population without performing NGS. This could be due to pitfalls in clinical, hematological or biochemical approaches in diagnosing PKD. Furthermore, genotyping PKD patients in Iran could reveal novel mutations in the PKLR gene.
Collapse
Affiliation(s)
- Jafar Mehrabi Sisakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maghsood Mehri
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Centre, Tehran, Iran
| | - Azita Azarkeivan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Maryam Neishabury
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
15
|
Song AB, Al-Samkari H. An evaluation of mitapivat for the treatment of hemolytic anemia in adults with pyruvate kinase deficiency. Expert Rev Hematol 2022; 15:875-885. [PMID: 36124781 DOI: 10.1080/17474086.2022.2125865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Pyruvate kinase deficiency (PKD) is the most common cause of congenital nonspherocytic hemolytic anemia. Until recently, treatment had been limited to supportive management including red blood cell transfusions, splenectomy, and management of chronic disease complications such as iron overload and decreased bone mineral density. AREAS COVERED We discuss preclinical data and phase 1, 2, and 3 clinical studies evaluating mitapivat for adult patients with hemolytic anemia secondary to PKD. Mitapivat has been shown to offer early and durable improvement in hemoglobin with reduction in transfusion burden, and preliminary data suggest it can induce a negative iron balance in many patients without the use of dedicated iron chelators. EXPERT OPINION Mitapivat is a first-in-class allosteric activator of pyruvate kinase and the first FDA-approved disease directed therapy for PKD. It has a favorable safety profile and clear clinical efficacy. Given the considerable genetic heterogeneity of PKD and the rapid effect on improving hemoglobin and reducing hemolysis, a therapeutic trial of mitapivat should be considered in all patients with PKD who are not homozygous for the PKLR R479H mutation. Further investigations are needed regarding long-term safety and efficacy profiles and whether long-term PKD-associated complications can be reduced or even reversed.
Collapse
Affiliation(s)
- Andrew B Song
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hanny Al-Samkari
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Hematology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Johnson S, Grace RF, Despotovic JM. Diagnosis, monitoring, and management of pyruvate kinase deficiency in children. Pediatr Blood Cancer 2022; 69:e29696. [PMID: 35452178 DOI: 10.1002/pbc.29696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase (PK) deficiency is a rare, congenital red blood cell disorder caused by a single gene defect. The spectrum of genotypes, variants, and phenotypes are broad, commonly requiring a multimodal approach including enzyme and genetic testing for accurate and reliable diagnosis. Similarly, management of primary and secondary sequelae of PK deficiency varies, mainly including supportive care with transfusions and surgical interventions to improve symptoms and quality of life. Given the risk of acute and long-term complications of PK deficiency and its treatment, regular monitoring and management of iron burden and organ dysfunction is critical. Therefore, all children and adolescents with PK deficiency should receive regular hematology care with visits at least every 6 months regardless of transfusion status. We continue to learn more about the spectrum of symptoms and complications of PK deficiency and best practice for monitoring and management through registry efforts (NCT03481738). The treatment of PK deficiency has made strides over the last few years with newer disease-modifying therapies being developed and studied, with the potential to change the course of disease in childhood and beyond.
