1
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
2
|
Rimpa CM, Grigoriou M, Tasis A, Paschalidis N, Filia A, Vatsellas G, Papazoglou P, Chatzigeorgiou A, Kymparidou C, Papoutselis M, Misidou C, Spyropoulos T, Dimitriou D, Hatzikirou H, Liapis K, Lamprianidou E, Kotsianidis I, Mitroulis I. Characterization of the Molecular Signature of Human Monocytes in Aging and Myelodysplastic Neoplasms. Eur J Immunol 2025; 55:e202451387. [PMID: 39513195 DOI: 10.1002/eji.202451387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
• Aging leads to chronic inflammation and immune dysfunction, heightening the risk of myeloid malignancies like MDS and CMML. • Both aging and MDS show alterations in monocyte subtypes and function. Aging boosts inflammatory genes upregulation, whereas MDS favors antigen presentation, reflecting distinct immune and disease-specific adaptations. • MDS shows reduced inflammatory activity in CD14+ cells, whereas CMML exhibits heightened inflammation, highlighting distinct disease mechanisms.
Collapse
Affiliation(s)
- Christina Maria Rimpa
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Grigoriou
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasios Tasis
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Anastasia Filia
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis Papazoglou
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Chrysa Kymparidou
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Misidou
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodoros Spyropoulos
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Despoina Dimitriou
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Konstantinos Liapis
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Kotsianidis
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Department of Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
3
|
Stubbins RJ, Cherniawsky H, Karsan A. Cellular and immunotherapies for myelodysplastic syndromes. Semin Hematol 2024; 61:397-408. [PMID: 39426936 DOI: 10.1053/j.seminhematol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
In this review article, we outline the current landscape of immune and cell therapy-based approaches for patients with myelodysplastic syndromes (MDS). Given the well characterized graft-versus-leukemia (GVL) effect observed with allogeneic hematopoietic cell transplantation, and the known immune escape mechanisms observed in MDS cells, significant interest exists in developing immune-based approaches to treat MDS. These attempts have included antibody-based drugs that block immune escape molecules, such as inhibitors of the PD-1/PD-L1 and TIM-3/galectin-9 axes that mediate interactions between MDS cells and T-lymphocytes, as well as antibodies that block the CD47/SIRPα interaction, which mediates macrophage phagocytosis. Unfortunately, these approaches have been largely unsuccessful. There is significant potential for T-cell engaging therapies and chimeric antigen receptor T (CAR-T) cells, but there are also several limitations to these approaches that are unique to MDS. However, many of these limitations may be overcome by the next generation of cellular therapies, including those with engineered T-cell receptors or natural killer (NK)-cell based platforms. Regardless of the approach, all these immune cells are subject to the complex bone marrow microenvironment in MDS, which harbours a variable and heterogeneous mix of pro-inflammatory cytokines and immunosuppressive elements. Understanding this interaction will be paramount to ensuring the success of immune and cellular therapies in MDS.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada.
| | - Hannah Cherniawsky
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
4
|
Su QY, Gao HY, Duan YR, Luo J, Wang WZ, Qiao XC, Zhang SX. The immunologic role of IL-23 in psoriatic arthritis: a potential therapeutic target. Expert Opin Biol Ther 2024; 24:1119-1132. [PMID: 39230202 DOI: 10.1080/14712598.2024.2401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a debilitating chronic condition characterized by inflammation of the joints, bones, enthesis, and skin. The pivotal role of interleukin-23 (IL-23) in the pathogenesis of PsA has become increasingly evident. This proinflammatory cytokine is markedly elevated in patients with PsA, suggesting its potential as a therapeutic target. Consequently, IL-23 inhibitors have emerged as promising first-line biologic treatments for PsA. AREAS COVERED This review delves into the immunopathogenic mechanisms of IL-23 at the cellular and molecular levels in PsA. Furthermore, it provides the recent efficacy and safety profiles of IL-23 inhibitors. We conducted a literature search in PubMed for the following terms: 'IL-23 and psoriatic arthritis,' 'Ustekinumab,' 'Guselkumab,' 'Risankizumab,' and 'Tildrakizumab.' In addition, we retrieved clinical trials involving IL-23 inhibitors registered in ClinicalTrials.gov, EudraCT, and ICTRP. EXPERT OPINION Despite the promising outcomes observed with IL-23 inhibitors, several challenges persist. The long-term effects of these agents require further investigation through prospective studies, and their limited accessibility worldwide necessitates urgent attention. Additionally, ongoing research is warranted to explore other potential drug targets within the IL-23/IL-23 R axis. The development of reliable biomarkers could greatly enhance early detection, tailored management strategies, and personalized treatment approaches for patients with PsA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Heng-Yan Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Yue-Ru Duan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wei-Ze Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xi-Chao Qiao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi medical university, Taiyuan, China
| |
Collapse
|
5
|
Janssen LLG, van Leeuwen-Kerkhoff N, Westers TM, de Gruijl TD, van de Loosdrecht AA. The immunoregulatory role of monocytes and thrombomodulin in myelodysplastic neoplasms. Front Oncol 2024; 14:1414102. [PMID: 39132505 PMCID: PMC11310157 DOI: 10.3389/fonc.2024.1414102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are clonal disorders of the myeloid lineage leading to peripheral blood cytopenias. Dysregulation of innate immunity is hypothesized to be a potent driver of MDS. A recent study revealed increased thrombomodulin (TM) expression on classical monocytes in MDS, which was associated with prolonged survival. TM is a receptor with immunoregulatory capacities, however, its exact role in MDS development remains to be elucidated. In this review we focus on normal monocyte biology and report on the involvement of monocytes in myeloid disease entities with a special focus on MDS. Furthermore, we delve into the current knowledge on TM and its function in monocytes in health and disease and explore the role of TM-expressing monocytes as driver, supporter or epiphenomenon in the MDS bone marrow environment.
