1
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Khattab S, Berisha A, Baran N, Piccaluga PP. Rat Sarcoma Virus Family Genes in Acute Myeloid Leukemia: Pathogenetic and Clinical Implications. Biomedicines 2025; 13:202. [PMID: 39857784 PMCID: PMC11760468 DOI: 10.3390/biomedicines13010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Acute myeloid leukemias (AMLs) comprise a group of genetically heterogeneous hematological malignancies that result in the abnormal growth of leukemic cells and halt the maturation process of normal hematopoietic stem cells. Despite using molecular and cytogenetic risk classification to guide treatment decisions, most AML patients survive for less than five years. A deeper comprehension of the disease's biology and the use of new, targeted therapy approaches could potentially increase cure rates. RAS oncogene mutations are common in AML patients, being observed in about 15-20% of AML cases. Despite extensive efforts to find targeted therapy for RAS-mutated AMLs, no effective and tolerable RAS inhibitor has received approval for use against AMLs. The frequency of RAS mutations increases in the context of AMLs' chemoresistance; thus, novel anti-RAS strategies to overcome drug resistance and improve patients' therapy responses and overall survival are the need of the hour. In this article, we aim to update the current knowledge on the role of RAS mutations and anti-RAS strategies in AML treatments.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Adriatik Berisha
- Division of Hematology, University of Pristina, 10000 Pristina, Kosovo
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Section of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera, Universitaria di Bologna, Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
3
|
Castaño-Díez S, López-Guerra M, Zugasti I, Calvo X, Schulz FI, Avendaño A, Mora E, Falantes J, Azaceta G, Ibáñez M, Chen T, Notario C, Amer N, Palomo L, Pomares H, Vila J, Bernal del Castillo T, Jiménez-Vicente C, Esteban D, Guijarro F, Álamo J, Cortés-Bullich A, Torrecillas-Mayayo V, Triguero A, Mont-de Torres L, Carcelero E, Cardús A, Germing U, Betz B, Rozman M, Arenillas L, Zamora L, Díez-Campelo M, Xicoy B, Esteve J, Díaz-Beyá M. AML typical mutations (CEBPA, FLT3, NPM1) identify a high-risk chronic myelomonocytic leukemia independent of CPSS molecular. Blood Adv 2025; 9:39-53. [PMID: 39388660 PMCID: PMC11732582 DOI: 10.1182/bloodadvances.2024013648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
ABSTRACT Mutations commonly associated with acute myeloid leukemia (AML), such as CEBPA, FLT3, IDH1/2, and NPM1, are rarely found in chronic myelomonocytic leukemia (CMML), and their prognostic significance in CMML has not been clearly identified. In 127 patients with CMML, we have retrospectively analyzed next-generation sequencing and polymerase chain reaction data from bone marrow samples collected at the time of CMML diagnosis. Seven patients harbored CEBPA mutations, 8 FLT3 mutations, 12 IDH1 mutations, 26 IDH2 mutations, and 11 NPM1 mutations. Patients with CMML harboring CEBPA, FLT3, and/or NPM1 mutations (mutCFN) more frequently had the myeloproliferative subtype, a high prevalence of severe cytopenia, and elevated blast counts. Regardless of their CMML Prognostic Scoring System molecular classification, mutCFN patients with CMML had a poor prognosis, and the multivariate analysis identified mutCFN as an independent marker of overall survival. The genetic profile of these mutCFN patients with CMML closely resembled that of patients with AML, with higher-risk clinical characteristics. Our findings lead us to suggest including the assessment of these mutations in CMML prognostic models and treating these patients with AML-type therapies, including intensive chemotherapy and allogeneic stem cell transplantation, whenever feasible. Furthermore, certain targeted therapies approved for use in AML should be considered.
