1
|
Jabban Y, Yacout M, Baranwal A, He R, Viswanatha D, Greipp P, Jevremovic D, Bessonen K, Foran J, Palmer J, Saliba AN, Hefazi-Torghabeh M, Begna K, Hogan WJ, Mangaonkar A, Patnaik M, Shah M, Alkhateeb H, Al-Kali A. Clinical outcomes of patients diagnosed with SETBP1 mutated myeloid neoplasms. Leuk Lymphoma 2025; 66:497-506. [PMID: 39504138 DOI: 10.1080/10428194.2024.2425048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024]
Abstract
SETBP1 mutations (m) have been previously reported in myeloid neoplasms and are associated with poor prognostic co-mutations and cytogenetic abnormalities. We retrospectively analyzed the charts of 113 patients diagnosed with myeloid neoplasms with SETBP1m. The most common diagnosis was MDS (31%). Cytogenetics were abnormal in 51 cases (46.4%), with monosomy 7 being the most common (41.1%). The most frequent co-mutations were ASXL1 (71.7%), SRSF2 (46.9%), TET2 (20.4%). Higher SETBP1m VAF was associated with proliferative features (p < 0.05). Most SETBP1m (96.5%) were in one of three hotspots (Asp868, Gly870, Ile871), with Asp868m being most frequent (51.3%). Patients with Ile871m had higher number of co-mutations (median= 4) compared to Asp868m and Gly870m (p = 0.07). On multivariate analysis, age ≥ 70 years (p = 0.004) and higher peripheral blood blasts (p = 0.02) had worse OS. Patients with Ile871m had lower OS when compared with Asp868m and Gly870m (5.5 months vs. 17.4 and 17 months, respectively, p = 0.1).
Collapse
Affiliation(s)
- Yazan Jabban
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Anmol Baranwal
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Cancer Centers of Southwest Oklahoma, Lawton, OK, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - Patricia Greipp
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | | | - Kurt Bessonen
- Division of Molecular Hematology, Mayo Clinic, Rochester, MN, USA
| | - James Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL, USA
| | - Jeanne Palmer
- Division of Hematology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - Kebede Begna
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Hall T, Mehmood R, Sá da Bandeira D, Cotton A, Klein J, Pruett-Miller SM, Izraeli S, Clements WK, Crispino JD. Modeling GATA2 deficiency in mice: the R396Q mutation disrupts normal hematopoiesis. Leukemia 2025; 39:734-747. [PMID: 39774796 PMCID: PMC11879863 DOI: 10.1038/s41375-024-02508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
GATA2 deficiency is an autosomal dominant germline disorder of immune dysfunction and bone marrow failure with a high propensity for leukemic transformation. While sequencing studies have identified several secondary mutations thought to contribute to malignancy, the mechanisms of disease progression have been difficult to identify due to a lack of disease-specific experimental models. Here, we describe a murine model of one of the most common GATA2 mutations associated with leukemic progression in GATA2 deficiency, Gata2R396Q/+. While mutant mice exhibit mild defects in peripheral blood, they display significant hematopoietic abnormalities in the bone marrow, including a reduction in hematopoietic stem cell (HSC) function and intrinsic biases toward specific stem cell subsets that differ from previous models of GATA2 loss. Supporting this observation, single-cell RNA sequencing of hematopoietic progenitors revealed a loss of stemness, myeloid-bias, and indications of accelerated aging. Importantly, we show that Gata2R396Q/+ exerts effects early in hematopoietic development, as mutant mice generate fewer HSCs in the aorta gonad mesonephros, and fetal liver HSCs have reduced function. This reduced and altered pool of HSCs could be potential contributors to leukemic transformation in patients, and our model provides a useful tool to study the mechanisms of malignant transformation in GATA2 deficiency.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rashid Mehmood
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diana Sá da Bandeira
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anitria Cotton
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shai Izraeli
- Department of Pediatric Hematology/Oncology, Schneider Children's Medical Center of Israel, Tel Aviv University, Petah Tikva, Israel
| | - Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John D Crispino
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Vendemini F, Roncareggi S, L'Imperio V, Guerra F, Mottadelli F, Chiarini M, Maglia O, Sala S, Fazio G, Piazza R, Bonanomi S, Biondi A, Saettini F. Bone Marrow CD8 + Abundance Inversely Correlates with Progressive Marrow Fibrosis and Myelodysplastic Evolution in GATA2 Deficiency: Case Report. J Clin Immunol 2025; 45:77. [PMID: 39976744 PMCID: PMC11842526 DOI: 10.1007/s10875-025-01871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
PURPOSE GATA2 deficiency, a rare inborn error of immunity, presents with highly variable phenotypes. Bone marrow (BM) changes such as hypocellularity and myelodysplastic syndrome (MDS) are common, with hematopoietic stem cell transplantation being the only curative option due to the risk of progression to acute myeloid leukemia. Although traditional markers like cytogenetic abnormalities and somatic mutations (e.g., ASXL1) identify the risk of leukemic transformation, efforts to identify novel predictors of disease evolution are needed. CD8+ T cells are known to play a key role in MDS immune surveillance, but their specific involvement in GATA2 deficiency remains poorly defined. METHODS In this case report, we report on a young adult with GATA2 deficiency who underwent longitudinal monitoring of both peripheral and BM lymphocyte subsets, with a focus on CD8+ T-cell evolution in relation to MDS progression. RESULTS The patient exhibited typical GATA2-deficient immune-hematological findings, including monocytopenia, B- and NK-cell deficiency, but had no history of severe infections and remained transfusion-independent. While peripheral CD8+ T-cell levels remained stable over time, a notable reduction in BM CD8+ T cells was observed in association with MDS progression. CONCLUSION Providing a long-term follow-up of one GATA2-deficient patient, we suggest that a decrease in BM CD8+ T cells may serve as an early marker of immune surveillance escape and disease progression. These findings underscore the need for further investigation into the role of BM CD8+ T cells in GATA2 deficiency and MDS evolution, potentially offering new insights for follow-up and therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Fabiola Guerra
