1
|
Abdel-Wahab M, Giammarile F, Carrara M, Paez D, Hricak H, Ayati N, Li JJ, Mueller M, Aggarwal A, Al-Ibraheem A, Alkhatib S, Atun R, Bello A, Berger D, Delgado Bolton RC, Buatti JM, Burt G, Bjelac OC, Cordero-Mendez L, Dosanjh M, Eichler T, Fidarova E, Gondhowiardjo S, Gospodarowicz M, Grover S, Hande V, Harsdorf-Enderndorf E, Herrmann K, Hofman MS, Holmberg O, Jaffray D, Knoll P, Kunikowska J, Lewis JS, Lievens Y, Mikhail-Lette M, Ostwald D, Palta JR, Peristeris P, Rosa AA, Salem SA, Dos Santos MA, Sathekge MM, Shrivastava SK, Titovich E, Urbain JL, Vanderpuye V, Wahl RL, Yu JS, Zaghloul MS, Zhu H, Scott AM. Radiotherapy and theranostics: a Lancet Oncology Commission. Lancet Oncol 2024; 25:e545-e580. [PMID: 39362232 DOI: 10.1016/s1470-2045(24)00407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 10/05/2024]
Abstract
Following on from the 2015 Lancet Oncology Commission on expanding global access to radiotherapy, Radiotherapy and theranostics: a Lancet Oncology Commission was created to assess the access and availability of radiotherapy to date and to address the important issue of access to the promising field of theranostics at a global level. A marked disparity in the availability of radiotherapy machines between high-income countries and low-income and middle-income countries (LMICs) has been identified previously and remains a major problem. The availability of a suitably trained and credentialled workforce has also been highlighted as a major limiting factor to effective implementation of radiotherapy, particularly in LMICs. We investigated initiatives that could mitigate these issues in radiotherapy, such as extended treatment hours, hypofractionation protocols, and new technologies. The broad implementation of hypofractionation techniques compared with conventional radiotherapy in prostate cancer and breast cancer was projected to provide radiotherapy for an additional 2·2 million patients (0·8 million patients with prostate cancer and 1·4 million patients with breast cancer) with existing resources, highlighting the importance of implementing new technologies in LMICs. A global survey undertaken for this Commission revealed that use of radiopharmaceutical therapy-other than 131I-was highly variable in high-income countries and LMICs, with supply chains, workforces, and regulatory issues affecting access and availability. The capacity for radioisotope production was highlighted as a key issue, and training and credentialling of health professionals involved in theranostics is required to ensure equitable access and availability for patient treatment. New initiatives-such as the International Atomic Energy Agency's Rays of Hope programme-and interest by international development banks in investing in radiotherapy should be supported by health-care systems and governments, and extended to accelerate the momentum generated by recognising global disparities in access to radiotherapy. In this Commission, we propose actions and investments that could enhance access to radiotherapy and theranostics worldwide, particularly in LMICs, to realise health and economic benefits and reduce the burden of cancer by accessing these treatments.
Collapse
Affiliation(s)
- May Abdel-Wahab
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Francesco Giammarile
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Mauro Carrara
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Nayyereh Ayati
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | - Jing Jing Li
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | | | - Ajay Aggarwal
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan; Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan
| | - Sondos Alkhatib
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, USA
| | - Rifat Atun
- Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Health Policy and Management, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Abubakar Bello
- National Hospital, Abuja and Federal University of Health Sciences, Azare, Nigeria
| | - Daniel Berger
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja, Logroño, Spain; Servicio Cántabro de Salud, Santander, Spain
| | - John M Buatti
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Olivera Ciraj Bjelac
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Lisbeth Cordero-Mendez
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Manjit Dosanjh
- University of Oxford, Oxford, UK; European Organization for Nuclear Research, Geneva, Switzerland