Collapse
MESH Headings
- Humans
- Nucleophosmin
- Mutation
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/mortality
- fms-Like Tyrosine Kinase 3/genetics
- Male
- Female
- Middle Aged
- Aged
- Nuclear Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Prognosis
- Adult
- Aged, 80 and over
- Retrospective Studies
Collapse
Affiliation(s)
- Sandra Castaño-Díez
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
| | - Mònica López-Guerra
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Inés Zugasti
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Xavier Calvo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Felicitas Isabel Schulz
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alejandro Avendaño
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca, Spain
| | - Elvira Mora
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - José Falantes
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Gemma Azaceta
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Clínico Universitario Lozano Blesa de Zaragoza, Spain
| | - Mariam Ibáñez
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital General Universitario de Valencia, grupo de Investigación de Hematología y Hemoterapia de la Fundación de Investigación del Hospital General Universitario de Valencia, Spain
| | - Tzu Chen
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Cristina Notario
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Neus Amer
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario Son Llàtzer, Palma de Mallorca, Spain
| | - Laura Palomo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology, University Hospital Vall d'Hebron, Barcelona, Spain. Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Helena Pomares
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d'Oncologia - Hospital Duran i Reynals, L'Hospitalet de LLobregat, LLobregat, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, Spain
| | - Jordi Vila
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d'Oncologia - Hospital Dr. Josep Trueta, Girona, Spain
| | - Teresa Bernal del Castillo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Carlos Jiménez-Vicente
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Daniel Esteban
- Department of Hematology, Institut Català d’Oncologia-Hospital Universitari Germans Trias i Pujol, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | - Francesca Guijarro
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - José Álamo
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
| | - Albert Cortés-Bullich
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | | | - Ana Triguero
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | | | - Ester Carcelero
- Department of Pharmacy, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Aina Cardús
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Beate Betz
- Institute for Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Maria Rozman
- Department of Hematopathology, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
| | - Leonor Arenillas
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Lurdes Zamora
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d’Oncologia-Hospital Universitari Germans Trias i Pujol, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | - María Díez-Campelo
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca, Spain
| | - Blanca Xicoy
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Institut Català d’Oncologia-Hospital Universitari Germans Trias i Pujol, Institut de Recerca contra la Leucèmia Josep Carreras, Badalona, Barcelona, Spain
| | - Jordi Esteve
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| | - Marina Díaz-Beyá
- Grupo Español de Síndromes Mielodisplásicos, Madrid, Spain
- Department of Hematology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Spain
| |
Collapse
|
4
|
Laczko D, Poveda-Rogers C, Matthews AH, Snaith O, Luger S, Bagg A, Caponetti GC, Morrissette JJD, Yang G. RAD21 mutations in acute myeloid leukemia. Leuk Lymphoma 2024; 65:958-964. [PMID: 38506144 DOI: 10.1080/10428194.2024.2328233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
The cohesin complex is a ring-shaped protein structure involved in DNA repair and chromosomal segregation. Studies have showed that genomic alterations in the cohesin complex members are among the initial occurrences in the development of acute myeloid leukemia (AML). STAG2 is the most commonly mutated and best-studied member of the cohesin complex in AML and mutations in this gene have been associated with adverse outcomes and are diagnostically relevant. However, the exact role of mutations in other members of the cohesin complex in the development of myeloid neoplasia is controversial. In this single institution study, we retrospectively reviewed data from the molecular profiles of 1,381 AML patients and identified 14 patients with mutations in RAD21, another member of the cohesin complex. We evaluated the frequency, mutational profile, clinico-pathologic features, and prognostic impact of RAD21 in this cohort. This study showed that RAD21-mutated AML often associates with monocytic differentiation, CD7 expression, co-existing mutations in epigenetic regulators, a normal karyotype, and poor prognosis. Our findings provide additional insights into the morphologic, immunophenotypic, and genomic profile of RAD21 mutation-positive AML and suggest that RAD21 mutations should be evaluated for independent prognostic significance in AML.