Collapse
Affiliation(s)
- Shaniqua Johnson
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, Texas, USA
| | - Rachael F Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jenny M Despotovic
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
17
|
Next generation sequencing for diagnosis of hereditary anemia: Experience in a Spanish reference center. Clin Chim Acta 2022; 531:112-119. [DOI: 10.1016/j.cca.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/19/2022]
|
18
|
Al-Samkari H, Galactéros F, Glenthøj A, Rothman JA, Andres O, Grace RF, Morado-Arias M, Layton DM, Onodera K, Verhovsek M, Barcellini W, Chonat S, Judge MP, Zagadailov E, Xu R, Hawkins P, Beynon V, Gheuens S, van Beers EJ. Mitapivat versus Placebo for Pyruvate Kinase Deficiency. N Engl J Med 2022; 386:1432-1442. [PMID: 35417638 DOI: 10.1056/nejmoa2116634] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pyruvate kinase deficiency is a rare, hereditary, chronic condition that is associated with hemolytic anemia. In a phase 2 study, mitapivat, an oral, first-in-class activator of erythrocyte pyruvate kinase, increased the hemoglobin level in patients with pyruvate kinase deficiency. METHODS In this global, phase 3, randomized, placebo-controlled trial, we evaluated the efficacy and safety of mitapivat in adults with pyruvate kinase deficiency who were not receiving regular red-cell transfusions. The patients were assigned to receive either mitapivat (5 mg twice daily, with potential escalation to 20 or 50 mg twice daily) or placebo for 24 weeks. The primary end point was a hemoglobin response (an increase from baseline of ≥1.5 g per deciliter in the hemoglobin level) that was sustained at two or more scheduled assessments at weeks 16, 20, and 24. Secondary efficacy end points were the average change from baseline in the hemoglobin level, markers of hemolysis and hematopoiesis, and the change from baseline at week 24 in two pyruvate kinase deficiency-specific patient-reported outcome measures. RESULTS Sixteen of the 40 patients (40%) in the mitapivat group had a hemoglobin response, as compared with none of the 40 patients in the placebo group (adjusted difference, 39.3 percentage points; 95% confidence interval, 24.1 to 54.6; two-sided P<0.001). Patients who received mitapivat had a greater response than those who received placebo with respect to each secondary end point, including the average change from baseline in the hemoglobin level. The most common adverse events were nausea (in 7 patients [18%] in the mitapivat group and 9 patients [23%] in the placebo group) and headache (in 6 patients [15%] and 13 patients [33%], respectively). Adverse events of grade 3 or higher occurred in 10 patients (25%) who received mitapivat and 5 patients (13%) who received placebo. CONCLUSIONS In patients with pyruvate kinase deficiency, mitapivat significantly increased the hemoglobin level, decreased hemolysis, and improved patient-reported outcomes. No new safety signals were identified in the patients who received mitapivat. (Funded by Agios Pharmaceuticals; ACTIVATE ClinicalTrials.gov number, NCT03548220.).
Collapse
Affiliation(s)
- Hanny Al-Samkari
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Frédéric Galactéros
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Andreas Glenthøj
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Jennifer A Rothman
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Oliver Andres
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Rachael F Grace
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Marta Morado-Arias
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - D Mark Layton
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Koichi Onodera
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Madeleine Verhovsek
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Wilma Barcellini
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Satheesh Chonat
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Malia P Judge
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Erin Zagadailov
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Rengyi Xu
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Peter Hawkins
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Vanessa Beynon
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Sarah Gheuens
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| | - Eduard J van Beers
- From the Division of Hematology Oncology, Massachusetts General Hospital (H.A.-S.) and the Dana-Farber/Boston Children's Cancer and Blood Disorders Center (R.F.G.), Harvard Medical School, Boston, and Agios Pharmaceuticals, Cambridge (M.P.J., E.Z., R.X., P.H., V.B., S.G.) - all in Massachusetts; Unité des Maladies Génétiques du Globule Rouge, Centre Hospitalier Universitaire Henri Mondor, Créteil, France (F.G.); the Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen (A.G.); Duke University Medical Center, Durham, NC (J.A.R.); the Department of Pediatrics, University of Würzburg, Würzburg, Germany (O.A.); the Hematology Department, Hospital Universitario La Paz, Madrid (M.M.-A.); Hammersmith Hospital, Imperial College Healthcare NHS Trust, London (D.M.L.); Tohoku University Hospital, Sendai, Japan (K.O.); McMaster University, Hamilton, ONT, Canada (M.V.); Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan (W.B.); Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, and the Department of Pediatrics, Emory University, Atlanta (S.C.); and the Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands (E.J.B.)