Collapse
Affiliation(s)
- Luca L. G. Janssen
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Nathalie van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Theresia M. Westers
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Amsterdam Institute for Immunity and Infectious Diseases, Amsterdam, Netherlands
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
6
|
van Spronsen MF, Van Gassen S, Duetz C, Westers TM, Saeys Y, van de Loosdrecht AA. Myelodysplastic neoplasms dissected into indolent, leukaemic and unfavourable subtypes by computational clustering of haematopoietic stem and progenitor cells. Leukemia 2024; 38:1365-1377. [PMID: 38459168 PMCID: PMC11147773 DOI: 10.1038/s41375-024-02203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Myelodysplastic neoplasms (MDS) encompass haematological malignancies, which are characterised by dysplasia, ineffective haematopoiesis and the risk of progression towards acute myeloid leukaemia (AML). Myelodysplastic neoplasms are notorious for their heterogeneity: clinical outcomes range from a near-normal life expectancy to leukaemic transformation or premature death due to cytopenia. The Molecular International Prognostic Scoring System made progress in the dissection of MDS by clinical outcomes. To contribute to the risk stratification of MDS by immunophenotypic profiles, this study performed computational clustering of flow cytometry data of CD34+ cells in 67 MDS, 67 AML patients and 49 controls. Our data revealed heterogeneity also within the MDS-derived CD34+ compartment. In MDS, maintenance of lymphoid progenitors and megakaryocytic-erythroid progenitors predicted favourable outcomes, whereas expansion of granulocyte-monocyte progenitors increased the risk of leukaemic transformation. The proliferation of haematopoietic stem cells and common myeloid progenitors with downregulated CD44 expression, suggestive of impaired haematopoietic differentiation, characterised a distinct MDS subtype with a poor overall survival. This exploratory study demonstrates the prognostic value of known and previously unexplored CD34+ populations and suggests the feasibility of dissecting MDS into a more indolent, a leukaemic and another unfavourable subtype.
Collapse
Affiliation(s)
- Margot F van Spronsen
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Sofie Van Gassen
- VIB Inflammation Research Centre, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Carolien Duetz
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Theresia M Westers
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Yvan Saeys
- VIB Inflammation Research Centre, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Arjan A van de Loosdrecht
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
7
|
Tentori CA, Zhao LP, Tinterri B, Strange KE, Zoldan K, Dimopoulos K, Feng X, Riva E, Lim B, Simoni Y, Murthy V, Hayes MJ, Poloni A, Padron E, Cardoso BA, Cross M, Winter S, Santaolalla A, Patel BA, Groarke EM, Wiseman DH, Jones K, Jamieson L, Manogaran C, Daver N, Gallur L, Ingram W, Ferrell PB, Sockel K, Dulphy N, Chapuis N, Kubasch AS, Olsnes AM, Kulasekararaj A, De Lavellade H, Kern W, Van Hemelrijck M, Bonnet D, Westers TM, Freeman S, Oelschlaegel U, Valcarcel D, Raddi MG, Grønbæk K, Fontenay M, Loghavi S, Santini V, Almeida AM, Irish JM, Sallman DA, Young NS, van de Loosdrecht AA, Adès L, Della Porta MG, Cargo C, Platzbecker U, Kordasti S. Immune-monitoring of myelodysplastic neoplasms: Recommendations from the i4MDS consortium. Hemasphere 2024; 8:e64. [PMID: 38756352 PMCID: PMC11096644 DOI: 10.1002/hem3.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/03/2024] [Indexed: 05/18/2024] Open
Abstract
Advancements in comprehending myelodysplastic neoplasms (MDS) have unfolded significantly in recent years, elucidating a myriad of cellular and molecular underpinnings integral to disease progression. While molecular inclusions into prognostic models have substantively advanced risk stratification, recent revelations have emphasized the pivotal role of immune dysregulation within the bone marrow milieu during MDS evolution. Nonetheless, immunotherapy for MDS has not experienced breakthroughs seen in other malignancies, partly attributable to the absence of an immune classification that could stratify patients toward optimally targeted immunotherapeutic approaches. A pivotal obstacle to establishing "immune classes" among MDS patients is the absence of validated accepted immune panels suitable for routine application in clinical laboratories. In response, we formed International Integrative Innovative Immunology for MDS (i4MDS), a consortium of multidisciplinary experts, and created the following recommendations for standardized methodologies to monitor immune responses in MDS. A central goal of i4MDS is the development of an immune score that could be incorporated into current clinical risk stratification models. This position paper first consolidates current knowledge on MDS immunology. Subsequently, in collaboration with clinical and laboratory specialists, we introduce flow cytometry panels and cytokine assays, meticulously devised for clinical laboratories, aiming to monitor the immune status of MDS patients, evaluating both immune fitness and identifying potential immune "risk factors." By amalgamating this immunological characterization data and molecular data, we aim to enhance patient stratification, identify predictive markers for treatment responsiveness, and accelerate the development of systems immunology tools and innovative immunotherapies.