Collapse
Affiliation(s)
- Dorottya Laczko
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey Poveda-Rogers
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew H Matthews
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Oraine Snaith
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Selina Luger
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adam Bagg
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gabriel C Caponetti
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guang Yang
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Poscente M, Tolomeo D, Arshadi A, Agostini A, L'Abbate A, Solimando AG, Palumbo O, Carella M, Palumbo P, González T, Hernández-Rivas JM, Bassi L, Isidori R, Dell'Aquila M, Trapè G, Latagliata R, Pessina G, Natoni F, Storlazzi CT. Aggressive systemic mastocytosis with the co-occurrence of PRKG2::PDGFRB, KAT6A::NCOA2, and RXRA::NOTCH1 fusion transcripts and a heterozygous RUNX1 frameshift mutation. Cancer Genet 2024; 284-285:5-11. [PMID: 38471404 DOI: 10.1016/j.cancergen.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Systemic mastocytosis (SM) is a myeloproliferative neoplasm displaying abnormal mast cell proliferation. It is subdivided into different forms, including aggressive systemic mastocytosis (ASM) and systemic mastocytosis with an associated hematologic neoplasm (SM-AHN). Oncogenic genetic alterations include point mutations, mainly the KIT D816V, conferring poor prognosis and therapy resistance, and fusion genes, with those involving PDGFRA/PDGFRB as the most recurrent events. We here describe an ASM case negative to the KIT D816V and JAK2 V617F alterations but showing a RUNX1 frameshift heterozygous mutation and the co-occurrence of three fusion transcripts. The first one, PRKG2::PDGFRB, was generated by a balanced t(4;5)(q24;q32) translocation as the sole abnormality. Other two novel chimeras, KAT6A::NCOA2 and RXRA::NOTCH1, originated from cryptic intra-chromosomal abnormalities. The patient rapidly evolved towards SM-AHN, characterized by the persistence of the PRKG2::PDGFRB chimera, due to the presence of an extra copy of the der(5)t(4;5)(q24;q34) chromosome and an increase in the RUNX1 mutation allelic frequency. The results indicated that the transcriptional landscape and the mutational profile of SM deserve attention to predict the evolution and prognosis of this complex disease, whose classification criteria are still a matter of debate.
Collapse
Affiliation(s)
- M Poscente
- UOSD Laboratorio di Genetica Medica, Ospedale Belcolle, Viterbo, Italy
| | - D Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - A Arshadi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - A Agostini
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - A L'Abbate
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), Consiglio Nazionale delle Ricerche, Bari, Italy
| | - A G Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy; IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - O Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo Foggia, Italy
| | - M Carella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo Foggia, Italy
| | - P Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo Foggia, Italy
| | - T González
- Department of Medicine, Universidad de Salamanca, Department of Hematology, Hospital Universitario de Salamanca, IBSAL, IBMCC-Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain
| | - J M Hernández-Rivas
- Department of Medicine, Universidad de Salamanca, Department of Hematology, Hospital Universitario de Salamanca, IBSAL, IBMCC-Centro de Investigación del Cáncer (USAL-CSIC), Salamanca, Spain
| | - L Bassi
- UOSD Laboratorio di Genetica Medica, Ospedale Belcolle, Viterbo, Italy
| | - R Isidori
- UOSD Laboratorio di Genetica Medica, Ospedale Belcolle, Viterbo, Italy
| | - M Dell'Aquila
- UOC Anatomia Patologica, Ospedale Belcolle, Viterbo, Italy
| | - G Trapè
- UOC Ematologia, Ospedale Belcolle, Viterbo, Italy
| | - R Latagliata
- UOC Ematologia, Ospedale Belcolle, Viterbo, Italy
| | - G Pessina
- UOSD Laboratorio di Genetica Medica, Ospedale Belcolle, Viterbo, Italy
| | - F Natoni
- UOSD Laboratorio di Genetica Medica, Ospedale Belcolle, Viterbo, Italy
| | - C T Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
6
|
Caballero JC, Dávila J, López-Pavía M, Such E, Bernal T, Ramos F, Calabuig M, Hernández Sánchez JM, Pomares H, Sánchez Barba M, Abáigar M, González B, Merchán B, Sancho-Tello R, Callejas M, Muñoz-Novas C, Cerveró C, Sanz G, Hernández Rivas JM, Díez Campelo M. Outcomes and effect of somatic mutations after erythropoiesis stimulating agents in patients with lower-risk myelodysplastic syndromes. Ther Adv Hematol 2024; 15:20406207231218157. [PMID: 38186638 PMCID: PMC10768603 DOI: 10.1177/20406207231218157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024] Open