| |
Collapse
|
19
|
Schwartz JD, Barcellini W, Grace RF, Bianchi P, Zanella A, López Lorenzo JL, Sevilla J, Shah AJ, Glader B, Nicoletti E, Navarro Ordoñez S, Segovia JC. Who should be eligible for gene therapy clinical trials in red blood cell pyruvate kinase deficiency (PKD)?: Toward an expanded definition of severe PKD. Am J Hematol 2022; 97:E120-E125. [PMID: 34989415 PMCID: PMC9305868 DOI: 10.1002/ajh.26458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 01/19/2023]
Affiliation(s)
| | - Wilma Barcellini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico Hematology Unit, Pathophysiology of Anemias Unit Milan Italy
| | - Rachel F. Grace
- Dana‐Farber/Boston Children's Cancer and Blood Disorders Center Harvard Medical School Boston Massachusetts USA
| | - Paola Bianchi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico Hematology Unit, Pathophysiology of Anemias Unit Milan Italy
| | - Alberto Zanella
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico Hematology Unit, Pathophysiology of Anemias Unit Milan Italy
| | - José Luis López Lorenzo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD), Hospital Universitario Fundación Jiménez Díaz Madrid Spain
| | - Julián Sevilla
- Hospital Infantil Universitario Niño Jesús (HIUNJ), Fundación para la Investigación Biomédica HIUNJ Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Madrid Spain
| | - Ami J. Shah
- Lucile Packard Children's Hospital Stanford University School of Medicine Stanford California USA
| | - Bertil Glader
- Lucile Packard Children's Hospital Stanford University School of Medicine Stanford California USA
| | | | - Susana Navarro Ordoñez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Madrid Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Madrid Spain
| | - José Carlos Segovia
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Madrid Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) Madrid Spain
| |
Collapse
|
20
|
Al-Samkari H, van Beers EJ. Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias. Ther Adv Hematol 2021; 12:20406207211066070. [PMID: 34987744 PMCID: PMC8721383 DOI: 10.1177/20406207211066070] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023] Open
Abstract
Mitapivat (AG-348) is a novel, first-in-class oral small molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and the thalassemias. The clinical development of mitapivat in adults with PKD is nearly complete, with the completion of two successful phase III clinical trials demonstrating its safety and efficacy. Given these findings, mitapivat has the potential to be the first approved therapeutic for PKD. Mitapivat has additionally been evaluated in a phase II trial of patients with alpha- and beta-thalassemia and a phase I trial of patients with sickle cell disease, with findings suggesting safety and efficacy in these more common hereditary anemias. Following these successful early-phase trials, two phase III trials of mitapivat in thalassemia and a phase II/III trial of mitapivat in sickle cell disease are beginning worldwide. Promising preclinical studies have additionally been done evaluating mitapivat in hereditary spherocytosis, suggesting potential efficacy in erythrocyte membranopathies as well. With convenient oral dosing and a safety profile comparable with placebo in adults with PKD, mitapivat is a promising new therapeutic for several hereditary hemolytic anemias, including those without any currently US Food and Drug Administration (FDA) or European Medicines Agency (EMA)-approved drug therapies. This review discusses the preclinical studies, pharmacology, and clinical trials of mitapivat.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Zero Emerson Place, Suite 118, Office 112, Boston, MA 02114, USA
| | | |
Collapse
|
21
|
Systemic bevacizumab to facilitate anticoagulation in antiphospholipid syndrome and bleeding gastrointestinal angiodysplasia. J Thromb Thrombolysis 2021; 53:708-711. [PMID: 34694540 DOI: 10.1007/s11239-021-02590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Bleeding gastrointestinal angiodysplasia may occur in patients with vasculitis and can be challenging to treat. We describe the novel use of bevacizumab therapy to treat bleeding gastrointestinal angiodysplasia and severe anemia in a patient with eosinophilic granulomatosis with angiitis complicated by antiphospholipid antibody syndrome requiring indefinite warfarin therapy. Studies confirmed multiple bleeding jejunal angiodysplasias unamenable to endoscopic intervention, and the patient required ongoing support with iron infusions and blood transfusions to maintain a minimally acceptable hemoglobin. Given the severe anemia, need for continued, indefinite antiplatelet and anticoagulation therapy, and failure of standard treatment approaches, the patient was initiated on systemic bevacizumab therapy, on the basis of prior documented success of bevacizumab to manage gastrointestinal telangiectasias in patients with hereditary hemorrhagic telangiectasia. Bevacizumab was highly effective, with rapid resolution of bleeding, normalization of hemoglobin, liberation from hematologic support and no adverse events, including no thromboembolic events. Vascular endothelial growth factor (VEGF-A) rose paradoxically after initiation of bevacizumab and normalized after its discontinuation. Given these findings, use of systemic bevacizumab to manage bleeding angiodysplasia in patients with acquired vascular disorders merits further study.
