1
|
Baron M, Labreche K, Veyri M, Désiré N, Bouzidi A, Seck-Thiam F, Charlotte F, Rousseau A, Morin V, Nakid-Cordero C, Abbar B, Picca A, Le Cann M, Balegroune N, Gauthier N, Theodorou I, Touat M, Morel V, Bielle F, Samri A, Alentorn A, Sanson M, Roos-Weil D, Haioun C, Poullot E, De Septenville AL, Davi F, Guihot A, Boelle PY, Leblond V, Coulet F, Spano JP, Choquet S, Autran B. Epstein-Barr virus and immune status imprint the immunogenomics of non-Hodgkin lymphomas occurring in immune-suppressed environments. Haematologica 2024; 109:3615-3630. [PMID: 38841782 PMCID: PMC11532699 DOI: 10.3324/haematol.2023.284332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Non-Hodgkin lymphomas (NHL) commonly occur in immunodeficient patients, both those infected by human immunodeficiency virus (HIV) and those who have been transplanted, and are often driven by Epstein-Barr virus (EBV) with cerebral localization, raising the question of tumor immunogenicity, a critical issue for treatment responses. We investigated the immunogenomics of 68 lymphoproliferative disorders from 51 immunodeficient (34 post-transplant, 17 HIV+) and 17 immunocompetent patients. Overall, 72% were large B-cell lymphoma and 25% were primary central nervous system lymphoma, while 40% were EBV+. Tumor whole-exome and RNA sequencing, along with a bioinformatics pipeline allowed analysis of tumor mutational burden, tumor landscape and tumor microenvironment and prediction of tumor neoepitopes. Both tumor mutational burden (2.2 vs. 3.4/Mb, P=0.001) and numbers of neoepitopes (40 vs. 200, P=0.00019) were lower in EBV+ than in EBV- NHL, regardless of the immune status. In contrast both EBV and the immune status influenced the tumor mutational profile, with HNRNPF and STAT3 mutations observed exclusively in EBV+ and immunodeficient NHL, respectively. Peripheral blood T-cell responses against tumor neoepitopes were detected in all EBV- cases but in only half of the EBV+ ones, including responses against IgH-derived MHC-class-II restricted neoepitopes. The tumor microenvironment analysis showed higher CD8 T-cell infiltrates in EBV+ versus EBV- NHL, together with a more tolerogenic profile composed of regulatory T cells, type-M2 macrophages and an increased expression of negative immune-regulators. Our results highlight that the immunogenomics of NHL in patients with immunodeficiency primarily relies on the tumor EBV status, while T-cell recognition of tumor- and IgH-specific neoepitopes is conserved in EBV- patients, offering potential opportunities for future T-cell-based immune therapies.
Collapse
Affiliation(s)
- Marine Baron
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris, France; Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris.
| | - Karim Labreche
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Marianne Veyri
- Sorbonne Université, INSERM, Pierre et Louis Institute of Epidemiology and Public Health, F-75013 Paris France, Theravir Team, Department of Medical Oncology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Nathalie Désiré
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Amira Bouzidi
- Sorbonne Université, INSERM, Research Unit on Cardiovascular and Metabolic Disease UMR ICAN, Department of Endocrine Biochemistry and Oncology, AP-HP, Hôpital-Pitié-Salpêtrière, F-75013 Paris
| | - Fatou Seck-Thiam
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Frédéric Charlotte
- Sorbonne Université, Department of Anatomy and Pathologic Cytology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Alice Rousseau
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Véronique Morin
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Cécilia Nakid-Cordero
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Baptiste Abbar
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Alberto Picca
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Marie Le Cann
- Department of Clinical Haematology, AP-HP, Hôpital Kremlin Bicêtre, F-94270 Le Kremlin
| | - Noureddine Balegroune
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Nicolas Gauthier
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | | | - Mehdi Touat
- Sorbonne Université, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Véronique Morel
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Franck Bielle
- Sorbonne Université, Department of Neuropathology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris
| | - Assia Samri
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Agusti Alentorn
- Sorbonne Université, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Marc Sanson
- Sorbonne Université, INSERM, CNRS, Brain and Spine Institute, ICM, Department of Neurology 2-Mazarin, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Damien Roos-Weil
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Corinne Haioun
- Lymphoid malignancies Unit, AP-HP, Mondor Hospital, F-94000 Créteil
| | - Elsa Poullot
- Department of Anatomy and Pathologic Cytology, AP-HP, Mondor Hospital, F-94000 Créteil
| | - Anne Langlois De Septenville
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Department of Biological Hematology, AP-HP, Hôpital Pitié-Salpêtrière, Paris
| | - Frédéric Davi
- Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Department of Biological Hematology, AP-HP, Hôpital Pitié-Salpêtrière, Paris
| | - Amélie Guihot
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Pierre-Yves Boelle
- Sorbonne Université, CinBioS, UMS 37 PASS Production de données en Sciences de la vie et de la Santé, INSERM, 75013 Paris
| | - Véronique Leblond
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Florence Coulet
- Sorbonne Université, INSERM, Saint-Antoine Research Center, Microsatellites Instability and Cancer, CRSA, Department of Medical Genetics, AP-HP, Pitié-Salpêtrière Hospital, F-75013 Paris
| | - Jean-Philippe Spano
- Sorbonne Université, INSERM, Pierre et Louis Institute of Epidemiology and Public Health, F-75013 Paris France, Theravir Team, Department of Medical Oncology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Sylvain Choquet
- Sorbonne Université, Department of Clinical Haematology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| | - Brigitte Autran
- Sorbonne Université, INSERM U1135, Center for Immunology and Infectious Diseases (CIMI), Department of Immunology, AP-HP, Hôpital Pitié-Salpêtrière, F-75013 Paris
| |
Collapse
|
2
|
Manjeri A, Lee SY, Ng SB, Lee CT. Plasmablastic lymphoma in the pleural cavity. Am J Hematol 2024; 99:1597-1598. [PMID: 38822679 DOI: 10.1002/ajh.27387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Affiliation(s)
- Aditi Manjeri
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Shir Ying Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Chun-Tsu Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Department of Medicine, Alexandra Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
3
|
Cheng J, Harney S, Toner K, Kube P, Gong S, Ozdemirli M, Wistinghausen B. Pediatric monomorphic post-transplant lymphoproliferative disorder with plasmablastic differentiation: A challenge for diagnosis and treatment. Pediatr Blood Cancer 2024; 71:e31096. [PMID: 38778450 DOI: 10.1002/pbc.31096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Jinjun Cheng
- Department of Pathology and Laboratory Medicine, Children's National Hospital, Washington, District of Columbia, USA
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sarah Harney
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
| | - Paige Kube
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Shunyou Gong
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Metin Ozdemirli
- Department of Pathology, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Birte Wistinghausen
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia, USA
- The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
5
|
Liao Y, Yan J, Beri NR, Giulino-Roth L, Cesarman E, Gewurz BE. Germinal center cytokine driven epigenetic control of Epstein-Barr virus latency gene expression. PLoS Pathog 2024; 20:e1011939. [PMID: 38683861 PMCID: PMC11081508 DOI: 10.1371/journal.ppat.1011939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinjie Yan
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Giulino-Roth
- Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Weill Cornell Medical College, New York, New York, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Chen BJ, Hsieh TH, Yuan CT, Wang RC, Yang CF, Chuang WY, Su YZ, Ho CH, Lin CH, Chuang SS. Clinicopathological and genetic landscape of plasmablastic lymphoma in Taiwan. Pathol Res Pract 2024; 253:155059. [PMID: 38160484 DOI: 10.1016/j.prp.2023.155059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plasmablastic lymphoma (PBL) is an aggressive large B-cell lymphoma with a terminal B-cell differentiation phenotype and is frequently associated with immunodeficiency. We aimed to investigate the clinicopathological and immunophenotypic features, genetic alterations, and mutational landscape of PBL in Taiwan. We retrospectively recruited 26 cases. Five (5/18; 28%) patients were HIV-positive and 21 (81%) presented extranodally. There were two morphological groups: one with purely monomorphic large cells (85%) and the other comprising large cells admixed with plasmacytic cells (15%). Phenotypically, the tumors expressed MYC (8/10; 80%), CD138 (20/26; 77%), and MUM1 (20/20; 100%), but not CD20 (n = 26; 0%). Fourteen (54%) cases were positive for EBV by in situ hybridization; the EBV-positive cases were more frequently HIV infected (p = 0.036), with extranodal presentation (p = 0.012) and CD79a expression (p = 0.012), but less frequent light chain restriction (p = 0.029). Using fluorescence in situ hybridization, we identified 13q14 deletion, MYC rearrangement, and CCND1 rearrangement in 74%, 30%, and 5% cases, respectively, without any cases having rearranged BCL6 or IGH::FGFR3 fusion. In the 15 cases with adequate tissue for whole exome sequencing, the most frequent recurrent mutations were STAT3 (40%), NRAS (27%), and KRAS (20%). In conclusion, most PBL cases in Taiwan were HIV-unrelated. Around half of the cases were positive for EBV, with distinct clinicopathological features. Deletion of chromosome 13q14 was frequent. The PBL cases in Taiwan showed recurrent mutations involving JAK-STAT, RAS-MAPK, epigenetic regulation, and NOTCH signaling pathways, findings similar to that from the West.