| | - Thomas Eichler
- Department of Radiation Oncology, Massey Cancer Center Virginia Commonwealth University, Richmond, VA, USA
| | - Elena Fidarova
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Mary Gospodarowicz
- Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Surbhi Grover
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Varsha Hande
- Department of Global Health, Medicine and Welfare, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Ekaterina Harsdorf-Enderndorf
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg, Essen, Germany; German Cancer Consortium, University Hospital Essen, Essen, Germany
| | - Michael S Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Ola Holmberg
- Division of Radiation, Transport and Waste Safety, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - David Jaffray
- Department of Radiation Physics and Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Knoll
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Miriam Mikhail-Lette
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Dennis Ostwald
- WifOR Institute, Darmstadt, Germany; Steinbeis School of International Business and Entrepreneurship, Herrenberg, Germany
| | - Jatinder R Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Arthur A Rosa
- Radiation Oncology, Grupo Oncoclinicas, Salvador, Brazil
| | - Soha Ahmed Salem
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Steve Biko Academic Hospital, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | | | - Egor Titovich
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jean-Luc Urbain
- Department of Radiology, Division of Nuclear Medicine, Branford General Hospital, Ontario, Canada
| | - Verna Vanderpuye
- National Center for Radiotherapy Oncology and Nuclear Medicine Department of the Korlebu Teaching Hospital, Accra, Ghana
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Department of Radiology, and Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer S Yu
- Department of Radiation Oncology and Department of Cancer Biology, Cleveland Clinic, Cleveland, OH USA
| | - Mohamed Saad Zaghloul
- Radiation Oncology Department, National Cancer Institute, Cairo University & Children's Cancer Hospital, Cairo, Egypt
| | - Hongcheng Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Soklaridis S, Chowdhury M, Turco MG, Tremblay M, Mazmanian P, Williams B, Besa R, Sockalingam S. Pivoting Continuing Professional Development During the COVID-19 Pandemic: A Narrative Scoping Review of Adaptations and Innovations. THE JOURNAL OF CONTINUING EDUCATION IN THE HEALTH PROFESSIONS 2024; 44:e22-e35. [PMID: 38205969 DOI: 10.1097/ceh.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Most formal continuing professional development (CPD) opportunities were offered in person until March 2020 when the COVID-19 pandemic disrupted traditional structures of CPD offerings. The authors explored the adaptations and innovations in CPD that were strengthened or newly created during the first 16 months of the pandemic. METHODS The objectives of the narrative review were to answer the following questions: (1) what types of adaptations to CPD innovations are described? and (2) what may shape future innovations in CPD? The following databases were searched: Medline, Embase, CINAHL, and ERIC to identify the literature published between March 2020 to July 2021. The authors conducted a comprehensive search by including all study types that described adaptations and/or innovations in CPD during the stated pandemic period. RESULTS Of the 8295 citations retrieved from databases, 191 satisfied the inclusion criteria. The authors found three categories to describe adaptations to CPD innovations: (1) creation of new online resources, (2) increased use of the existing online platforms/software to deliver CPD, and (3) use of simulation for teaching and learning. Reported advantages and disadvantages associated with these adaptations included logistical, interactional, and capacity building elements. The review identified five potential future CPD innovations: (1) empirical research on the effectiveness of virtual learning; (2) novel roles and ways of thinking; (3) learning from other disciplines beyond medicine; (4) formation of a global perspective; and (5) emerging wellness initiatives. DISCUSSION This review provided an overview of the adaptations and innovations that may shape the future of CPD beyond the pandemic.