Collapse
|
22
|
Confounding factors in the diagnosis and clinical course of rare congenital hemolytic anemias. Orphanet J Rare Dis 2021; 16:415. [PMID: 34627331 PMCID: PMC8501562 DOI: 10.1186/s13023-021-02036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/19/2021] [Indexed: 01/19/2023] Open
Abstract
Congenital hemolytic anemias (CHAs) comprise defects of the erythrocyte membrane proteins and of red blood cell enzymes metabolism, along with alterations of erythropoiesis. These rare and heterogeneous conditions may generate several difficulties from the diagnostic point of view. Membrane defects include hereditary spherocytosis and elliptocytosis, and the group of hereditary stomatocytosis; glucose-6-phosphate dehydrogenase and pyruvate kinase, are the most common enzyme deficiencies. Among ultra-rare forms, it is worth reminding other enzyme defects (glucosephosphate isomerase, phosphofructokinase, adenylate kinase, triosephosphate isomerase, phosphoglycerate kinase, hexokinase, and pyrimidine 5′-nucleotidase), and congenital dyserythropoietic anemias. Family history, clinical findings (anemia, hemolysis, splenomegaly, gallstones, and iron overload), red cells morphology, and biochemical tests are well recognized diagnostic tools. Molecular findings are increasingly used, particularly in recessive and de novo cases, and may be fundamental in unraveling the diagnosis. Notably, several confounders may further challenge the diagnostic workup, including concomitant blood loss, nutrients deficiency, alterations of hemolytic markers due to other causes (alloimmunization, infectious agents, rare metabolic disorders), coexistence of other hemolytic disorders (autoimmune hemolytic anemia, paroxysmal nocturnal hemoglobinuria, etc.). Additional factors to be considered are the possible association with bone marrow, renal or hepatic diseases, other causes of iron overload (hereditary hemochromatosis, hemoglobinopathies, metabolic diseases), and the presence of extra-hematological signs/symptoms. In this review we provide some instructive clinical vignettes that highlight the difficulties and confounders encountered in the diagnosis and clinical management of CHAs.
Collapse
|
23
|
|
24
|
Preclinical studies of efficacy thresholds and tolerability of a clinically ready lentiviral vector for pyruvate kinase deficiency treatment. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:350-359. [PMID: 34514027 PMCID: PMC8408550 DOI: 10.1016/j.omtm.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/23/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase deficiency (PKD) is a rare autosomal recessive disorder caused by mutations in the PKLR gene. PKD is characterized by non-spherocytic hemolytic anemia of variable severity and may be fatal in some cases during early childhood. Although not considered the standard of care, allogeneic stem cell transplantation has been shown as a potentially curative treatment, limited by donor availability, toxicity, and incomplete engraftment. Preclinical studies were conducted to define conditions to enable consistent therapeutic reversal, which were based on our previous data on lentiviral gene therapy for PKD. Improvement of erythroid parameters was identified by the presence of 20%–30% healthy donor cells. A minimum vector copy number (VCN) of 0.2−0.3 was required to correct PKD when corrected cells were transplanted in a mouse model for PKD. Biodistribution and pharmacokinetics studies, with the aim of conducting a global gene therapy clinical trial for PKD patients (RP-L301-0119), demonstrated that genetically corrected cells do not confer additional side effects. Moreover, a clinically compatible transduction protocol with mobilized peripheral blood CD34+ cells was optimized, thus facilitating the efficient transduction on human cells capable of repopulating the hematopoiesis of immunodeficient mice. We established conditions for a curative lentiviral vector gene therapy protocol for PKD.