Collapse
Affiliation(s)
- Bo-Jung Chen
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ren Ching Wang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Fen Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yu Chuang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Zhen Su
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
7
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 1-Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Prognostic Factors, and Special Populations. Mediterr J Hematol Infect Dis 2024; 16:e2024007. [PMID: 38223486 PMCID: PMC10786126 DOI: 10.4084/mjhid.2024.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
This two-part review aims to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first section, as presented in this paper, reviews epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. Plasmablastic lymphoma (PBL) is a rare and aggressive form of lymphoma. Previous and modern studies have demonstrated a significant association between the human immunodeficiency virus (HIV) and the development of the disease. The limited occurrence of PBL contributes to a need for a more comprehensive understanding of the molecular mechanisms involved in its etiology. Consequently, the diagnostic procedure for PBL poses a significant difficulty. Among the group of CD20-negative large B-cell lymphomas, PBL can be correctly diagnosed by identifying its exact clinical characteristics, anatomical location, and morphological characteristics. PBL cells do not express CD20 or PAX5 but possess plasmacytic differentiation markers such as CD38, CD138, MUM1/IRF4, Blimp1, and XBP1. PBL must be distinguished from other B-cell malignancies that lack the CD20 marker, including primary effusion lymphoma, anaplastic lymphoma kinase-positive large B-cell lymphoma, and large B-cell lymphoma (LBCL). This condition is frequently associated with infections caused by the Epstein-Barr virus and genetic alterations involving the MYC gene. Despite advances in our comprehension of this disease, the prognosis remains dismal, resulting in a low overall survival rate, although recent reports suggest an apparent tendency towards substantial improvement.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Rome, Italy
| |
Collapse
|
8
|
Mansoor A, Akhter A, Kamran H, Minoo P, Stewart D. Unraveling the molecular landscape: a comparative analysis of PI3K and MAPK signaling pathways in plasmablastic lymphoma and diffuse large B-cell lymphoma with therapeutic implications. Hum Pathol 2023; 141:102-109. [PMID: 37524252 DOI: 10.1016/j.humpath.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Plasmablastic lymphoma (PBL) is a rare and aggressive subtype of non-Hodgkin lymphoma that shares features with diffuse large B-cell lymphoma (DLBCL). While significant progress has been made in treating DLBCL, the prognosis for PBL remains poor, highlighting the need to identify new therapeutic targets. Using RNA expression analysis, we compared the expression of genes involved in the phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways between PBL and DLBCL. We used critical PI3K (n = 201) and MAPK (n = 57) signaling probe sets to achieve this objective. Our results demonstrate unique molecular mechanisms underlying PBL pathogenesis compared to DLBCL, particularly within the PI3K and MAPK signaling pathways. We found that elevated STAT3 expression in PBL correlates with hyperactive MAPK and PI3K pathways, unlike DLBCL. Additionally, the hyperactivation of the PI3K signaling axis in PBL is unrelated to B-cell receptor or phosphatase and tensin homolog activity, indicating a distinct mechanism compared to DLBCL. Furthermore, we observed unique activation patterns in MAPK pathways between PBL and DLBCL, with PBL exhibiting high expression of the neurotrophic tyrosine kinase receptor (NTKR) family, specifically NTRK1 and NTRK2 genes, which have therapeutic potential. We also found that neither human immunodeficiency virus nor Epstein-Barr virus infection influences gene expression profiles linked to PI3K and MAPK signaling in PBL. These findings could lead to adapting targeted therapies developed for DLBCL to address the specific needs of PBL patients better and contribute to developing novel, targeted therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada.