Collapse
Affiliation(s)
- Sophie Soklaridis
- Dr. Soklaridis: Senior Scientist, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada, Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada, and The Wilson Centre, University Health Network/University of Toronto, Toronto, Ontario, Canada. Ms. Chowdhury: PhD (cand.), Centre for Addiction and Mental Health, Toronto, Ontario, Canada. Dr. Turco: Associate Professor of Medicine, Department of Medicine, Dartmouth-Hitchcock Medical Centre/Geisel School of Medicine at Dartmouth, Lebanon, NH. Dr. Tremblay: Senior Research and Innovation Advisor, Fédération des médecins spécialistes du Québec, Montréal, Québec, Canada. Dr. Mazmanian: Professor Emeritus, Department of Preventive Medicine and Community Health, Virginia Commonwealth University, Richmond, VA. Dr. Williams: Clinical Program Director, Professional Renewal Centre, Lawrence, KS, and Department of Psychiatry, School of Medicine, University of Kansas, Kansas City, KS. Ms. Besa: Information Specialist, Centre for Addiction and Mental Health, Toronto, Ontario, Canada. Dr. Sockalingam: Vice-President Education, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada, and The Wilson Centre, University Health Network/University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Van Dyk J, Jalink M, Schreiner LJ, Jeraj R. Virtual Mentoring for Medical Physicists: Results of a Global Online Survey. J Med Phys 2024; 49:687-700. [PMID: 39926148 PMCID: PMC11801081 DOI: 10.4103/jmp.jmp_137_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 02/11/2025] Open
Abstract
Purpose Medical physics professional development is limited in parts of the globe and can be aided by virtual mentoring. A global online perception survey was conducted to elucidate the characteristics of the preferred virtual mentoring program. Methods Informed by a literature review and pilot testing by focus groups, the survey was electronically disseminated to multiple medical physics organizations, list servers, and professional contacts. It addressed issues including factors and barriers influencing successful mentoring; mentors'/mentees' matching preferences; frequency and length of meetings; importance of defining expectations; formal agreement; and assessment of the mentoring process. Descriptive statistics were used to characterize responses including comparisons by country income level. Results The 396 responders (68% male and 32% female) were from 76 countries with 66% from high-income countries (HICs) and 34% from low- and middle-income countries (L&MICs). Data were provided on experience level as mentors (43% "little [occasional]", 38% "lot [regular or ongoing]") and mentees (53% "little [occasional]", and 23% "lot [regular or ongoing]"), and interest in participating in mentorship program (83% as mentor, mentee, or both). L&MIC responders were generally younger with less work experience (55% <10 years versus 28% for HIC responders). Differences between L&MIC and HIC responses occurred when considering the perceived limitations and barriers to virtual mentoring. Preferences were given to mentoring logistics (formal agreement, frequency, length, and format of meetings). Conclusions Factors to consider in developing a virtual mentorship program are informed by the survey results and are applicable to both HIC and L&MIC contexts, to medical physicists, and to other related professions.
Collapse
Affiliation(s)
- Jacob Van Dyk
- Departments of Oncology and Medical Biophysics, Western University, London, Ontario, Canada
| | - Matt Jalink
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - L. John Schreiner
- Departments of Oncology and Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, Canada
| | - Robert Jeraj
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Ngwa W, Addai BW, Adewole I, Ainsworth V, Alaro J, Alatise OI, Ali Z, Anderson BO, Anorlu R, Avery S, Barango P, Bih N, Booth CM, Brawley OW, Dangou JM, Denny L, Dent J, Elmore SNC, Elzawawy A, Gashumba D, Geel J, Graef K, Gupta S, Gueye SM, Hammad N, Hessissen L, Ilbawi AM, Kambugu J, Kozlakidis Z, Manga S, Maree L, Mohammed SI, Msadabwe S, Mutebi M, Nakaganda A, Ndlovu N, Ndoh K, Ndumbalo J, Ngoma M, Ngoma T, Ntizimira C, Rebbeck TR, Renner L, Romanoff A, Rubagumya F, Sayed S, Sud S, Simonds H, Sullivan R, Swanson W, Vanderpuye V, Wiafe B, Kerr D. Cancer in sub-Saharan Africa: a Lancet Oncology Commission. Lancet Oncol 2022; 23:e251-e312. [PMID: 35550267 PMCID: PMC9393090 DOI: 10.1016/s1470-2045(21)00720-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023]
Abstract
In sub-Saharan Africa (SSA), urgent action is needed to curb a growing crisis in cancer incidence and mortality. Without rapid interventions, data estimates show a major increase in cancer mortality from 520 348 in 2020 to about 1 million deaths per year by 2030. Here, we detail the state of cancer in SSA, recommend key actions on the basis of analysis, and highlight case studies and successful models that can be emulated, adapted, or improved across the region to reduce the growing cancer crises. Recommended actions begin with the need to develop or update national cancer control plans in each country. Plans must include childhood cancer plans, managing comorbidities such as HIV and malnutrition, a reliable and predictable supply of medication, and the provision of psychosocial, supportive, and palliative care. Plans should also engage traditional, complementary, and alternative medical practices employed by more than 80% of SSA populations and pathways to reduce missed diagnoses and late referrals. More substantial investment is needed in developing cancer registries and cancer diagnostics for core cancer tests. We show that investments in, and increased adoption of, some approaches used during the COVID-19 pandemic, such as hypofractionated radiotherapy and telehealth, can substantially increase access to cancer care in Africa, accelerate cancer prevention and control efforts, increase survival, and save billions of US dollars over the next decade. The involvement of African First Ladies in cancer prevention efforts represents one practical approach that should be amplified across SSA. Moreover, investments in workforce training are crucial to prevent millions of avoidable deaths by 2030. We present a framework that can be used to strategically plan cancer research enhancement in SSA, with investments in research that can produce a return on investment and help drive policy and effective collaborations. Expansion of universal health coverage to incorporate cancer into essential benefits packages is also vital. Implementation of the recommended actions in this Commission will be crucial for reducing the growing cancer crises in SSA and achieving political commitments to the UN Sustainable Development Goals to reduce premature mortality from non-communicable diseases by a third by 2030.
