1
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Mishra R, Zokaei Nikoo M, Veeraballi S, Singh A. Venetoclax and Hypomethylating Agent Combination in Myeloid Malignancies: Mechanisms of Synergy and Challenges of Resistance. Int J Mol Sci 2023; 25:484. [PMID: 38203655 PMCID: PMC10778677 DOI: 10.3390/ijms25010484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
There has been a widespread adoption of hypomethylating agents (HMA: 5-Azacytidine (5-Aza)/decitabine) and venetoclax (Ven) for the treatment of acute myeloid leukemia (AML); however, the mechanisms behind the combination's synergy are poorly understood. Monotherapy often encounters resistance, leading to suboptimal outcomes; however, the combination of HMA and Ven has demonstrated substantial improvements in treatment responses. This study elucidates multiple synergistic pathways contributing to this enhanced therapeutic effect. Key mechanisms include HMA-mediated downregulation of anti-apoptotic proteins, notably MCL-1, and the priming of cells for Ven through the induction of genes encoding pro-apoptotic proteins such as Noxa. Moreover, Ven induces sensitization to HMA, induces overcoming resistance by inhibiting the DHODH enzyme, and disrupts antioxidant pathways (Nrf2) induced by HMA. The combination further disrupts oxidative phosphorylation in leukemia stem cells, amplifying the therapeutic impact. Remarkably, clinical studies have revealed a favorable response, particularly in patients harboring specific mutations, such as IDH1/2, NPM1, CEBPA, or ASXL1. This prompts future studies to explore the nuanced underpinnings of these synergistic mechanisms in AML patients with these molecular signatures.
Collapse
Affiliation(s)
- Rahul Mishra
- Department of Internal Medicine, Anne Arundel Medical Center, Annapolis, MD 21401, USA;
| | - Maedeh Zokaei Nikoo
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| | - Sindhusha Veeraballi
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| | - Abhay Singh
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| |
Collapse
|
3
|
Desai SR, Chakraborty S, Shastri A. Mechanisms of resistance to hypomethylating agents and BCL-2 inhibitors. Best Pract Res Clin Haematol 2023; 36:101521. [PMID: 38092478 DOI: 10.1016/j.beha.2023.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Myeloid malignancies such as myelodysplastic syndrome (MDS) & acute myeloid leukemia (AML) are clonal diseases that emerge and progress due to the expansion of disease-initiating aberrant hematopoietic stem cells, that are not eliminated by conventional cytotoxic therapies. Hypomethylating agents(HMA), azacytidine and decitabine are the first line agents for treatment of MDS and a combination with BCL-2 inhibitor, venetoclax, is approved for AML induction in patients above 75 years and is also actively being investigated for use in high risk MDS. Resistance to these drugs has become a significant clinical challenge in treatment of myeloid malignancies. In this review, we discuss molecular mechanisms underlying the development of resistance to HMA and venetoclax. Insights into these mechanisms can help identify potential biomarkers for resistance prediction, aid in the development of combination therapies and strategies to prevent resistance and advance the field of cancer therapeutics.
Collapse
Affiliation(s)
- Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samarpana Chakraborty
- Department of Medicine (Oncology), Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Aditi Shastri
- Department of Medicine (Oncology), Department of Molecular & Developmental Biology, Albert Einstein College of Medicine & Division of Hemato-Oncology, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Biswas S, Kang K, Ng KP, Radivoyevitch T, Schalper K, Zhang H, Lindner DJ, Thomas A, MacPherson D, Gastman B, Schrump DS, Wong KK, Velcheti V, Saunthararajah Y. Neuroendocrine lineage commitment of small cell lung cancers can be leveraged into p53-independent non-cytotoxic therapy. Cell Rep 2023; 42:113016. [PMID: 37597186 PMCID: PMC10528072 DOI: 10.1016/j.celrep.2023.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
Small cell lung cancers (SCLCs) rapidly resist cytotoxic chemotherapy and immune checkpoint inhibitor (ICI) treatments. New, non-cross-resistant therapies are thus needed. SCLC cells are committed into neuroendocrine lineage then maturation arrested. Implicating DNA methyltransferase 1 (DNMT1) in the maturation arrests, we find (1) the repression mark methylated CpG, written by DNMT1, is retained at suppressed neuroendocrine-lineage genes, even as other repression marks are erased; (2) DNMT1 is recurrently amplified, whereas Ten-Eleven-Translocation 2 (TET2), which functionally opposes DNMT1, is deleted; (3) DNMT1 is recruited into neuroendocrine-lineage master transcription factor (ASCL1, NEUROD1) hubs in SCLC cells; and (4) DNMT1 knockdown activated ASCL1-target genes and released SCLC cell-cycling exits by terminal lineage maturation, which are cycling exits that do not require the p53/apoptosis pathway used by cytotoxic chemotherapy. Inhibiting DNMT1/corepressors with clinical compounds accordingly extended survival of mice with chemorefractory and ICI-refractory, p53-null, disseminated SCLC. Lineage commitment of SCLC cells can hence be leveraged into non-cytotoxic therapy able to treat chemo/ICI-refractory SCLC.