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada
| | - Hamza Kamran
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada
| | - Parham Minoo
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), T2N5A1, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, T2N 4N2, Canada
| |
Collapse
|
9
|
Amengual JE, Pro B. How I treat posttransplant lymphoproliferative disorder. Blood 2023; 142:1426-1437. [PMID: 37540819 PMCID: PMC10731918 DOI: 10.1182/blood.2023020075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Posttransplant lymphoproliferative disorder (PTLD) is an important and potentially life-threatening complication of solid organ transplant and hematopoietic stem cell transplant (HSCT). Given the heterogeneity of PTLD and the risk of infectious complications in patients with immunosuppression, the treatment of this disease remains challenging. Monomorphic PTLD and lymphoma of B-cell origin account for the majority of cases. Treatment strategies for PTLD consist of response-adapted, risk-stratified methods using immunosuppression reduction, immunotherapy, and/or chemotherapy. With this approach, ∼25% of the patients do not need chemotherapy. Outcomes for patients with high risk or those who do not respond to frontline therapies remain dismal, and novel treatments are needed in this setting. PTLD is associated with Epstein-Barr virus (EBV) infection in 60% to 80% of cases, making EBV-directed therapy an attractive treatment modality. Recently, the introduction of adoptive immunotherapies has become a promising option for refractory cases; hopefully, these treatment strategies can be used as earlier lines of therapy in the future.
Collapse
Affiliation(s)
- Jennifer E. Amengual
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Barbara Pro
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| |
Collapse
|
10
|
Tamaki T, Karube K, Sakihama S, Tsuruta Y, Awazawa R, Hayashi M, Nakada N, Matsumoto H, Yagi N, Ohshiro K, Nakazato I, Kitamura S, Nishi Y, Miyagi T, Yamaguchi S, Nakachi S, Morishima S, Masuzaki H, Takahashi K, Fukushima T, Wada N. A Comprehensive Study of the Immunophenotype and its Clinicopathologic Significance in Adult T-Cell Leukemia/Lymphoma. Mod Pathol 2023; 36:100169. [PMID: 36997002 DOI: 10.1016/j.modpat.2023.100169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell tumor caused by human T-lymphotropic virus type 1 (HTLV-1). The typical ATLL immunophenotypes are described in the 2017 World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues (positive: CD2, CD3, CD5, CD4, and CD25; negative: CD7, CD8, and cytotoxic markers; and partially positive: CD30, CCR4, and FOXP3). However, limited studies are available on the expression of these markers, and their mutual relationship remains unknown. Furthermore, the expression status of novel markers associated with T-cell lymphomas, including Th1 markers (T-bet and CXCR3), Th2 markers (GATA3 and CCR4), T follicular helper markers (BCL6, PD1, and ICOS), and T-cell receptor (TCR) markers, and their clinicopathologic significance is unclear. In this study, we performed >20 immunohistochemical stains in 117 ATLL cases to determine the comprehensive immunophenotypic profile of ATLL, which were compared on the basis of clinicopathologic factors, including morphologic variants (pleomorphic vs anaplastic), biopsy locations, treatments, Shimoyama classification-based clinical subtype, and overall survival. CD3+/CD4+/CD25+/CCR4+ was considered a typical immunophenotype of ATLL, but approximately 20% of cases did not conform to this pattern. Simultaneously, the following new findings were obtained: (1) most cases were negative for TCR-β and TCR-δ (104 cases, 88.9%), indicating the usefulness of negative conversion of TCR expression to provide differentiation from other T-cell tumors; (2) the positivity of CD30 and CD15 and the negativity of FOXP3 and CD3 were significantly associated with anaplastic morphology; and (3) atypical cases, such as T follicular helper marker-positive (12 cases, 10.3%) and cytotoxic molecule-positive cases (3 cases, 2.6%), were identified. No single markers could predict the overall survival among patients with acute/lymphoma subtypes of ATLL. The results of this study illustrate the diversity of ATLL phenotypes. In T-cell tumors occurring in HTLV-1 carriers, the possibility of ATLL should not be eliminated even when the tumor exhibits an atypical phenotype, and the confirmation of HTLV-1 in the tissue is recommended.