Collapse
|
25
|
Health-Related Quality of Life and Fatigue in Children and Adults with Pyruvate Kinase Deficiency. Blood Adv 2021; 6:1844-1853. [PMID: 34470054 PMCID: PMC8941458 DOI: 10.1182/bloodadvances.2021004675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 01/19/2023] Open
Abstract
The impact of PKD on HRQoL and fatigue is described in 254 children and adults using 6 validated instruments. Severe anemia, regular transfusion, iron chelation, and nonmissense mutations are associated with worse patient-reported outcomes.
Pyruvate kinase deficiency (PKD) is the most common cause of congenital nonspherocytic hemolytic anemia. Although recognition of the disease spectrum has recently expanded, data describing its impact on health-related quality of life (HRQoL) are limited. In this prospective international cohort of 254 patients (131 adults and 123 children) with PKD, we used validated measures to assess the impact of disease on HRQoL (EuroQol 5-Dimension Questionnaire, Pediatric Quality of Life Inventory Generic Core Scale version 4.0, and Functional Assessment of Cancer Therapy-Anemia) and fatigue (Patient Reported Outcomes Measurement Information System Fatigue and Pediatric Functional Assessment of Chronic Illness Therapy-Fatigue). Significant variability in HRQoL and fatigue was reported for adults and children, although individual scores were stable over a 2-year interval. Although adults who were regularly transfused reported worse HRQoL and fatigue compared with those who were not (EuroQol-visual analog scale, 58 vs 80; P = .01), this difference was not seen in children. Regularly transfused adults reported lower physical, emotional, and functional well-being and more anemia symptoms. HRQoL and fatigue significantly differed in children by genotype, with the worst scores in those with 2 severe PKLR mutations; this difference was not seen in adults. However, iron chelation was associated with significantly worse HRQoL scores in children and adults. Pulmonary hypertension was also associated with significantly worse HRQoL. Additionally, 59% of adults and 35% of children reported that their jaundice upset them, identifying this as an important symptom for consideration. Although current treatments for PKD are limited to supportive care, new therapies are in clinical trials. Understanding the impact of PKD on HRQoL is important to assess the utility of these treatments. This trial was registered at www.clinicaltrials.gov as #NCT02053480.
Collapse
|
26
|
Metabolic Fingerprint in Hereditary Spherocytosis Correlates With Red Blood Cell Characteristics and Clinical Severity. Hemasphere 2021; 5:e591. [PMID: 34131631 PMCID: PMC8196084 DOI: 10.1097/hs9.0000000000000591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
|
27
|
Gosselt HR, Muller IB, Jansen G, van Weeghel M, Vaz FM, Hazes JMW, Heil SG, de Jonge R. Identification of Metabolic Biomarkers in Relation to Methotrexate Response in Early Rheumatoid Arthritis. J Pers Med 2020; 10:jpm10040271. [PMID: 33321888 PMCID: PMC7768454 DOI: 10.3390/jpm10040271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to identify baseline metabolic biomarkers for response to methotrexate (MTX) therapy in rheumatoid arthritis (RA) using an untargeted method. In total, 82 baseline plasma samples (41 insufficient responders and 41 sufficient responders to MTX) were selected from the Treatment in the Rotterdam Early Arthritis Cohort (tREACH, trial number: ISRCTN26791028) based on patients' EULAR response at 3 months. Metabolites were assessed using high-performance liquid chromatography-quadrupole time of flight mass spectrometry. Differences in metabolite concentrations between insufficient and sufficient responders were assessed using partial least square regression discriminant analysis (PLS-DA) and Welch's t-test. The predictive performance of the most significant findings was assessed in a receiver operating characteristic plot with area under the curve (AUC), sensitivity and specificity. Finally, overrepresentation analysis was performed to assess if the best discriminating metabolites were enriched in specific metabolic events. Baseline concentrations of homocystine, taurine, adenosine triphosphate, guanosine diphosphate and uric acid were significantly lower in plasma of insufficient responders versus sufficient responders, while glycolytic intermediates 1,3-/2,3-diphosphoglyceric acid, glycerol-3-phosphate and phosphoenolpyruvate were significantly higher in insufficient responders. Homocystine, glycerol-3-phosphate and 1,3-/2,3-diphosphoglyceric acid were independent predictors and together showed a high AUC of 0.81 (95% CI: 0.72-0.91) for the prediction of insufficient response, with corresponding sensitivity of 0.78 and specificity of 0.76. The Warburg effect, glycolysis and amino acid metabolism were identified as underlying metabolic events playing a role in clinical response to MTX in early RA. New metabolites and potential underlying metabolic events correlating with MTX response in early RA were identified, which warrant validation in external cohorts.