Collapse
Affiliation(s)
- Sudipta Biswas
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kai Kang
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kwok Peng Ng
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kurt Schalper
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Hua Zhang
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anish Thomas
- Experimental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Brian Gastman
- Department of Plastic Surgery, Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kwok-Kin Wong
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Vamsidhar Velcheti
- Thoracic Oncology Program, Langone-Laura and Isaac Perlmutter Cancer Center, New York University, New York, NY 10016, USA.
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
5
|
Zavras PD, Shastri A, Goldfinger M, Verma AK, Saunthararajah Y. Clinical Trials Assessing Hypomethylating Agents Combined with Other Therapies: Causes for Failure and Potential Solutions. Clin Cancer Res 2021; 27:6653-6661. [PMID: 34551907 DOI: 10.1158/1078-0432.ccr-21-2139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Azacitidine and decitabine are hypomethylating agents (HMA), that is, both inhibit and deplete DNA methyltransferase 1 (DNMT1). HMAs are standard single-agent therapies for myelodysplastic syndromes and acute myelogenous leukemias. Several attempts to improve outcomes by combining HMAs with investigational agents, excepting with the BCL2-inhibitor venetoclax, have failed in randomized clinical trial (RCT) evaluations. We extract lessons from decades of clinical trials to thereby inform future work. EXPERIMENTAL DESIGN Serial single-agent clinical trials were analyzed for mechanism and pathway properties of HMAs underpinning their success, and for rules for dose and schedule selection. RCTs were studied for principles, dos and don'ts for productive combination therapy. RESULTS Single-agent HMA trial results encourage dose and schedule selection to increase S-phase-dependent DNMT1 targeting, and discourage doses that cause indiscriminate antimetabolite effects/cytotoxicity, because these attrit myelopoiesis reserves needed for clinical response. Treatment-related myelosuppression should prompt dose/frequency reductions of less active investigational agents rather than more active HMA. Administering cytostatic agents concurrently with HMA can antagonize S-phase-dependent DNMT1 targeting. Supportive care that enables on-time administration of S-phase (exposure-time)-dependent HMA could be useful. Agents that manipulate pyrimidine metabolism to increase HMA pro-drug processing into DNMT1-depleting nucleotide, and/or inhibit other epigenetic enzymes implicated in oncogenic silencing of lineage differentiation, could be productive, but doses and schedules should adhere to therapeutic index/molecular-targeted principles already learned. CONCLUSIONS More than 40 years of clinical trial history indicates mechanism, pathway, and therapeutic index properties of HMAs that underpin their almost exclusive success and teaches lessons for selection and design of combinations aiming to build on this treatment foundation.
Collapse
Affiliation(s)
- Phaedon D Zavras
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Aditi Shastri
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Mendel Goldfinger
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Amit K Verma
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
6
|
Gaidano V, Houshmand M, Vitale N, Carrà G, Morotti A, Tenace V, Rapelli S, Sainas S, Pippione AC, Giorgis M, Boschi D, Lolli ML, Cilloni D, Cignetti A, Saglio G, Circosta P. The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:1003. [PMID: 33670894 PMCID: PMC7957697 DOI: 10.3390/cancers13051003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.
Collapse
Affiliation(s)
- Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Division of Hematology, A.O. SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Mohammad Houshmand
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Nicoletta Vitale
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
| | - Valerio Tenace
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Stefania Rapelli
- Department of Life Sciences and System Biology, University of Turin, 10124 Turin, Italy;
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Agnese Chiara Pippione
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marco Lucio Lolli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Alessandro Cignetti
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| |
Collapse
|