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | - Marco Chiarini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili Di Brescia, Brescia, Brescia, Italy
| | - Oscar Maglia
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Simona Sala
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Grazia Fazio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Rocco Piazza
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sonia Bonanomi
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
4
|
Scott JS, Al Ayadi L, Epeslidou E, van Scheppingen RH, Mukha A, Kaaij LJT, Lutz C, Prekovic S. Emerging roles of cohesin-STAG2 in cancer. Oncogene 2025; 44:277-287. [PMID: 39613934 DOI: 10.1038/s41388-024-03221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Cohesin, a crucial regulator of genome organisation, plays a fundamental role in maintaining chromatin architecture as well as gene expression. Among its subunits, STAG2 stands out because of its frequent deleterious mutations in various cancer types, such as bladder cancer and melanoma. Loss of STAG2 function leads to significant alterations in chromatin structure, disrupts transcriptional regulation, and impairs DNA repair pathways. In this review, we explore the molecular mechanisms underlying cohesin-STAG2 function, highlighting its roles in healthy cells and its contributions to cancer biology, showing how STAG2 dysfunction promotes tumourigenesis and presents opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Julia S Scott
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Loubna Al Ayadi
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Anna Mukha
- Department of Medical BioSciences, RadboudUMC, Nijmegen, The Netherlands
| | - Lucas J T Kaaij
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Largeaud L, Fregona V, Jamrog LA, Hamelle C, Dufrechou S, Prade N, Sellam E, Enfedaque P, Bayet M, Hébrard S, Bouttier M, Didier C, Gerby B, Delabesse E, Pasquet M, Broccardo C. GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome. Blood Cancer J 2025; 15:7. [PMID: 39885120 PMCID: PMC11782539 DOI: 10.1038/s41408-025-01213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
GATA2 germline mutations lead to a syndrome characterized by immunodeficiency, vascular disorders and myeloid malignancies. To elucidate how these mutations affect hematopoietic homeostasis, we created a knock-in mouse model expressing the recurrent Gata2 R396Q missense mutation. Employing molecular and functional approaches, we investigated the mutation's impact on hematopoiesis, revealing significant alterations in the hematopoietic stem and progenitor (HSPC) compartment in young age. These include increased LT-HSC numbers, reduced self-renewal potential, and impaired response to acute inflammatory stimuli. The mature HSPC compartment was primarily affected at the CMP sub-population level. In the mutant LT-HSC population, we identified an aberrant subpopulation strongly expressing CD150, resembling aging, but occurring prematurely. This population showed hyporesponsiveness, accumulated over time, and exhibited allele-specific expression (ASE) favoring the mutated Gata2 allele, also observed in GATA2 mutated patients. Our findings reveal the detrimental impact of a Gata2 recurrent missense mutation on the HSC compartment contributing to its functional decline. Defects in the CMP mature compartment, along with the inflammatory molecular signature, explain the loss of heterogeneity in HPC compartment observed in patients. Finally, our study provides a valuable model that recapitulates the ASE-related pathology observed in GATA2 deficiency, shedding light on the mechanisms contributing to the disease's natural progression.
Collapse
Affiliation(s)
- Laetitia Largeaud
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Vincent Fregona
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Laura A Jamrog
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Camille Hamelle
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Stéphanie Dufrechou
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Naïs Prade
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Esmaa Sellam
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Pauline Enfedaque
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Manon Bayet
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Sylvie Hébrard
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Mathieu Bouttier
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Christine Didier
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Bastien Gerby
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
| | - Eric Delabesse
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France
- Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, CHU Toulouse, 31059, Toulouse, France
| | - Marlène Pasquet
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France.