Collapse
Affiliation(s)
- Helen R. Gosselt
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-4443029
| | - Ittai B. Muller
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Michel van Weeghel
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (F.M.V.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M. Vaz
- Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.v.W.); (F.M.V.)
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Johanna M. W. Hazes
- Department of Rheumatology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Academic Center of Excellence−Inflammunity, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sandra G. Heil
- Department of Clinical Chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
- Academic Center of Excellence−Inflammunity, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Robert de Jonge
- Amsterdam Gastroenterology and Metabolism, Department of Clinical Chemistry, Amsterdam UMC, VUmc, 1081 HV Amsterdam, The Netherlands; (I.B.M.); (R.d.J.)
| |
Collapse
|
28
|
Al-Samkari H, van Beers EJ, Morton DH, Barcellini W, Eber SW, Glader B, Yaish HM, Chonat S, Kuo KHM, Kollmar N, Despotovic JM, Pospíšilová D, Knoll CM, Kwiatkowski JL, Pastore YD, Thompson AA, Wlodarski MW, Ravindranath Y, Rothman JA, Wang H, Holzhauer S, Breakey VR, Verhovsek MM, Kunz J, Sheth S, Sharma M, Rose MJ, Bradeen HA, McNaull MN, Addonizio K, Al-Sayegh H, London WB, Grace RF. Characterization of the severe phenotype of pyruvate kinase deficiency. Am J Hematol 2020; 95:E281-E285. [PMID: 32619047 DOI: 10.1002/ajh.25926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - D Holmes Morton
- Central Pennsylvania Clinic for Special Children & Adults, Belleville, Pennsylvania
- Lancaster General Hospital, Lancaster, Pennsylvania
| | - Wilma Barcellini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefan W Eber
- Schwerpunktpraxis für Pädiatrische Hämatologie-Onkologie and Children's Hospital, Technical University, Munich, Germany
| | - Bertil Glader
- Lucile Packard Children's Hospital, Stanford University, Palo Alto, California
| | - Hassan M Yaish
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah
| | - Satheesh Chonat
- Emory University School of Medicine, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Kevin H M Kuo
- University of Toronto, University Health Network, Toronto, Ontario, Canada
| | | | - Jenny M Despotovic
- Texas Children's Hematology Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Janet L Kwiatkowski
- Children's Hospital of Philadelphia and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alexis A Thompson
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Marcin W Wlodarski
- St. Jude Children's Research Hospital, Memphis, Tennessee
- University of Freiburg, Freiburg, Germany
| | | | | | - Heng Wang
- DDC Clinic for Special Needs Children, Middlefield, Ohio
| | | | | | | | - Joachim Kunz
- Zentrum für Kinder-und Jugendmedizin, Heidelberg, Germany
| | - Sujit Sheth
- Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York
| | - Mukta Sharma
- Children's Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Melissa J Rose
- Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | | | | | - Kathryn Addonizio
- Dana-Farber Boston Children's Cancer and Blood Disorder Center, Harvard Medical School, Boston, Massachusetts
| | - Hasan Al-Sayegh
- Dana-Farber Boston Children's Cancer and Blood Disorder Center, Harvard Medical School, Boston, Massachusetts
| | - Wendy B London
- Dana-Farber Boston Children's Cancer and Blood Disorder Center, Harvard Medical School, Boston, Massachusetts
| | - Rachael F Grace
- Dana-Farber Boston Children's Cancer and Blood Disorder Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica 2020; 105:2218-2228. [PMID: 33054047 PMCID: PMC7556514 DOI: 10.3324/haematol.2019.241141] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023] Open
Abstract