Abstract
Background Erythropoiesis stimulating agents (ESAs) are the first-line therapy in patients with lower-risk myelodysplastic syndromes (LR-MDS). Some predictive factors for ESAs response have been identified. Type and number of somatic mutations have been associated with prognosis and response to therapies in MDS patients. Objectives The objective was to evaluate the outcomes after ESAs in patients with LR-MDS and to address the potential predictive value of somatic mutations in ESAs-treated patients. Design Multi-center retrospective study of a cohort of 722 patients with LR-MDS included in the SPRESAS (Spanish Registry of Erythropoietic Stimulating Agents Study) study. Retrospective analysis of 65 patients with next generation sequencing (NGS) data from diagnosis. Methods ESAs' efficacy and safety were evaluated in patients receiving ESAs and best supportive care (BSC). To assess the potential prognostic value of somatic mutations in erythroid response (ER) rate and outcome, NGS was performed in responders and non-responders. Results ER rate for ESAs-treated patients was 65%. Serum erythropoietin (EPO) level <200 U/l was the only variable significantly associated with a higher ER rate (odds ratio, 2.45; p = 0.036). Median overall survival (OS) in patients treated with ESAs was 6.7 versus 3.1 years in patients receiving BSC (p < 0.001). From 65 patients with NGS data, 57 (87.7%) have at least one mutation. We observed a trend to a higher frequency of ER among patients with a lower number of mutated genes (40.4% in <3 mutated genes versus 22.2% in ⩾3; p = 0.170). The presence of ⩾3 mutated genes was also significantly associated with worse OS (hazard ratio, 2.8; p = 0.015), even in responders. A higher cumulative incidence of acute myeloid leukemia progression at 5 years was also observed in patients with ⩾3 mutated genes versus <3 (33.3% and 10.7%, respectively; p < 0.001). Conclusion This large study confirms the beneficial effect of ESAs and the adverse effect of somatic mutations in patients with LR-MDS.
Collapse
Affiliation(s)
- Juan Carlos Caballero
- Hematology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Julio Dávila
- Hematology Department, Hospital Nuestra Señora de Sonsoles, Ávila, Spain
| | - María López-Pavía
- Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Universidad de Valencia, Valencia, Spain
| | - Esperanza Such
- Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Universidad de Valencia, Valencia, Spain
| | - Teresa Bernal
- Hematology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Fernando Ramos
- Hematology Department, Hospital Universitario de León, León, Spain
| | - Marisa Calabuig
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Jesús María Hernández Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, Instituto Biosanitario de Salamanca, Centro de Investigación del Cáncer, USAL-CSIC, Salamanca, Spain
| | - Helena Pomares
- Hematology Department, Hospital Universitario de Bellvitge-Hospital Duran I Reynals, Instituto Catalán de Oncología, L’Hospitalet del Llobregat, Spain
| | | | - María Abáigar
- Instituto de Biología Molecular y Celular del Cáncer, Instituto Biosanitario de Salamanca, Centro de Investigación del Cáncer, USAL-CSIC, Salamanca, Spain
| | - Bernardo González
- Hematology Department, Hospital Universitario de Canarias, La Laguna, Spain
| | - Brayan Merchán
- Hematology Department, Hospital Universitario Vall d’Hebron, Barcelona, Spain
| | | | - Marta Callejas
- Hematology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | | | - Carlos Cerveró
- Hematology Department, Hospital Virgen de la Luz, Cuenca, Spain
| | - Guillermo Sanz
- Hematology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Universidad de Valencia, Valencia, Spain
| | - Jesús María Hernández Rivas
- Instituto de Biología Molecular y Celular del Cáncer, Instituto Biosanitario de Salamanca, Centro de Investigación del Cáncer, USAL-CSIC, Salamanca, Spain Hematology Department, Hospital Universitario de Salamanca, Salamanca, Spain Instituto Biosanitario de Salamanca, Salamanca, Spain
- Hematology Department, Hospital Universitario de Salamanca, Salamanca, Spain Instituto Biosanitario de Salamanca, Salamanca, Spain
- Instituto Biosanitario de Salamanca, Salamanca, Spain
| | - María Díez Campelo
- Hematology Department, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, Salamanca 37007, Spain