- Department of pediatric oncology, CHU Toulouse, 31059, Toulouse, France.
| | - Cyril Broccardo
- Université de Toulouse 3 Paul Sabatier, Cancer Research Centre of Toulouse, UMR1037 Inserm, UMR5077 CNRS, Equipe Labellisée Ligue Nationale Contre le Cancer 2023, Equipe labélisée Institut Carnot Opale, 31037, Toulouse, France.
- Université de Toulouse 3 Paul Sabatier, CREFRE-ANEXPLO, UMS006 INSERM, ENVT, 31037, Toulouse, France.
| |
Collapse
|
6
|
Gutierrez-Rodrigues F, Groarke EM, Thongon N, Rodriguez-Sevilla JJ, Catto LFB, Niewisch MR, Shalhoub R, McReynolds LJ, Clé DV, Patel BA, Ma X, Hironaka D, Donaires FS, Spitofsky N, Santana BA, Lai TP, Alemu L, Kajigaya S, Darden I, Zhou W, Browne PV, Paul S, Lack J, Young DJ, DiNardo CD, Aviv A, Ma F, De Oliveira MM, de Azambuja AP, Dunbar CE, Olszewska M, Olivier E, Papapetrou EP, Giri N, Alter BP, Bonfim C, Wu CO, Garcia-Manero G, Savage SA, Young NS, Colla S, Calado RT. Clonal landscape and clinical outcomes of telomere biology disorders: somatic rescue and cancer mutations. Blood 2024; 144:2402-2416. [PMID: 39316766 PMCID: PMC11862815 DOI: 10.1182/blood.2024025023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Telomere biology disorders (TBDs), caused by pathogenic germ line variants in telomere-related genes, present with multiorgan disease and a predisposition to cancer. Clonal hematopoiesis (CH) as a marker of cancer development and survival in TBDs is poorly understood. Here, we characterized the clonal landscape of a large cohort of 207 patients with TBD with a broad range of age and phenotype. CH occurred predominantly in symptomatic patients and in signature genes typically associated with cancers: PPM1D, POT1, TERT promoter (TERTp), U2AF1S34, and/or TP53. Chromosome 1q gain (Chr1q+) was the commonest karyotypic abnormality. Clinically, multiorgan involvement and CH in TERTp, TP53, and splicing factor genes were associated with poorer overall survival. Chr1q+ and splicing factor or TP53 mutations significantly increased the risk of hematologic malignancies, regardless of clonal burden. Chr1q+ and U2AF1S34 mutated clones were premalignant events associated with the secondary acquisition of mutations in genes related to hematologic malignancies. Similar to the known effects of Chr1q+ and TP53-CH, functional studies demonstrated that U2AF1S34 mutations primarily compensated for aberrant upregulation of TP53 and interferon pathways in telomere-dysfunctional hematopoietic stem cells, highlighting the TP53 pathway as a canonical route of malignancy in TBD. In contrast, somatic POT1/PPM1D/TERTp mutations had distinct trajectories unrelated to cancer development. With implications beyond TBD, our data show that telomere dysfunction is a strong selective pressure for CH. In TBD, CH is a poor prognostic marker associated with worse overall survival. The identification of key regulatory pathways that drive clonal transformation in TBD allows for the identification of patients at a higher risk of cancer development.