Red cell pyruvate kinase (PK) deficiency is the most common glycolytic defect associated with congenital non-spherocytic hemolytic anemia. The disease, transmitted as an autosomal recessive trait, is caused by mutations in the PKLR gene and is characterized by molecular and clinical heterogeneity; anemia ranges from mild or fully compensated hemolysis to life-threatening forms necessitating neonatal exchange transfusions and/or subsequent regular transfusion support; complications include gallstones, pulmonary hypertension, extramedullary hematopoiesis and iron overload. Since identification of the first pathogenic variants responsible for PK deficiency in 1991, more than 300 different variants have been reported, and the study of molecular mechanisms and the existence of genotype-phenotype correlations have been investigated in-depth. In recent years, during which progress in genetic analysis, next-generation sequencing technologies and personalized medicine have opened up important landscapes for diagnosis and study of molecular mechanisms of congenital hemolytic anemias, genotyping has become a prerequisite for accessing new treatments and for evaluating disease state and progression. This review examines the extensive molecular heterogeneity of PK deficiency, focusing on the diagnostic impact of genotypes and new acquisitions on pathogenic non-canonical variants. The recent progress and the weakness in understanding the genotype-phenotype correlation, and its practical usefulness in light of new therapeutic opportunities for PK deficiency are also discussed.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital/diagnosis
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/therapy
- Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Humans
- Mutation
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Metabolism, Inborn Errors/diagnosis
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/therapy
Collapse
Affiliation(s)
- Paola Bianchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy.
| | - Elisa Fermo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, UOC Ematologia, UOS Fisiopatologia delle Anemie, Milan, Italy
| |
Collapse
|
30
|
Al-Samkari H, Addonizio K, Glader B, Morton DH, Chonat S, Thompson AA, Kuo KHM, Ravindranath Y, Wang H, Rothman JA, Kwiatkowski JL, Kung C, Kosinski PA, Al-Sayegh H, London WB, Grace RF. The pyruvate kinase (PK) to hexokinase enzyme activity ratio and erythrocyte PK protein level in the diagnosis and phenotype of PK deficiency. Br J Haematol 2020; 192:1092-1096. [PMID: 32463523 DOI: 10.1111/bjh.16724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diagnosis of pyruvate kinase deficiency (PKD), the most common cause of hereditary non-spherocytic haemolytic anaemia, remains challenging in routine practice and no biomarkers for clinical severity have been characterised. This prospective study enrolled 41 patients with molecularly confirmed PKD from nine North American centres to evaluate the diagnostic sensitivity of pyruvate kinase (PK) enzyme activity and PK:hexokinase (HK) enzyme activity ratio, and evaluate the erythrocyte PK (PK-R) protein level and erythrocyte metabolites as biomarkers for clinical severity. In this population not transfused for ≥90 days before sampling, the diagnostic sensitivity of the PK enzyme assay was 90% [95% confidence interval (CI) 77-97%], whereas the PK:HK ratio sensitivity was 98% (95% CI 87-100%). There was no correlation between PK enzyme activity and clinical severity. Transfusion requirements correlated with normalised erythrocyte ATP levels (r = 0·527, P = 0·0016) and PK-R protein levels (r = -0·527, P = 0·0028). PK-R protein levels were significantly higher in the never transfused [median (range) 40·1 (9·8-73·9)%] versus ever transfused [median (range) 7·7 (0·4-15·1)%] patients (P = 0·0014). The PK:HK ratio had excellent sensitivity for PK diagnosis, superior to PKLR exon sequencing. Given that the number of PKLR variants and genotype combinations limits prognostication based on molecular findings, PK-R protein level may be a useful prognostic biomarker of disease severity and merits further study.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Addonizio
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Bertil Glader
- Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - D Holmes Morton
- Central Pennsylvania Clinic for Special Children & Adults, Belleville, PA, USA.,Lancaster General Hospital, Lancaster, PA, USA
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Alexis A Thompson
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kevin H M Kuo
- University of Toronto, University Health Network, Toronto, ON, Canada
| | | | - Heng Wang
- DDC Clinic for Special Needs Children, Middlefield, OH, USA
| | | | - Janet L Kwiatkowski
- Children's Hospital of Pennsylvania and Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Hasan Al-Sayegh
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Rachael F Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|