Collapse
Affiliation(s)
- Cristina A. Tentori
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Comprehensive Cancer Centre, King's CollegeLondonUK
| | - Lin P. Zhao
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
| | - Benedetta Tinterri
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | - Kathryn E. Strange
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Research Group of Molecular ImmunologyFrancis Crick InstituteLondonUK
| | - Katharina Zoldan
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Konstantinos Dimopoulos
- Department of Clinical BiochemistryBispebjerg and Frederiksberg HospitalCopenhagenDenmark
- Department of Pathology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Elena Riva
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Yannick Simoni
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Vidhya Murthy
- Centre for Clinical Haematology, University Hospitals of BirminghamBirminghamUK
| | - Madeline J. Hayes
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Antonella Poloni
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
| | - Eric Padron
- Moffitt Cancer Center, Malignant Hematology DepartmentTampaUSA
| | - Bruno A. Cardoso
- Universidade Católica PortuguesaFaculdade de MedicinaPortugal
- Universidade Católica Portuguesa, Centro de Investigação Interdisciplinar em SaúdePortugal
| | - Michael Cross
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Susann Winter
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | | | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Daniel H. Wiseman
- Division of Cancer SciencesThe University of ManchesterManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| | - Katy Jones
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Lauren Jamieson
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Charles Manogaran
- Immunophenotyping Laboratory (Synnovis Analytics LLP)Southeast Haematological Malignancy Diagnostic Service, King's College HospitalLondonUK
| | - Naval Daver
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Laura Gallur
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Wendy Ingram
- Department of HaematologyUniversity Hospital of WalesCardiffUK
| | - P. Brent Ferrell
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Katja Sockel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - Nicolas Dulphy
- INSERM UMR_S1160, Institut de Recherche Saint LouisUniversité Paris CitéParisFrance
- Laboratoire d'Immunologie et d‘Histocompatibilité, Assistance Publique des Hôpitaux de Paris (APHP), Hôpital Saint‐LouisParisFrance
- Institut Carnot OPALE, Institut de Recherche Saint‐Louis, Hôpital Saint‐LouisParisFrance
| | - Nicolas Chapuis
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Anne S. Kubasch
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Astrid M. Olsnes
- Section for Hematology, Department of MedicineHaukeland University HospitalBergenNorway
- Department of Clinical ScienceFaculty of Medicine, University of BergenBergenNorway
| | | | | | | | | | - Dominique Bonnet
- Hematopoietic Stem Cell LaboratoryFrancis Crick InstituteLondonUK
| | - Theresia M. Westers
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Sylvie Freeman
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Uta Oelschlaegel
- Medical Clinic I, University Hospital Carl Gustav Carus, TU DresdenDresdenGermany
| | - David Valcarcel
- Hematology Department, Vall d'hebron University Hospital, Vall d'hebron Institut of Oncology (VHIO)Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Marco G. Raddi
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Kirsten Grønbæk
- Department of Hematology, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Biotech Research and Innovation Center (BRIC)University of CopenhagenCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Michaela Fontenay
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
- Assistance Publique‐Hôpitaux de Paris Centre, Hôpital CochinParisFrance
| | - Sanam Loghavi
- University of TexasMD Anderson Cancer CenterHouston, TexasUSA
| | - Valeria Santini
- Myelodysplastic Syndrome Unit, Hematology DivisionAzienda Ospedaliero‐Universitaria Careggi, University of FlorenceFlorenceItaly
| | - Antonio M. Almeida
- Hematology DepartmentHospital da Luz LisboaLisboaPortugal
- DeaneryFaculdade de Medicina, UCPLisboaPortugal
| | - Jonathan M. Irish
- Cell & Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood InstituteBethesdaMarylandUSA
| | - Arjan A. van de Loosdrecht
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, location VU University Medical CenterAmsterdamThe Netherlands
| | - Lionel Adès
- Hématologie seniorsHôpital Saint‐Louis, Assistance Publique des Hôpitaux de Paris (APHP)ParisFrance
- Université Paris Cité, CNRS, INSERM, Institut CochinParisFrance
| | - Matteo G. Della Porta
- Humanitas Clinical and Research Center–IRCCS & Department of Biomedical SciencesHumanitas UniversityMilanItaly
| | | | - Uwe Platzbecker
- Department of Medicine 1, Haematology, Cellular Therapy, Hemostaseology and Infectious DiseasesUniversity Medical Center LeipzigLeipzigGermany
| | - Shahram Kordasti
- Comprehensive Cancer Centre, King's CollegeLondonUK
- Department of Clinical and Molecular SciencesUniversità Politecnica delle MarcheAnconaItaly
- Haematology DepartmentGuy's and St Thomas NHS TrustLondonUK
| | | |
Collapse
|
8
|