Collapse
Affiliation(s)
- Tomoko Tamaki
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Graduate School of Medicine, Nagoya University, Aichi, Japan; Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, Japan.
| | - Shugo Sakihama
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, Japan
| | - Yuma Tsuruta
- Department of Pathology, Nakagami Hospital, Okinawa, Japan
| | - Ryoko Awazawa
- Department of Dermatology, Nakagami Hospital, Okinawa, Japan
| | - Masaki Hayashi
- Department of Hematology, Nakagami Hospital, Okinawa, Japan
| | | | | | - Nobutake Yagi
- Department of Dermatology, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Kazuiku Ohshiro
- Department of Hematology and Oncology, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Iwao Nakazato
- Department of Pathology, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Okinawa, Japan
| | - Sakiko Kitamura
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yukiko Nishi
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takuya Miyagi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sayaka Yamaguchi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Sawako Nakachi
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takuya Fukushima
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, Japan
| | - Naoki Wada
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
11
|
Li Y, Xu-Monette ZY, Abramson J, Sohani AR, Bhagat G, Tzankov A, Visco C, Zhang S, Dybkaer K, Pan Z, Xu M, Tam W, Zu Y, Hsi ED, Hagemeister FB, Go H, van Krieken JH, Winter JN, Ponzoni M, Ferreri AJM, Møller MB, Piris MA, Wang Y, Zhang M, Young KH. EBV-positive DLBCL frequently harbors somatic mutations associated with clonal hematopoiesis of indeterminate potential. Blood Adv 2023; 7:1308-1311. [PMID: 36399513 PMCID: PMC10119604 DOI: 10.1182/bloodadvances.2022008550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Zijun Y. Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Centre, Durham, NC
| | - Jeremy Abramson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Aliyah R. Sohani
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Govind Bhagat
- Columbia University Irving Medical Centre and New York Presbyterian Hospital, New York, NY
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Carlo Visco
- Department of Hematology, University of Verona, Verona, Italy
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Karen Dybkaer
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Zenggang Pan
- Department of Pathology, University of Colorado, Boulder, CO
| | - Min Xu
- Department of Pathology, Yale University, New Haven, CT
| | - Wayne Tam
- Department of Pathology, Weill Medical College of Cornell University, New York, NY
| | - Youli Zu
- Department of Pathology, The Methodist Hospital, Houston, TX
| | - Eric D. Hsi
- Department of Pathology, Wake Forest University, Winston-Salem, NC
| | - Fredrick B. Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Heounjeong Go
- Asan Medical Center, Ulsan University College of Medicine, Seoul, South Korea
| | | | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maurilio Ponzoni
- Department of Hematology and Pathology, San Raffaele H. Scientific Institute, Milan, Italy
| | - Andrés J. M. Ferreri
- Department of Hematology and Pathology, San Raffaele H. Scientific Institute, Milan, Italy
| | - Michael B. Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Miguel A. Piris
- Department of Pathology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Yingjun Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ken H. Young
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Duke Cancer Institute, Durham, NC
| |
Collapse
|
12
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Markouli M, Ullah F, Omar N, Apostolopoulou A, Dhillon P, Diamantopoulos P, Dower J, Gurnari C, Ahmed S, Dima D. Recent Advances in Adult Post-Transplant Lymphoproliferative Disorder. Cancers (Basel) 2022; 14:cancers14235949. [PMID: 36497432 PMCID: PMC9740763 DOI: 10.3390/cancers14235949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
PTLD is a rare but severe complication of hematopoietic or solid organ transplant recipients, with variable incidence and timing of occurrence depending on different patient-, therapy-, and transplant-related factors. The pathogenesis of PTLD is complex, with most cases of early PLTD having a strong association with Epstein-Barr virus (EBV) infection and the iatrogenic, immunosuppression-related decrease in T-cell immune surveillance. Without appropriate T-cell response, EBV-infected B cells persist and proliferate, resulting in malignant transformation. Classification is based on the histologic subtype and ranges from nondestructive hyperplasias to monoclonal aggressive lymphomas, with the most common subtype being diffuse large B-cell lymphoma-like PTLD. Management focuses on prevention of PTLD development, as well as therapy for active disease. Treatment is largely based on the histologic subtype. However, given lack of clinical trials providing evidence-based data on PLTD therapy-related outcomes, there are no specific management guidelines. In this review, we discuss the pathogenesis, histologic classification, and risk factors of PTLD. We further focus on common preventive and frontline treatment modalities, as well as describe the application of novel therapies for PLTD and elaborate on potential challenges in therapy.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Najiullah Omar