- Instituto Biosanitario de Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Sun Y, Wang Q, Zhang X, Zhang Z, Wang Q, Cen J, Zhu M, Pan J, Liu D, Wu D, Cai Y, Chen S. Molecular genetics and management of world health organization defined atypical chronic myeloid leukemia. Ann Hematol 2023; 102:777-785. [PMID: 36735076 DOI: 10.1007/s00277-023-05106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Atypical chronic myeloid leukemia (CML) is a rare BCR::ABL1-negative hematopoietic stem cell disease characterized by granulocytic proliferation and granulocytic dysplasia. Due to both the challenging diagnosis and the rarity of atypical CML, comprehensive molecular annotation-based analyses of this disease population have been scarce, and it is currently difficult to identify the optimal treatment for atypical CML. To explore atypical CML genomic landscape and treatment options, we performed a systematic retrospective of the clinical data and outcomes of 31 atypical CML patients. We observed that the molecular landscape of atypical CML was highly heterogeneous, with multiple molecular events driving its pathogenesis. Patients with atypical CML had a low response to current therapies, with an overall response rate (ORR) of 33.3% to hypomethylating agent (HMA)-based therapy. The current treatment strategies, including hematopoietic stem cell transplantation (HSCT), did not improve overall survival (OS) in atypical CML patients, with a median survival of 20 months. Thus, the benefits from HSCT and candidates for HSCT remain to be further evaluated. Acute myeloid leukemia (AML)-like chemotherapy followed by bridging allogeneic HSCT may be an ideal regimen for suitable individuals. The large-scale and prospective clinical studies will help to address the dilemma.
Collapse
Affiliation(s)
- Yingxin Sun
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Qinrong Wang
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Xingxia Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, China
| | - Zhiyu Zhang
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Qian Wang
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jiannong Cen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Mingqing Zhu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jinlan Pan
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Dandan Liu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China.,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yifeng Cai
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Suning Chen
- Department of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Suzhou, China. .,Department of Thrombosis and Hemostasis, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
| |
Collapse
|
8
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
9
|
Zhao SY, Xu ZF, Qin TJ, Qu SQ, Li CW, Jia YJ, Pan LJ, Li B, Gao QY, Jiao M, Huang HJ, Xiao ZJ. [Risk factors for leukemia transformation in patients with myelodysplastic syndromes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:818-825. [PMID: 36709195 PMCID: PMC9669629 DOI: 10.3760/cma.j.issn.0253-2727.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/30/2023]
Abstract
Objective: To explore the risk factors in leukemia transformation (LT) in those with myelodysplastic syndromes (MDS) . Methods: From January 2012 to December 2020,data on 320 patients with newly diagnosed primary MDS were gathered from the MDS center. The clinical features and molecular characteristics are explored. Additionally, a retrospective analysis of risk factors for the development of acute leukemia from MDS was done. Results: The median follow-up was13.6 (0.4-107.3) months. 23.4% (75/320) of the MDS patients had LT group. Significant differences between the LT group and non-LT group can be seen in age (P<0.001) , bone marrow blast percentage (P<0.001) , bone marrow fibrosis (P=0.046) , WHO classification (P<0.001) , IPSS-R (P<0.001) and IPSS-R karyotype group (P=0.001) . The median number of mutation of LT group was 1 (1, 3) , that in non-LT group was 1 (0, 2) ,which had a statistical difference (P=0.003) .At the time of the initial diagnosis of MDS, the LT group had higher rates of the TP53 mutation (P=0.034) , DNMT3A mutation (P=0.026) , NRAS mutation (P=0.027) and NPM1 mutation (P=0.017) . Compared with the mutations at first diagnosis and LT of six patients, the number of mutations increased and the variant allele frequencies (VAF) increased significantly in LT patients. Higher bone marrow blast percentage (Refer to <5% , 5% -10% : HR=4.587, 95% CI 2.214 to 9.504, P<0.001, >10% : HR=9.352, 95% CI 4.049 to 21.600, P<0.001) , IPSS-R cytogenetic risk groups (HR=2.603, 95% CI 1.229-5.511, P=0.012) , DNMT3A mutation (HR=4.507, 95% CI 1.889-10.753, P=0.001) , and NPM1 mutation (HR=3.341, 95% CI 1.164-9.591, P=0.025) were all independently associated with LT in MDS patients, according to results of multivariate Cox regression. Conclusion: Bone marrow blast percentage, IPSS-R cytogenetic risk groups, DNMT3A mutation, and NPM1 mutation are independent risk factors in LT for MDS patients.