Collapse
Affiliation(s)
| | - Emma M. Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Luiz Fernando B. Catto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marena R. Niewisch
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ruba Shalhoub
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lisa J. McReynolds
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Diego V. Clé
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bhavisha A. Patel
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiaoyang Ma
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dalton Hironaka
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Flávia S. Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Nina Spitofsky
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Barbara A. Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ivana Darden
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul V. Browne
- Department of Haematology, Trinity College Dublin, Dublin, Ireland
| | - Subrata Paul
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Justin Lack
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David J. Young
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emmanuel Olivier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Blanche P. Alter
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Parana, Curitiba, Brazil
- Pediatric Blood and Marrow Transplantation Program, Pequeno Principe Hospital, Curitiba, Brazil
| | - Colin O. Wu
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Sharon A. Savage
- Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rodrigo T. Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Maillet F, Galimard JE, Borie R, Lainey E, Larcher L, Passet M, Plessier A, Leblanc T, Terriou L, Lebon D, Alcazer V, Cathebras P, Loschi M, Wadih AC, Marcais A, Marceau-Renaut A, Couque N, Lioure B, Soulier J, Ba I, Socié G, Peffault de Latour R, Kannengiesser C, Sicre de Fontbrune F. Haematological features of telomere biology disorders diagnosed in adulthood: A French nationwide study of 127 patients. Br J Haematol 2024; 205:1835-1847. [PMID: 39279213 DOI: 10.1111/bjh.19767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
Data on haematological features of telomere biology disorders (TBD) remain scarce. We describe haematological, extra-haematological characteristics and prognosis of 127 genetically confirmed TBD patients diagnosed after the age of 15. Ninety-three index cases and 34 affected relatives were included. At diagnosis of TBD, 76.3% of index cases had haematological features, half pulmonary features and a third liver features. At diagnosis, bone marrow failure (BMF) was present in 59 (46.5%), myelodysplastic syndrome (MDS) in 22 (17.3%) and acute myeloid leukaemia (AML) in 2 (1.6%) while 13 (10.2%) developed or worsened bone marrow involvement during follow-up. At diagnosis, compared to MDS/AML patients, BMF patients were younger (median 23.1 years vs. 43.8, p = 0.007), and had a better outcome (4-year overall survival 76.3% vs. 31.8%, p < 0.001). While frequencies and burden of cytogenetical and somatic mutations increased significantly in myeloid malignancies, some abnormalities were also observed in patients with normal blood counts and BMF, notably somatic spliceosome variants. Solid cancers developed in 8.7% patients, mainly human papillomavirus-related cancers and hepatocellular carcinomas. TBD is a multiorgan progressive disease. While BMF is the main haematological disorder, high-risk myeloid malignancies are common, and are, together with age, the only factors associated with a worse outcome.
Collapse
Affiliation(s)
- François Maillet
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| | | | - Raphaël Borie
- Service de Pneumologie A, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Lise Larcher
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, St-Louis Research Institute, Saint-Louis Hospital, Paris, France
| | - Marie Passet
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, St-Louis Research Institute, Saint-Louis Hospital, Paris, France
| | - Aurélie Plessier
- Hepatology Department, Reference Center for Vascular Liver Diseases, Beaujon Hospital, AP-HP, Université Paris Cité, Clichy, France
| | - Thierry Leblanc
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, AP-HP, French Reference Center for Aplastic Anemia, Université Paris Cité, Paris, France
| | - Louis Terriou
- Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-Immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Université de Lille, Lille, France
| | - Delphine Lebon
- Hematology Department, University Hospital of Amiens-Picardie, Amiens, France
| | - Vincent Alcazer
- Hematology Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Pascal Cathebras
- Internal Medicine and Clinical Immunology Department, Nord Hospital, University of Saint-Etienne, Saint-Etienne, France
| | - Michael Loschi
- Hematology Department, University Hospital of Nice, Université de Nice, Nice, France
| | - Abou-Chahla Wadih
- Pediatric Hematology Department, University Hospital of Lille, Université de Lille, Lille, France
| | - Ambroise Marcais
- Hematology Department, Necker Hospital, Université de Paris, Paris, France
| | - Alice Marceau-Renaut
- Hematology Laboratory, University Hospital of Lille, Université de Lille, Lille, France
| | - Nathalie Couque
- Genetics Department, Robert Debré Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Bruno Lioure
- Hematology Department, Strasbourg University Hospital, Université de Strasbourg, Strasbourg, France
| | - Jean Soulier
- Hematology Department, Saint Louis Hospital, AP-HP, Paris, France
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, St-Louis Research Institute, Saint-Louis Hospital, Paris, France
| | - Ibrahima Ba
- Genetics Department, French Expert Laboratory for Molecular Exploration of Telomere Biology Disorder, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Gérard Socié
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Regis Peffault de Latour
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Caroline Kannengiesser
- Genetics Department, French Expert Laboratory for Molecular Exploration of Telomere Biology Disorder, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Flore Sicre de Fontbrune
- Hematology and Transplant Unit, French Reference Center for Aplastic Anemia, Saint-Louis Hospital, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Maese LD, Wlodarski MW, Kim SY, Bertuch AA, Bougeard G, Chang VY, Godley LA, Khincha PP, Kuiper RP, Lesmana H, McGee RB, McReynolds LJ, Meade J, Plon SE, Savage SA, Scollon SR, Scott HS, Walsh MF, Nichols KE, Porter CC. Update on Recommendations for Surveillance for Children with Predisposition to Hematopoietic Malignancy. Clin Cancer Res 2024; 30:4286-4295. [PMID: 39078402 PMCID: PMC11444884 DOI: 10.1158/1078-0432.ccr-24-0685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Children harboring certain germline gene variants have an increased risk of developing myelodysplastic syndrome (MDS) and other hematopoietic malignancies (HM), such as leukemias and lymphomas. Recent studies have identified an expanding number of these predisposition genes, with variants most prevalent in children with MDS but also found in children with other HM. For some hematopoietic malignancy predispositions (HMP), specifically those with a high risk of MDS, early intervention through hematopoietic stem cell transplantation can favorably impact overall survival, providing a rationale for rigorous surveillance. A multidisciplinary panel of experts at the 2023 AACR Childhood Cancer Predisposition Workshop reviewed the latest advances in the field and updated prior 2017 surveillance recommendations for children with HMP. In addition to general guidance for all children with HMP, which includes annual physical examination, education about the signs and symptoms of HM, consultation with experienced providers, and early assessment by a hematopoietic stem cell transplantation specialist, the panel provided specific recommendations for individuals with a higher risk of MDS based on the affected gene. These recommendations include periodic and comprehensive surveillance for individuals with those syndromes associated with higher risk of MDS, including serial bone marrow examinations to monitor for morphologic changes and deep sequencing for somatic changes in genes associated with HM progression. This approach enables close monitoring of disease evolution based on the individual's genetic profile. As more HMP-related genes are discovered and the disorders' natural histories are better defined, these personalized recommendations will serve as a foundation for future guidelines in managing these conditions.