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anna Apostolopoulou
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Puneet Dhillon
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Panagiotis Diamantopoulos
- Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Joshua Dower
- Department of Hematology and Medical Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sairah Ahmed
- Department of Lymphoma-Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danai Dima
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
14
|
Malpica L, Marques‐Piubelli ML, Beltran BE, Chavez JC, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2022 update on diagnosis, risk-stratification, and management. Am J Hematol 2022; 97:951-965. [PMID: 35472248 DOI: 10.1002/ajh.26579] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an entity included in the WHO classification of lymphoid neoplasms since 2016. EBV+ DLBCL, NOS, is an aggressive B-cell lymphoma associated with EBV infection, and a poor prognosis with standard chemotherapeutic approaches. DIAGNOSIS The diagnosis is made through a careful pathological evaluation. Detection of EBV-encoded RNA (EBER) is considered standard for diagnosis; however, a clear cutoff for percentage of positive cells has not been defined. The differential diagnosis includes plasmablastic lymphoma (PBL), DLBCL associated with chronic inflammation, primary effusion lymphoma (PEL), among others. RISK-STRATIFICATION The International Prognostic Index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 and PD-1/PD-L1 are emerging as potential adverse but targetable biomarkers. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, might have a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. Therefore, the inclusion of patients in clinical trials when available is recommended. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Luis Malpica
- Department of Lymphoma and Myeloma The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Mario L. Marques‐Piubelli
- Department of Translational Molecular Pathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Brady E. Beltran
- Department of Oncology and Radiotherapy Hospital Nacional Edgardo Rebagliati Martins Lima Peru
- Instituto de Ciencias Biomédicas Universidad Ricardo Palma Lima Peru
| | - Julio C. Chavez
- Department of Malignant Hematology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| | - Roberto N. Miranda
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Jorge J. Castillo
- Division of Hematologic Malignancies, Dana‐Farber Cancer Institute Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
15
|
Vendramini E, Bomben R, Pozzo F, Bittolo T, Tissino E, Gattei V, Zucchetto A. KRAS and RAS-MAPK Pathway Deregulation in Mature B Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:666. [PMID: 35158933 PMCID: PMC8833570 DOI: 10.3390/cancers14030666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations account for the most frequent mutations in human cancers, and are generally correlated with disease aggressiveness, poor prognosis, and poor response to therapies. KRAS is required for adult hematopoiesis and plays a key role in B cell development and mature B cell proliferation and survival, proved to be critical for B cell receptor-induced ERK pathway activation. In mature B cell neoplasms, commonly seen in adults, KRAS and RAS-MAPK pathway aberrations occur in a relevant fraction of patients, reaching high recurrence in some specific subtypes like multiple myeloma and hairy cell leukemia. As inhibitors targeting the RAS-MAPK pathway are being developed and improved, it is of outmost importance to precisely identify all subgroups of patients that could potentially benefit from their use. Herein, we review the role of KRAS and RAS-MAPK signaling in malignant hematopoiesis, focusing on mature B cell lymphoproliferative disorders. We discuss KRAS and RAS-MAPK pathway aberrations describing type, incidence, mutual exclusion with other genetic abnormalities, and association with prognosis. We review the current therapeutic strategies applied in mature B cell neoplasms to counteract RAS-MAPK signaling in pre-clinical and clinical studies, including most promising combination therapies. We finally present an overview of genetically engineered mouse models bearing KRAS and RAS-MAPK pathway aberrations in the hematopoietic compartment, which are valuable tools in the understanding of cancer biology and etiology.
Collapse
Affiliation(s)
- Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (R.B.); (F.P.); (T.B.); (E.T.); (V.G.); (A.Z.)
| | | | | | | | | | | | | |
Collapse
|
16
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|