Collapse
Affiliation(s)
- S Y Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - Z F Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - T J Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - S Q Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - C W Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - Y J Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - L J Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - B Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - Q Y Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - M Jiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - H J Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020,China
| |
Collapse
|
10
|
Liu C, Li J, Chen G, He R, Lin R, Huang Z, Li J, Du X, Lv X. A cohesin-associated gene score may predict immune checkpoint blockade in hepatocellular carcinoma. FEBS Open Bio 2022; 12:1857-1874. [PMID: 36052535 PMCID: PMC9527596 DOI: 10.1002/2211-5463.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Stromal antigen 1 (STAG1), a component of cohesion, is overexpressed in various cancers, but it is unclear whether it has a role in the transcriptional regulation of hepatocellular carcinoma (HCC). To test this hypothesis, here, we screened global HCC datasets and performed multiscale embedded gene co-expression network analysis to identify the potential functional modules of differentially expressed STAG1 co-expressed genes. The putative transcriptional targets of STAG1 were identified using chromatin immunoprecipitation followed by high-throughput DNA sequencing. The cohesin-associated gene score (CAGS) was quantified using the The Cancer Genome Atlas HCC cohort and single-sample gene set enrichment analysis. Distinct cohesin-associated gene patterns were identified by calculating the euclidean distance of each patient. We assessed the potential ability of the CAGS in predicting immune checkpoint blockade (ICB) treatment response using IMvigor210 and GSE78220 cohorts. STAG1 was upregulated in 3313 HCC tissue samples compared with 2692 normal liver tissue samples (standard mean difference = 0.54). A total of three cohesin-associated gene patterns were identified, where cluster 2 had a high TP53 mutated rate and a poor survival outcome. Low CAGS predicted a significant survival advantage but presaged poor immunotherapy response. Differentially expressed STAG1 co-expression genes were enriched in the mitotic cell cycle, lymphocyte activation, and blood vessel development. PDS5A and PDGFRA were predicted as the downstream transcriptional targets of STAG1. In summary, STAG1 is significantly upregulated in global HCC tissue samples and may participate in blood vessel development and the mitotic cell cycle. A cohesin-associated gene scoring system may have potential to predict the ICB response.
Collapse
Affiliation(s)
- Cui‐Zhen Liu
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jian‐Di Li
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gang Chen
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rong‐Quan He
- Department of Medical OncologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Rui Lin
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhi‐Guang Huang
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jian‐Jun Li
- Department of General SurgeryThe Second Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiu‐Fang Du
- Department of PathologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Xiao‐Ping Lv
- Department of GastroenterologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
11
|
Schedel A, Friedrich UA, Morcos MNF, Wagener R, Mehtonen J, Watrin T, Saitta C, Brozou T, Michler P, Walter C, Försti A, Baksi A, Menzel M, Horak P, Paramasivam N, Fazio G, Autry RJ, Fröhling S, Suttorp M, Gertzen C, Gohlke H, Bhatia S, Wadt K, Schmiegelow K, Dugas M, Richter D, Glimm H, Heinäniemi M, Jessberger R, Cazzaniga G, Borkhardt A, Hauer J, Auer F. Recurrent Germline Variant in RAD21 Predisposes Children to Lymphoblastic Leukemia or Lymphoma. Int J Mol Sci 2022; 23:ijms23095174. [PMID: 35563565 PMCID: PMC9106003 DOI: 10.3390/ijms23095174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.
Collapse
Affiliation(s)
- Anne Schedel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Ulrike Anne Friedrich
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Mina N. F. Morcos
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Titus Watrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Claudia Saitta
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Pia Michler
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Carolin Walter
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany; (C.W.); (M.D.)
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.F.); (R.J.A.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Arka Baksi
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.B.); (R.J.)
| | - Maria Menzel
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Peter Horak
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.H.); (S.F.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Grazia Fazio
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
| | - Robert J Autry
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (A.F.); (R.J.A.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.H.); (S.F.)
| | - Meinolf Suttorp
- Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.S.); (U.A.F.); (P.M.); (M.M.); (M.S.)
| | - Christoph Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (C.G.); (H.G.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Duesseldorf, Universitätsstraße 1, 40225 Duesseldorf, Germany; (C.G.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Karin Wadt
- Department of Clinical Genetics, University Hospital of Copenhagen, Faculty of health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Martin Dugas
- Institute of Medical Informatics, University of Muenster, 48149 Muenster, Germany; (C.W.); (M.D.)