Campillo-Marcos I, Casado-Pelaez M, Davalos V, Ferrer G, Mata C, Mereu E, Roué G, Valcárcel D, Molero A, Zamora L, Xicoy B, Palomo L, Acha P, Manzanares A, Tobiasson M, Hellström-Lindberg E, Solé F, Esteller M. Single-cell Multiomics Analysis of Myelodysplastic Syndromes and Clinical Response to Hypomethylating Therapy. CANCER RESEARCH COMMUNICATIONS 2024; 4:365-377. [PMID: 38300528 PMCID: PMC10860538 DOI: 10.1158/2767-9764.crc-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Alterations in epigenetic marks, such as DNA methylation, represent a hallmark of cancer that has been successfully exploited for therapy in myeloid malignancies. Hypomethylating agents (HMA), such as azacitidine, have become standard-of-care therapy to treat myelodysplastic syndromes (MDS), myeloid neoplasms that can evolve into acute myeloid leukemia. However, our capacity to identify who will respond to HMAs, and the duration of response, remains limited. To shed light on this question, we have leveraged the unprecedented analytic power of single-cell technologies to simultaneously map the genome and immunoproteome of MDS samples throughout clinical evolution. We were able to chart the architecture and evolution of molecular clones in precious paired bone marrow MDS samples at diagnosis and posttreatment to show that a combined imbalance of specific cell lineages with diverse mutational profiles is associated with the clinical response of patients with MDS to hypomethylating therapy. SIGNIFICANCE MDS are myeloid clonal hemopathies with a low 5-year survival rate, and approximately half of the cases do not respond to standard HMA therapy. Our innovative single-cell multiomics approach offers valuable biological insights and potential biomarkers associated with the demethylating agent efficacy. It also identifies vulnerabilities that can be targeted using personalized combinations of small drugs and antibodies.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Marta Casado-Pelaez
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Gerardo Ferrer
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Caterina Mata
- Single Cell Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Elisabetta Mereu
- Cellular Systems Genomics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Gael Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - David Valcárcel
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Antonieta Molero
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Catalonia, Spain
| | - Lurdes Zamora
- Department of Hematology, ICO-IJC-Hospital Germans Trias i Pujol, UAB, Badalona, Spain
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Blanca Xicoy
- Department of Hematology, ICO-IJC-Hospital Germans Trias i Pujol, UAB, Badalona, Spain
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Laura Palomo
- Department of Hematology, Experimental Hematology Group, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Catalonia, Spain
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Pamela Acha
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Ana Manzanares
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Magnus Tobiasson
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Medical Unit Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Francesc Solé
- Myelodysplastic Syndromes Research Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Gera K, Chauhan A, Castillo P, Rahman M, Mathavan A, Mathavan A, Oganda-Rivas E, Elliott L, Wingard JR, Sayour EJ. Vaccines: a promising therapy for myelodysplastic syndrome. J Hematol Oncol 2024; 17:4. [PMID: 38191498 PMCID: PMC10773074 DOI: 10.1186/s13045-023-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Collapse
Affiliation(s)
- Kriti Gera
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Anjali Chauhan
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- Division of Hematology and Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Oganda-Rivas
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Leighton Elliott
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Peng J, He S, Yang X, Huang L, Wei J. Plasmacytoid dendritic cell expansion in myeloid neoplasms: A novel distinct subset of myeloid neoplasm? Crit Rev Oncol Hematol 2023; 192:104186. [PMID: 37863402 DOI: 10.1016/j.critrevonc.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific dendritic cell type stemming from the myeloid lineage. Clinically and pathologically, neoplasms associated with pDCs are classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN), mature plasmacytoid dendritic myeloid neoplasm (MPDMN) and pDC expansion in myeloid neoplasms (MNs). BPDCN was considered a rare and aggressive neoplasm in the 2016 World Health Organization (WHO) classification. MPDMN, known as mature pDC-derived neoplasm, is closely related to MNs and was first recognized in the latest 2022 WHO classification, proposing a new concept that acute myeloid leukemia cases could show clonally expanded pDCs (pDC-AML). With the advances in detection techniques, an increasing number of pDC expansion in MNs have been reported, but whether the pathogenesis is similar to that of MPDMN remains unclear. This review focuses on patient characteristics, diagnosis and treatment of pDC expansion in MNs to gain further insight into this novel and unique provisional subtype.
Collapse
Affiliation(s)
- Juan Peng
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shaolong He
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
| |
Collapse
|
11
|
Fontenay M, Boussaid I, Chapuis N. [Pathophysiology of myelodysplastic syndromes]. Bull Cancer 2023; 110:1097-1105. [PMID: 37423830 DOI: 10.1016/j.bulcan.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/15/2023] [Indexed: 07/11/2023]
Abstract
During aging, the onset of mutations at low frequency in hematopoietic cells or clonal hematopoiesis of indeterminate significance favors the evolution towards hemopathies such as myelodysplastic syndromes or acute leukemias, but also cardiovascular diseases and other pathologies. Acute or chronic inflammation related to age influences the clonal evolution and the immune response. Conversely, mutated hematopoietic cells create an inflammatory bone marrow environment facilitating their expansion. Various pathophysiological mechanisms depending on the type of mutation produce the diversity of phenotypes. Identifying factors affecting clonal selection is mandatory to improve patient care.