Collapse
Affiliation(s)
- Luke D. Maese
- University of Utah-Huntsman Cancer Institute, Primary Children’s Hospital, Salt Lake City, Utah
| | | | - Sun Young Kim
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Alison A. Bertuch
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Gaelle Bougeard
- Univ Rouen Normandie, Inserm U1245 and Rouen University Hospital, Rouen, France
| | - Vivian Y Chang
- University of California Los Angeles, Los Angeles, California
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, Utrecht University Medical Center, Utrecht University, The Netherlands
| | - Harry Lesmana
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rose B. McGee
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sharon E. Plon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael F. Walsh
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York City, New York
| | - Kim E. Nichols
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
9
|
Shaw NC, Chen K, Farley KO, Hedges M, Forbes C, Baynam G, Lassmann T, Fear VS. Identifying SETBP1 haploinsufficiency molecular pathways to improve patient diagnosis using induced pluripotent stem cells and neural disease modelling. Mol Autism 2024; 15:42. [PMID: 39350244 PMCID: PMC11443744 DOI: 10.1186/s13229-024-00625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain. METHODS Genetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation, SETBP1 protein localisation, and gene expression changes. RESULTS The data indicated a change in the WNT pathway, RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition, the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype. LIMITATIONS The study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification, to derive mature neurons, neural forebrain cells, or brain organoids. CONCLUSIONS We developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway, genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.
Collapse
Affiliation(s)
- Nicole C Shaw
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kevin Chen
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Kathryn O Farley
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Mitchell Hedges
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Catherine Forbes
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Gareth Baynam
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, Australia
| | - Timo Lassmann
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia
| | - Vanessa S Fear
- The Kids Research Institute of Australia, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
10
|
Oster HS, Mittelman M. How we diagnose Myelodysplastic syndromes. Front Oncol 2024; 14:1415101. [PMID: 39346739 PMCID: PMC11427428 DOI: 10.3389/fonc.2024.1415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
The Myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by ineffective hematopoiesis that results in dysplasia in hematopoietic cells and peripheral cytopenias, especially anemia, and a propensity to leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for MDS diagnosis is still BM examination with the presence of uni-or multi-lineage dysplasia and increased blast percentage, together with exclusion of other reasons. Cytogenetics is also an essential part of the diagnostic and prognostic processes. Flow cytometry and full genetic characterization are helpful but not mandatory for MDS diagnosis. This review summarizes the current steps of diagnostic approach for a patient suspected of having MDS. We also express our hopes that within the near future, non-invasive technologies, especially digital and peripheral blood genetics, will mature and be introduced into practice.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| |
Collapse
|
11
|
Sicre de Fontbrune F, Chevillon F, Fahd M, Desseaux K, Poiré X, Forcade E, Sterin A, Neven B, Gandemer V, Thepot S, Garnier A, Lioure B, Marcais A, Nguyen-Quoc S, Tavitian S, Vincent L, Donadieu J, Resche Riggon M, Chevret S, Pasquet M, Peffault de Latour R. Long-term outcome after allogeneic stem cell transplantation for GATA2 deficiency: An analysis of 67 adults and children from France and Belgium. Br J Haematol 2024. [PMID: 39159950 DOI: 10.1111/bjh.19691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Modalities and timing of haematopoietic stem cell transplant (HSCT) in patients with GATA2 deficiency are still subject to debate. On June 2022, 67 patients (median age 20.6 years) underwent a first allogeneic HSCT among 21 centres. Indications for HSCT were myelodysplastic syndrome (MDS) ≤5% blasts ± immunodeficiency (66%), MDS >5% blasts (15%), acute myeloid leukaemia (19%). Conditioning regimen was myeloablative in 85% and anti-thymocyte globulins were used in 67%. The cumulative incidence (CInc) of acute graft versus host disease (GvHD) grade II-IV and III-IV at day 100 were 42% and 13%, and CInc of chronic and extensive chronic GvHD at 2 years were 42% and 23%. CInc of relapses was 3% and 11% at 1 and 5 years. Overall survival (OS) at 1 and 5 years was 83% and 72% (median follow-up 5.6 years). The factors associated with worse OS in multivariable analysis were the year of HSCT, a history of excess blasts before transplant and peripheral blood stem cell (PBSC) grafts. Age at HSCT, non-myeloablative conditioning and PBSC grafts were associated with increased non-relapse mortality. In conclusion, bone marrow monitoring to identify clonal evolution and perform HSCT before the appearance of excess blast is mandatory.