- Institute of Medical Informatics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Daniela Richter
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany; (D.R.); (H.G.)
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Dresden, 01307 Dresden, Germany; (D.R.); (H.G.)
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211 Kuopio, Finland; (J.M.); (M.H.)
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (A.B.); (R.J.)
| | - Gianni Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milan Bicocca, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy; (C.S.); (G.F.); (G.C.)
- Medical Genetics, Department of Medicine and Surgery, University of Milan Bicocca, 20900 Monza, Italy
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine University Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany; (R.W.); (T.W.); (T.B.); (S.B.); (A.B.)
| | - Julia Hauer
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
- German Cancer Consortium (DKTK), 81675 Munich, Germany
- Correspondence: ; Tel.: +49-(89)-3068-3940
| | - Franziska Auer
- Department of Pediatrics, School of Medicine, Technical University of Munich; 80804 Munich, Germany; (M.N.F.M.); (F.A.)
| |
Collapse
|
12
|
Schwind S, Jentzsch M, Kubasch AS, Metzeler KH, Platzbecker U. Myelodysplastic syndromes: Biological and therapeutic consequences of the evolving molecular aberrations landscape. Neoplasia 2021; 23:1101-1109. [PMID: 34601234 PMCID: PMC8495032 DOI: 10.1016/j.neo.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders with heterogeneous presentation, ranging from indolent disease courses to aggressive diseases similar to acute myeloid leukemia (AML). Approximately 90% of MDS patients harbor recurrent mutations , which – with the exception of mutated SF3B1 –have not (yet) been included into the diagnostic criteria or risk stratification for MDS. Accumulating evidence suggests their utility for diagnostic workup, treatment indication and prognosis. Subsequently, in patients with unexplained cytopenia or dysplasia identification of these mutations may lead to earlier diagnosis. The acquisition and expansion of additional driver mutations usually antecedes further disease progression to higher risk MDS or secondary AML and thus, can be clinically helpful to detect individuals that may benefit from aggressive treatment approaches. Here, we review our current understanding of somatic gene mutations, gene expression patterns and flow cytometry regarding their relevance for disease evolution from pre-neoplastic states to MDS and potentially AML.
Collapse
Affiliation(s)
- Sebastian Schwind
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Madlen Jentzsch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Anne Sophie Kubasch
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Klaus H Metzeler
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic 1, Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany; German MDS Study Group (G-MDS), Leipzig, Germany; European Myelodysplastic Syndromes Cooperative Group, Leipzig, Germany.
| |
Collapse
|
13
|
Chen-Liang TH. Prognosis in Myelodysplastic Syndromes: The Clinical Challenge of Genomic Integration. J Clin Med 2021; 10:2052. [PMID: 34064707 PMCID: PMC8151135 DOI: 10.3390/jcm10102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic neoplasms characterized by ineffective hematopoiesis and myelodysplasia with a variable spectrum of clinical-biological features that can be used to build a prognostic estimation. This review summarizes the current most widely used prognostic scoring systems and gives a general view of the prognostic impact of somatic mutations in MDS patients.
Collapse
Affiliation(s)
- Tzu-Hua Chen-Liang
- Hematology and Oncology Unit, University Hospital Morales Meseguer, Marques de los Velez s/n, 30008 Murcia, Spain
| |
Collapse
|
14
|
Novel Approaches to Target Mutant FLT3 Leukaemia. Cancers (Basel) 2020; 12:cancers12102806. [PMID: 33003568 PMCID: PMC7600363 DOI: 10.3390/cancers12102806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a haematologic disease in which oncogenic mutations in the receptor tyrosine kinase FLT3 frequently lead to leukaemic development. Potent treatment of AML patients is still hampered by inefficient targeting of leukemic stem cells expressing constitutive active FLT3 mutants. This review summarizes the current knowledge about the regulation of FLT3 activity at cellular level and discusses therapeutical options to affect the tumor cells and the microenvironment to impair the haematological aberrations. Abstract Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient’s poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.
Collapse
|