Collapse
Affiliation(s)
- Michaela Fontenay
- Assistance publique-Hôpitaux de Paris, université Paris Cité, hôpital Cochin, laboratoire d'hématologie, Inserm, Institut Cochin, Paris, France.
| | - Ismael Boussaid
- Assistance publique-Hôpitaux de Paris, université Paris Cité, hôpital Cochin, laboratoire d'hématologie, Inserm, Institut Cochin, Paris, France
| | - Nicolas Chapuis
- Assistance publique-Hôpitaux de Paris, université Paris Cité, hôpital Cochin, laboratoire d'hématologie, Inserm, Institut Cochin, Paris, France
| |
Collapse
|
12
|
Porwit A, Béné MC, Duetz C, Matarraz S, Oelschlaegel U, Westers TM, Wagner-Ballon O, Kordasti S, Valent P, Preijers F, Alhan C, Bellos F, Bettelheim P, Burbury K, Chapuis N, Cremers E, Della Porta MG, Dunlop A, Eidenschink-Brodersen L, Font P, Fontenay M, Hobo W, Ireland R, Johansson U, Loken MR, Ogata K, Orfao A, Psarra K, Saft L, Subira D, Te Marvelde J, Wells DA, van der Velden VHJ, Kern W, van de Loosdrecht AA. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:27-50. [PMID: 36537621 PMCID: PMC10107708 DOI: 10.1002/cyto.b.22108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in bone marrow (BM) investigation of patients with cytopenia and suspected myelodysplastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients undergoing treatment. This document summarizes recommendations from the International/European Leukemia Net Working Group for Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diagnostic work-up of MDS. Recommendations for the analysis of several BM cell subsets such as myeloid precursors, maturing granulocytic and monocytic components and erythropoiesis are given. A core set of 17 markers identified as independently related to a cytomorphologic diagnosis of myelodysplasia is suggested as mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precursor cell (CD34+ CD19- ) count >3% should be considered immunophenotypically indicative of myelodysplasia. However, MFC results should always be evaluated as part of an integrated hematopathology work-up. Looking forward, several machine-learning-based analytical tools of interest should be applied in parallel to conventional analytical methods to investigate their usefulness in integrated diagnostics, risk stratification, and potentially even in the evaluation of response to therapy, based on MFC data. In addition, compiling large uniform datasets is desirable, as most of the machine-learning-based methods tend to perform better with larger numbers of investigated samples, especially in such a heterogeneous disease as MDS.
Collapse
Affiliation(s)
- Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marie C Béné
- Hematology Biology, Nantes University Hospital, CRCINA Inserm 1232, Nantes, France
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Inserm U955, Université Paris-Est Créteil, Créteil, France
| | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Frank Preijers
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, & University of Melbourne, Melbourne, Australia
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Eline Cremers
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon-IiSGM, Madrid, Spain
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Willemijn Hobo
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Alberto Orfao
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute Solna, Stockholm, Sweden
| | - Dolores Subira
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Jeroen Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
van de Loosdrecht AA, Kern W, Porwit A, Valent P, Kordasti S, Cremers E, Alhan C, Duetz C, Dunlop A, Hobo W, Preijers F, Wagner-Ballon O, Chapuis N, Fontenay M, Bettelheim P, Eidenschink-Brodersen L, Font P, Johansson U, Loken MR, Te Marvelde JG, Matarraz S, Ogata K, Oelschlaegel U, Orfao A, Psarra K, Subirá D, Wells DA, Béné MC, Della Porta MG, Burbury K, Bellos F, van der Velden VHJ, Westers TM, Saft L, Ireland R. Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet International MDS-Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:77-86. [PMID: 34897979 DOI: 10.1002/cyto.b.22044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
This article discusses the rationale for inclusion of flow cytometry (FCM) in the diagnostic investigation and evaluation of cytopenias of uncertain origin and suspected myelodysplastic syndromes (MDS) by the European LeukemiaNet international MDS Flow Working Group (ELN iMDS Flow WG). The WHO 2016 classification recognizes that FCM contributes to the diagnosis of MDS and may be useful for prognostication, prediction, and evaluation of response to therapy and follow-up of MDS patients.