Collapse
Affiliation(s)
| | | | - Mony Fahd
- Service d'Hématologie Pédiatrique, Hôpital Robert Debré, APHP, Paris, France
| | | | - Xavier Poiré
- Adult Hematology, Clinique Universitaire Saint Luc, Bruxelles, Belgium
| | - Edouard Forcade
- Hématologie Adulte, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, Pessac, France
| | - Arthur Sterin
- Service d'Hématologie Pédiatrique, Hôpital de la Timone, Marseille, France
| | - Bénédicte Neven
- Service d'Immuno-Hématologie et Rhumatologie Pédiatrique, Hôpital Necker-Enfants Malades, Laboratoire INSERM U768, Institut Imagine, Paris, France
| | - Virginie Gandemer
- Service d'Hematologie Oncologie Pediatrique, Hopital Sud, CHU de Rennes, Rennes, France
| | - Sylvain Thepot
- Service d'Hématologie Adulte, CHU d'Angers, Angers, France
| | - Alice Garnier
- Service d'Hématologie, CHU de Nantes, Nantes, France
| | - Bruno Lioure
- Service d'Hématologie, Hôpital Hautepierre, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Ambroise Marcais
- Service d'Hématologie Adulte, Hôpital Necker Enfants Malades, Paris, France
| | | | | | - Laure Vincent
- Departement of Hematology, CHU de Montpellier, Montpellier, France
| | - Jean Donadieu
- Service d'Hématologie et Oncologie pédiatrique, APHP Trousseau, Paris, France
- Registre National Des Neutropénies, Paris, France
| | | | | | - Marlene Pasquet
- Service d'Hématologie Immunologie et Oncologie Pédiatrique, CHU Purpan, Toulouse, France
| | | |
Collapse
|
12
|
Hall T, Gurbuxani S, Crispino JD. Malignant progression of preleukemic disorders. Blood 2024; 143:2245-2255. [PMID: 38498034 PMCID: PMC11181356 DOI: 10.1182/blood.2023020817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT The spectrum of myeloid disorders ranges from aplastic bone marrow failure characterized by an empty bone marrow completely lacking in hematopoiesis to acute myeloid leukemia in which the marrow space is replaced by undifferentiated leukemic blasts. Recent advances in the capacity to sequence bulk tumor population as well as at a single-cell level has provided significant insight into the stepwise process of transformation to acute myeloid leukemia. Using models of progression in the context of germ line predisposition (trisomy 21, GATA2 deficiency, and SAMD9/9L syndrome), premalignant states (clonal hematopoiesis and clonal cytopenia of unknown significance), and myelodysplastic syndrome, we review the mechanisms of progression focusing on the hierarchy of clonal mutation and potential roles of transcription factor alterations, splicing factor mutations, and the bone marrow environment in progression to acute myeloid leukemia. Despite major advances in our understanding, preventing the progression of these disorders or treating them at the acute leukemia phase remains a major area of unmet medical need.
Collapse
Affiliation(s)
- Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sandeep Gurbuxani
- Section of Hematopathology, Department of Pathology, University of Chicago, Chicago, IL
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
13
|
Strullu M, Cousin E, de Montgolfier S, Fenwarth L, Gachard N, Arnoux I, Duployez N, Girard S, Guilmatre A, Lafage M, Loosveld M, Petit A, Perrin L, Vial Y, Saultier P. [Suspicion of constitutional abnormality at diagnosis of childhood leukemia: Update of the leukemia committee of the French Society of Childhood Cancers]. Bull Cancer 2024; 111:291-309. [PMID: 38267311 DOI: 10.1016/j.bulcan.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.