Collapse
Affiliation(s)
- Wilfred Ngwa
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Information and Sciences, ICT University, Yaoundé, Cameroon.
| | - Beatrice W Addai
- Breast Care International, Peace and Love Hospital, Kumasi, Ghana
| | - Isaac Adewole
- College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Victoria Ainsworth
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, USA
| | - James Alaro
- National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | | | - Zipporah Ali
- Kenya Hospices and Palliative Care Association, Nairobi, Kenya
| | - Benjamin O Anderson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Non-communicable Diseases, WHO, Geneva, Switzerland
| | - Rose Anorlu
- Department of Obstetrics and Gynaecology, College of Medicine, University of Lagos, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Stephen Avery
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prebo Barango
- WHO, Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Noella Bih
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christopher M Booth
- Division of Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Otis W Brawley
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Lynette Denny
- Department of Obstetrics and Gynaecology, University of Cape Town, Cape Town, South Africa; South African Medical Research Council, Gynaecological Cancer Research Centre, Tygerberg, South Africa
| | | | - Shekinah N C Elmore
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ahmed Elzawawy
- Department of Clinical Oncology, Suez Canal University, Ismailia, Egypt
| | | | - Jennifer Geel
- Division of Paediatric Haematology and Oncology, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Katy Graef
- BIO Ventures for Global Health, Seattle, WA, USA
| | - Sumit Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Nazik Hammad
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - Laila Hessissen
- Pediatric Oncology Department, Pediatric Teaching Hospital, Rabat, Morocco
| | - Andre M Ilbawi
- Department of Non-communicable Diseases, WHO, Geneva, Switzerland
| | - Joyce Kambugu
- Department of Pediatrics, Uganda Cancer Institute, Kampala, Uganda
| | - Zisis Kozlakidis
- Laboratory Services and Biobank Group, International Agency for Research on Cancer, WHO, Lyon, France
| | - Simon Manga
- Cameroon Baptist Convention Health Services, Bamenda, Cameroon
| | - Lize Maree
- Department of Nursing Education, University of the Witwatersrand, Johannesburg, South Africa
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Susan Msadabwe
- Department of Radiation Therapy, Cancer Diseases Hospital, Lusaka, Zambia
| | - Miriam Mutebi
- Department of Surgery, Aga Khan University Hospital, Nairobi, Kenya
| | | | - Ntokozo Ndlovu
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kingsley Ndoh
- Department of Global Health, University of Washington, Seattle, WA, USA
| | | | - Mamsau Ngoma
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Twalib Ngoma
- Department of Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Lorna Renner
- Department of Paediatrics, University of Ghana School of Medicine and Dentistry, Accra, Ghana
| | - Anya Romanoff
- Department of Health System Design and Global Health, Icahn School of Medicine, The Mount Sinai Hospital, New York, NY, USA
| | - Fidel Rubagumya
- Department of Oncology, Rwanda Military Hospital, Kigali, Rwanda; University of Global Health Equity, Kigali, Rwanda
| | - Shahin Sayed
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Shivani Sud
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hannah Simonds
- Division of Radiation Oncology, Tygerberg Hospital and University of Stellenbosch, Stellenbosch, South Africa
| | | | - William Swanson
- Department of Physics and Applied Physics, Dana-Farber Cancer Institute, University of Massachusetts Lowell, Lowell, MA, USA
| | - Verna Vanderpuye
- National Centre for Radiotherapy, Oncology, and Nuclear Medicine, Korle Bu Teaching Hospital, Accra, Ghana
| | | | - David Kerr
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|