Collapse
Affiliation(s)
- Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Anna Porwit
- Department of Clinical Sciences, Division of Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Eline Cremers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Université Paris-Est Créteil, Inserm U955, Créteil, France
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Centre-Université de Paris, Paris, France
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon - IiSGM, Madrid, Spain
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Jeroen G Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus TU Dresden, Dresden, Germany
| | - Alberto Orfao
- Cancer Research Center (CIC/IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Dolores Subirá
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | | | - Marie C Béné
- Hematology Biology, Nantes University Hospital and CRCINA, Nantes, France
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne, Australia
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Leonie Saft
- Department of Clinical Pathology, Division of Hematopathology, Karolinska University Hospital and Institute, Stockholm, Sweden
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Kouroukli O, Symeonidis A, Foukas P, Maragkou MK, Kourea EP. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers (Basel) 2022; 14:cancers14225656. [PMID: 36428749 PMCID: PMC9688609 DOI: 10.3390/cancers14225656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The BM, the major hematopoietic organ in humans, consists of a pleiomorphic environment of cellular, extracellular, and bioactive compounds with continuous and complex interactions between them, leading to the formation of mature blood cells found in the peripheral circulation. Systemic and local inflammation in the BM elicit stress hematopoiesis and drive hematopoietic stem cells (HSCs) out of their quiescent state, as part of a protective pathophysiologic process. However, sustained chronic inflammation impairs HSC function, favors mutagenesis, and predisposes the development of hematologic malignancies, such as myelodysplastic syndromes (MDS). Apart from intrinsic cellular mechanisms, various extrinsic factors of the BM immune microenvironment (IME) emerge as potential determinants of disease initiation and evolution. In MDS, the IME is reprogrammed, initially to prevent the development, but ultimately to support and provide a survival advantage to the dysplastic clone. Specific cellular elements, such as myeloid-derived suppressor cells (MDSCs) are recruited to support and enhance clonal expansion. The immune-mediated inhibition of normal hematopoiesis contributes to peripheral cytopenias of MDS patients, while immunosuppression in late-stage MDS enables immune evasion and disease progression towards acute myeloid leukemia (AML). In this review, we aim to elucidate the role of the mediators of immune response in the initial pathogenesis of MDS and the evolution of the disease.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, University Hospital of Patras, 26504 Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, School of Medicine, University of Patras, 26332 Patras, Greece
| | - Periklis Foukas
- 2nd Department of Pathology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Myrto-Kalliopi Maragkou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 54124 Thessaloniki, Greece
| | - Eleni P. Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-969191
| |
Collapse
|
15
|
Jachiet V, Ricard L, Hirsch P, Malard F, Pascal L, Beyne-Rauzy O, Peterlin P, Maria ATJ, Vey N, D'Aveni M, Gourin MP, Dimicoli-Salazar S, Banos A, Wickenhauser S, Terriou L, De Renzis B, Durot E, Natarajan-Ame S, Vekhoff A, Voillat L, Park S, Vinit J, Dieval C, Dellal A, Grobost V, Willems L, Rossignol J, Solary E, Kosmider O, Dulphy N, Zhao LP, Adès L, Fenaux P, Fain O, Mohty M, Gaugler B, Mekinian A. Reduced peripheral blood dendritic cell and monocyte subsets in MDS patients with systemic inflammatory or dysimmune diseases. Clin Exp Med 2022:10.1007/s10238-022-00866-5. [PMID: 35953763 DOI: 10.1007/s10238-022-00866-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Systemic inflammatory and autoimmune diseases (SIADs) occur in 10-20% of patients with myelodysplastic syndrome (MDS). Recently identified VEXAS (Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) syndrome, associated with somatic mutations in UBA1 (Ubiquitin-like modifier-activating enzyme 1), encompasses a range of severe inflammatory conditions along with hematological abnormalities, including MDS. The pathophysiological mechanisms underlying the association between MDS and SIADs remain largely unknown, especially the roles of different myeloid immune cell subsets. The aim of this study was to quantitatively evaluate peripheral blood myeloid immune cells (dendritic cells (DC) and monocytes) by flow cytometry in MDS patients with associated SIAD (n = 14, most often including relapsing polychondritis or neutrophilic dermatoses) and to compare their distribution in MDS patients without SIAD (n = 23) and healthy controls (n = 7). Most MDS and MDS/SIAD patients had low-risk MDS. Eight of 14 (57%) MDS/SIAD patients carried UBA1 somatic mutations, defining VEXAS syndrome.Compared with MDS patients, most DC and monocyte subsets were significantly decreased in MDS/SIAD patients, especially in MDS patients with VEXAS syndrome. Our study provides the first overview of the peripheral blood immune myeloid cell distribution in MDS patients with associated SIADs and raises several hypotheses: possible redistribution to inflammation sites, increased apoptosis, or impaired development in the bone marrow.
Collapse
Affiliation(s)
- Vincent Jachiet
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France. .,Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France.