Collapse
Affiliation(s)
- Marion Strullu
- Hématologie et immunologie pédiatrique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris Cité, Paris, France; Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France.
| | - Elie Cousin
- Service d'onco-hématologie pédiatrique, CHU de Rennes, Rennes, France
| | - Sandrine de Montgolfier
- Aix Marseille université, Inserm, IRD, SESSTIM, sciences économiques & sociales de la santé & traitement de l'information médicale, ISSPAM, Marseille, France
| | - Laurene Fenwarth
- Département de génétique clinique, laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | | | | | - Nicolas Duployez
- Laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | - Sandrine Girard
- Service d'hématologie biologique, centre de biologie et pathologie Est, LBMMS, hospices civils de Lyon, Lyon, France
| | - Audrey Guilmatre
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Marina Lafage
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Marie Loosveld
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Arnaud Petit
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Laurence Perrin
- Génétique clinique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Yoan Vial
- Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France; Laboratoire de génétique moléculaire, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Paul Saultier
- Service d'hématologie immunologie oncologie pédiatrique, Inserm, INRAe, C2VN, hôpital d'Enfants de la Timone, Aix Marseille université, AP-HM, Marseille, France
| |
Collapse
|
14
|
Cobaleda C, Godley LA, Nichols KE, Wlodarski MW, Sanchez-Garcia I. Insights into the Molecular Mechanisms of Genetic Predisposition to Hematopoietic Malignancies: The Importance of Gene-Environment Interactions. Cancer Discov 2024; 14:396-405. [PMID: 38426560 PMCID: PMC10913756 DOI: 10.1158/2159-8290.cd-23-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 03/02/2024]
Abstract
SUMMARY The recognition of host genetic factors underlying susceptibility to hematopoietic malignancies has increased greatly over the last decade. Historically, germline predisposition was thought to primarily affect the young. However, emerging data indicate that hematopoietic malignancies that develop in people of all ages across the human lifespan can derive from germline predisposing conditions and are not exclusively observed in younger individuals. The age at which hematopoietic malignancies manifest appears to correlate with distinct underlying biological pathways. Progression from having a deleterious germline variant to being diagnosed with overt malignancy involves complex, multistep gene-environment interactions with key external triggers, such as infection and inflammatory stimuli, driving clonal progression. Understanding the mechanisms by which predisposed clones transform under specific pressures may reveal strategies to better treat and even prevent hematopoietic malignancies from occurring.Recent unbiased genome-wide sequencing studies of children and adults with hematopoietic malignancies have revealed novel genes in which disease-causing variants are of germline origin. This paradigm shift is spearheaded by findings in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) as well as acute lymphoblastic leukemia, but it also encompasses other cancer types. Although not without challenges, the field of genetic cancer predisposition is advancing quickly, and a better understanding of the genetic basis of hematopoietic malignancies risk affects therapeutic decisions as well as genetic counseling and testing of at-risk family members.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kim E. Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Elghetany MT, Patnaik MM, Khoury JD. Myelodysplastic neoplasms evolving from inherited bone marrow failure syndromes / germline predisposition syndromes: Back under the microscope. Leuk Res 2024; 137:107441. [PMID: 38301422 DOI: 10.1016/j.leukres.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.
Collapse
Affiliation(s)
- M Tarek Elghetany
- Department of Pathology & Immunology and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Homan CC, Drazer MW, Yu K, Lawrence DM, Feng J, Arriola-Martinez L, Pozsgai MJ, McNeely KE, Ha T, Venugopal P, Arts P, King-Smith SL, Cheah J, Armstrong M, Wang P, Bödör C, Cantor AB, Cazzola M, Degelman E, DiNardo CD, Duployez N, Favier R, Fröhling S, Rio-Machin A, Klco JM, Krämer A, Kurokawa M, Lee J, Malcovati L, Morgan NV, Natsoulis G, Owen C, Patel KP, Preudhomme C, Raslova H, Rienhoff H, Ripperger T, Schulte R, Tawana K, Velloso E, Yan B, Kim E, Sood R, Hsu AP, Holland SM, Phillips K, Poplawski NK, Babic M, Wei AH, Forsyth C, Mar Fan H, Lewis ID, Cooney J, Susman R, Fox LC, Blombery P, Singhal D, Hiwase D, Phipson B, Schreiber AW, Hahn CN, Scott HS, Liu P, Godley LA, Brown AL. Somatic mutational landscape of hereditary hematopoietic malignancies caused by germline variants in RUNX1, GATA2, and DDX41. Blood Adv 2023; 7:6092-6107. [PMID: 37406166 PMCID: PMC10582382 DOI: 10.1182/bloodadvances.2023010045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Individuals with germ line variants associated with hereditary hematopoietic malignancies (HHMs) have a highly variable risk for leukemogenesis. Gaps in our understanding of premalignant states in HHMs have hampered efforts to design effective clinical surveillance programs, provide personalized preemptive treatments, and inform appropriate counseling for patients. We used the largest known comparative international cohort of germline RUNX1, GATA2, or DDX41 variant carriers without and with hematopoietic malignancies (HMs) to identify patterns of genetic drivers that are unique to each HHM syndrome before and after leukemogenesis. These patterns included striking heterogeneity in rates of early-onset clonal hematopoiesis (CH), with a high prevalence of CH in RUNX1 and GATA2 variant carriers who did not have malignancies (carriers-without HM). We observed a paucity of CH in DDX41 carriers-without HM. In RUNX1 carriers-without HM with CH, we detected variants in TET2, PHF6, and, most frequently, BCOR. These genes were recurrently mutated in RUNX1-driven malignancies, suggesting CH is a direct precursor to malignancy in RUNX1-driven HHMs. Leukemogenesis in RUNX1 and DDX41 carriers was often driven by second hits in RUNX1 and DDX41, respectively. This study may inform the development of HHM-specific clinical trials and gene-specific approaches to clinical monitoring. For example, trials investigating the potential benefits of monitoring DDX41 carriers-without HM for low-frequency second hits in DDX41 may now be beneficial. Similarly, trials monitoring carriers-without HM with RUNX1 germ line variants for the acquisition of somatic variants in BCOR, PHF6, and TET2 and second hits in RUNX1 are warranted.
Collapse
Affiliation(s)
- Claire C. Homan
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael W. Drazer
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kai Yu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - David M. Lawrence
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Jinghua Feng
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Luis Arriola-Martinez
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Matthew J. Pozsgai
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Kelsey E. McNeely
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Thuong Ha
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Parvathy Venugopal
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sarah L. King-Smith
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jesse Cheah
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Mark Armstrong
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Alan B. Cantor
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Erin Degelman
- Alberta Children’s Hospital, Calgary, Alberta, Canada
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nicolas Duployez
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children's Hospital, Paris, France
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ana Rio-Machin
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Neil V. Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Carolyn Owen
- Division of Hematology and Hematological Malignancies, Foothills Medical Centre, Calgary, AB, Canada
| | - Keyur P. Patel
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Claude Preudhomme
- Laboratory of Hematology, Biology and Pathology Center, Centre Hospitalier Regional Universitaire de Lille, Lille, France
- Jean-Pierre Aubert Research Center, INSERM, Universitaire de Lille, Lille, France
| | - Hana Raslova
- Institut Gustave Roussy, Université Paris Sud, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Rachael Schulte
- Division of Pediatric Hematology and Oncology, Riley Children’s Hospital, Indiana University School of Medicine, Indianapolis, IN
| | - Kiran Tawana
- Department of Haematology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elvira Velloso
- Service of Hematology, Transfusion and Cell Therapy and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31) HCFMUSP, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Genetics Laboratory, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Benedict Yan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Erika Kim
- National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Raman Sood
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Amy P. Hsu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Nicola K. Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew H. Wei
- Department of Haematology, Peter McCallum Cancer Centre, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Melbourne, VIC, Australia
| | - Cecily Forsyth
- Central Coast Haematology, North Gosford, NSW, Australia
| | - Helen Mar Fan
- Department of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ian D. Lewis
- Adelaide Oncology & Haematology, North Adelaide, SA, Australia
| | - Julian Cooney
- Department of Haematology, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | - Lucy C. Fox
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Deepak Singhal
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Devendra Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Belinda Phipson
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Paediatrics and Department of Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas W. Schreiber
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Paul Liu
- Division of Intramural Research, Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lucy A. Godley
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, Center for Clinical Cancer Genetics, and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Zoller J, Trajanova D, Feurstein S. Germline and somatic drivers in inherited hematologic malignancies. Front Oncol 2023; 13:1205855. [PMID: 37904876 PMCID: PMC10613526 DOI: 10.3389/fonc.2023.1205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Inherited hematologic malignancies are linked to a heterogenous group of genes, knowledge of which is rapidly expanding using panel-based next-generation sequencing (NGS) or whole-exome/whole-genome sequencing. Importantly, the penetrance for these syndromes is incomplete, and disease development, progression or transformation has critical clinical implications. With the earlier detection of healthy carriers and sequential monitoring of these patients, clonal hematopoiesis and somatic driver variants become significant factors in determining disease transformation/progression and timing of (preemptive) hematopoietic stem cell transplant in these patients. In this review, we shed light on the detection of probable germline predisposition alleles based on diagnostic/prognostic 'somatic' NGS panels. A multi-tier approach including variant allele frequency, bi-allelic inactivation, persistence of a variant upon clinical remission and mutational burden can indicate variants with high pre-test probability. We also discuss the shared underlying biology and frequency of germline and somatic variants affecting the same gene, specifically focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in these genes are associated with a (specific) pattern or over-/underrepresentation of somatic molecular or cytogenetic alterations that may help identify the underlying germline syndrome and predict the course of disease in these individuals. This review is based on the current knowledge about somatic drivers in these four syndromes by integrating data from all published patients, thereby providing clinicians with valuable and concise information.
Collapse
Affiliation(s)
| | | | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|