| | - Laure Ricard
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Pierre Hirsch
- Service d'Hématologie Biologique, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Laurent Pascal
- Service d'Oncologie et d'Hématologie, Hôpital Saint Vincent de Paul, Université Catholique de Lille, Lille, France
| | - Odile Beyne-Rauzy
- Service de Médecine Interne, CHU de Toulouse, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Pierre Peterlin
- Service d'Hématologie Clinique, CHU de Nantes, Nantes, France
| | - Alexandre Thibault Jacques Maria
- Service de Médecine Interne, maladies multi-organiques de l'adulte, Hôpital Saint-Éloi, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Norbert Vey
- Institut Paoli-Calmettes, CRCM, Aix-Marseille Univ, Inserm, CNRS, Marseille, France
| | - Maud D'Aveni
- Service d'Hématologie et de Médecine Interne, Hôpital Brabois, CHRU Nancy, Nancy, France
| | - Marie-Pierre Gourin
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Dupuytren, CHU de Limoges, Limoges, France
| | | | - Anne Banos
- Service d'Hématologie Clinique, Centre Hospitalier Côte Basque, Bayonne, France
| | - Stefan Wickenhauser
- Service d'Hématologie Clinique, Hôpital Universitaire Carémeau, Institut de Cancérologie du Gard, Nîmes, France
| | - Louis Terriou
- Service de Médecine Interne et Immunologie Clinique, CHU Lille, 59000, Lille, France
| | - Benoit De Renzis
- Service d'Hématologie Clinique, Hôpital Estaing, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Eric Durot
- Service d'Hématologie Clinique, Hôpital Robert Debré, CHU de Reims, Reims, France
| | - Shanti Natarajan-Ame
- Service d'Hématologie, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, Strasbourg, France
| | - Anne Vekhoff
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Laurent Voillat
- Service d'Hématologie et Oncologie, CH William Morey, Chalon sur Saône, France
| | - Sophie Park
- Service d'Hématologie, Université Grenoble Alpes Et CHU Grenoble Alpes, Grenoble, France
| | - Julien Vinit
- Service de Médecine Interne, CH William Morey, Chalon sur Saône, France
| | - Céline Dieval
- Service de Médecine Interne et Hématologie, GHLA, CH de Rochefort, Rochefort, France
| | - Azeddine Dellal
- Service de Rhumatologie, Hôpital Montfermeil, Montfermeil, France
| | - Vincent Grobost
- Service de Médecine Interne, CHU Estaing, Clermont-Ferrand, France
| | - Lise Willems
- Service d'Hématologie, AP-HP, Hôpital Cochin, Paris, France
| | - Julien Rossignol
- Service d'Hématologie Adultes, AP-HP, Hôpital Necker-Enfants Malades, 75015, Paris, France
| | - Eric Solary
- Département d'Hématologie, Institut Gustave Roussy, Villejuif, France
| | - Olivier Kosmider
- Service d'Hématologie Biologique, Université de Paris, AP-HP, Hôpital Cochin, 75014, Paris, France
| | - Nicolas Dulphy
- Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, INSERM U1160, Paris, France
| | - Lin Pierre Zhao
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Lionel Adès
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Pierre Fenaux
- Département d'Hématologie, Université de Paris, AP-HP, Hôpital Saint Louis, 75010, Paris, France
| | - Olivier Fain
- Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France.,Service de Médecine Interne et Inflammation-Immunopathology-Biotherapy Department (DMU i3), Sorbonne Université, AP-HP, Hôpital Saint Antoine, Paris, France
| | | |
Collapse
|
16
|
Roussel X, Garnache Ottou F, Renosi F. Plasmacytoid Dendritic Cells, a Novel Target in Myeloid Neoplasms. Cancers (Basel) 2022; 14:cancers14143545. [PMID: 35884612 PMCID: PMC9317563 DOI: 10.3390/cancers14143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the main type I interferon producing cells in humans and are able to modulate innate and adaptive immune responses. Tumor infiltration by plasmacytoid dendritic cells is already well described and is associated with poor outcomes in cancers due to the tolerogenic activity of pDC. In hematological diseases, Blastic Plasmacytoid Dendritic Cells Neoplasm (BPDCN), aggressive leukemia derived from pDCs, is well described, but little is known about tumor infiltration by mature pDC described in Myeloid Neoplasms (MN). Recently, mature pDC proliferation (MPDCP) has been described as a differential diagnosis of BPDCN associated with acute myeloid leukemia (pDC-AML), myelodysplastic syndrome (pDC-MDS) and chronic myelomonocytic leukemia (pDC-CMML). Tumor cells are myeloid blasts and/or mature myeloid cells from related myeloid disorders and pDC derived from a clonal proliferation. The poor prognosis associated with MPDCP requires a better understanding of pDC biology, MN oncogenesis and immune response. This review provides a comprehensive overview about the biological aspects of pDCs, the description of pDC proliferation in MN, and an insight into putative therapies in pDC-AML regarding personalized medicine.
Collapse
Affiliation(s)
- Xavier Roussel
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Department of Clinical Hematology, University Hospital of Besançon, 25000 Besançon, France
- Correspondence: (X.R.); (F.R.)
| | - Francine Garnache Ottou
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
- Correspondence: (X.R.); (F.R.)
| |
Collapse
|
17
|
Caprioli C, Nazari I, Milovanovic S, Pelicci PG. Single-Cell Technologies to Decipher the Immune Microenvironment in Myeloid Neoplasms: Perspectives and Opportunities. Front Oncol 2022; 11:796477. [PMID: 35186713 PMCID: PMC8847379 DOI: 10.3389/fonc.2021.796477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
Myeloid neoplasms (MN) are heterogeneous clonal disorders arising from the expansion of hematopoietic stem and progenitor cells. In parallel with genetic and epigenetic dynamics, the immune system plays a critical role in modulating tumorigenesis, evolution and therapeutic resistance at the various stages of disease progression. Single-cell technologies represent powerful tools to assess the cellular composition of the complex tumor ecosystem and its immune environment, to dissect interactions between neoplastic and non-neoplastic components, and to decipher their functional heterogeneity and plasticity. In addition, recent progress in multi-omics approaches provide an unprecedented opportunity to study multiple molecular layers (DNA, RNA, proteins) at the level of single-cell or single cellular clones during disease evolution or in response to therapy. Applying single-cell technologies to MN holds the promise to uncover novel cell subsets or phenotypic states and highlight the connections between clonal evolution and immune escape, which is crucial to fully understand disease progression and therapeutic resistance. This review provides a perspective on the various opportunities and challenges in the field, focusing on key questions in MN research and discussing their translational value, particularly for the development of more efficient immunotherapies.
Collapse
Affiliation(s)
- Chiara Caprioli
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Iman Nazari
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
| | - Sara Milovanovic
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IRCCS Istituto Europeo di Oncologia, Milan, Italy
- Scuola Europea di Medicina Molecolare (SEMM) European School of Molecular Medicine, Milan, Italy
| |
Collapse
|
18
|
Reduced Plasmacytoid Dendritic Cell Output Is Associated With High Risk in Low-grade Myelodysplastic Syndrome. Hemasphere 2022; 6:e685. [PMID: 35136856 PMCID: PMC8815631 DOI: 10.1097/hs9.0000000000000685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/09/2022] [Indexed: 11/26/2022] Open
|
19
|
Astle JM, Huang H. Mass Cytometry in Hematologic Malignancies: Research Highlights and Potential Clinical Applications. Front Oncol 2021; 11:704464. [PMID: 34858804 PMCID: PMC8630615 DOI: 10.3389/fonc.2021.704464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Recent advances in global gene sequencing technologies and the effect they have had on disease diagnosis, therapy, and research have fueled interest in technologies capable of more broadly profiling not only genes but proteins, metabolites, cells, and almost any other component of biological systems. Mass cytometry is one such technology, which enables simultaneous characterization of over 40 parameters per cell, significantly more than can be achieved by even the most state-of-the-art flow cytometers. This mini-review will focus on how mass cytometry has been utilized to help advance the field of neoplastic hematology. Common themes among published studies include better defining lineage sub-populations, improved characterization of tumor microenvironments, and profiling intracellular signaling across multiple pathways simultaneously in various cell types. Reviewed studies highlight potential applications for disease diagnosis, prognostication, response to therapy, measurable residual disease analysis, and identifying new therapies.
Collapse
Affiliation(s)
- John M Astle
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huiya Huang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
20
|
Holmberg-Thydén S, Dufva IH, Gang AO, Breinholt MF, Schejbel L, Andersen MK, Kadivar M, Svane IM, Grønbæk K, Hadrup SR, El Fassi D. Epigenetic therapy in combination with a multi-epitope cancer vaccine targeting shared tumor antigens for high-risk myelodysplastic syndrome - a phase I clinical trial. Cancer Immunol Immunother 2021; 71:433-444. [PMID: 34218294 DOI: 10.1007/s00262-021-02993-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Standard care for patients with high-risk myelodysplastic syndrome (MDS) is hypomethylating agents such as azacitidine (AZA), which can induce expression of methylated tumor-associated antigens and therefore potentiate immunotherapeutic targeting. METHOD In this phase 1 trial, we combined AZA with a therapeutic peptide vaccine targeting antigens encoded from NY-ESO-1, MAGE-A3, PRAME, and WT-1, which have previously been demonstrated to be upregulated by AZA treatment. RESULT Five patients who had responded to AZA monotherapy were included in the study and treated with the vaccine. The combination therapy showed only few adverse events during the study period, whereof none classified as serious. However, no specific immune responses could be detected using intracellular cytokine staining or ELISpot assays. Minor changes in the phenotypic composition of immune cells and their expression of stimulatory and inhibitory markers were detected. All patients progressed to AML with a mean time to progression from inclusion (TTP) of 5.2 months (range 2.8 to 7.6). Mean survival was 18.1 months (range 10.9 to 30.6) from MDS diagnosis and 11.3 months (range 4.3 to 22.2) from inclusion. Sequencing of bone marrow showed clonal expansion of malignant cells, as well as appearance of novel mutations. CONCLUSION The patients progressed to AML with an average time of only five months after initiating the combination therapy. This may be unrelated to the experimental treatment, but the trial was terminated early as there was no sign of clinical benefit or immunological response. Why the manuscript is especially interesting This study is the first to exploit the potential synergistic effects of combining a multi-peptide cancer vaccine with epigenetic therapy in MDS. Although our results are negative, they emphasize challenges to induce immune reactivity in patients with high-risk MDS.
Collapse
Affiliation(s)
- Staffan Holmberg-Thydén
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark
| | - Inge Høgh Dufva
- Department of Oncology and Palliative Care, Copenhagen University Hospital, Hillerød, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lone Schejbel
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mohammad Kadivar
- Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark
| | - Inge Marie Svane
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark.,Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Kirsten Grønbæk
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, BRIC, University of Copenhagen, Copenhagen, Denmark
| | - Sine Reker Hadrup
- Experimental & Translational Immunology (XTI), Health Technology, T-Cells and Cancer, Technical University of Denmark, Lyngby, Denmark.
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|