1
|
Kassianos G, Barasheed O, Abbing-Karahagopian V, Khalaf M, Ozturk S, Banzhoff A, Badur S. Meningococcal B Immunisation in Adults and Potential Broader Immunisation Strategies: A Narrative Review. Infect Dis Ther 2023; 12:2193-2219. [PMID: 37428339 PMCID: PMC10581987 DOI: 10.1007/s40121-023-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recombinant vaccines against invasive meningococcal disease due to Neisseria meningitidis serogroup B (MenB) have shown substantial impact in reducing MenB disease in targeted populations. 4CMenB targets four key N. meningitidis protein antigens; human factor H binding protein (fHbp), Neisserial heparin binding antigen (NHBA), Neisseria adhesin A (NadA) and the porin A protein (PorA P1.4), with one or more of these expressed by most pathogenic MenB strains, while MenB-FHbp targets two distinct fHbp variants. While many countries recommend MenB immunisation in adults considered at high risk due to underlying medical conditions or immunosuppression, there are no recommendations for routine use in the general adult population. We reviewed the burden of MenB in adults, where, while incidence rates remain low (and far lower than in young children < 5 years of age at greatest risk), a substantial proportion of MenB cases (20% or more) is now observed in the adult population; evident in Europe, Australia, and in the United States. We also reviewed immunogenicity data in adults from clinical studies conducted during MenB vaccine development and subsequent post-licensure studies. A 2-dose schedule of 4CMenB generates hSBA titres ≥ 1:4 towards all four key vaccine target antigens in up to 98-100% of subjects. For MenB-FHbp, a ≥ fourfold rise in hSBA titres against the four primary representative test strains was observed in 70-95% of recipients following a 3-dose schedule. While this suggests potential benefits for MenB immunisation if used in adult populations, data are limited (especially for adults > 50 years) and key aspects relating to duration of protection remain unclear. Although a broader adult MenB immunisation policy could provide greater protection of the adult population, additional data are required to support policy decision-making.
Collapse
Affiliation(s)
- George Kassianos
- Royal College of General Practitioners, London, UK
- The British Global and Travel Health Association, London, UK
| | | | | | | | | | | | | |
Collapse
|
2
|
Alderson MR, Arkwright PD, Bai X, Black S, Borrow R, Caugant DA, Dinleyici EC, Harrison LH, Lucidarme J, McNamara LA, Meiring S, Sáfadi MAP, Shao Z, Stephens DS, Taha MK, Vazquez J, Zhu B, Collaborators G. Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. J Infect 2021; 84:289-296. [PMID: 34838594 PMCID: PMC8611823 DOI: 10.1016/j.jinf.2021.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022]
Abstract
This review article incorporates information from the 4th Global Meningococcal Initiative summit meeting. Since the introduction of stringent COVID-19 infection control and lockdown measures globally in 2020, there has been an impact on IMD prevalence, surveillance, and vaccination compliance. Incidence rates and associated mortality fell across various regions during 2020. A reduction in vaccine uptake during 2020 remains a concern globally. In addition, several Neisseria meningitidis clonal complexes, particularly CC4821 and CC11, continue to exhibit resistance to antibiotics, with resistance to ciprofloxacin or beta-lactams mainly linked to modifications of gyrA or penA alleles, respectively. Beta-lactamase acquisition was also reported through horizontal gene transfer (blaROB-1) involving other bacterial species. Despite the challenges over the past year, progress has also been made on meningococcal vaccine development, with several pentavalent (serogroups ABCWY and ACWYX) vaccines currently being studied in late-stage clinical trial programmes.
Collapse
Affiliation(s)
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Steve Black
- Center for Global Health, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ener Cagri Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Lee H Harrison
- Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Lucy A McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC, USA
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marco A P Sáfadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - David S Stephens
- Robert W Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference Centre for Meningococci and Haemophilus influenzae, Paris, France
| | - Julio Vazquez
- National Centre of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Gmi Collaborators
- GMI Collaborators: Sotharith Bory, Suzana Bukovski, Josefina Carlos, Chien-Shun Chiou, Davor Culic, Trang Dai, Snezana Delic, Medeia Eloshvili, Tímea Erdos, Jelena Galajeva, Prakash Ghimire, Linda Glennie, Setyo Handryastuti, Jung Yeon Heo, Amy Jennison, Hajime Kamiya, Pavla Křížová,Tonnii Sia Loong Loong, Helen Marshall, Konstantin Mironov, Zuridin Nurmatov, Nina Dwi Putri, Senjuti Saha, James Sim, Anna Skoczyńska, Vinny Smith, Usa Thisyakorn, Thanh Phan Van, Lyazzat Yeraliyeva, Saber Yezli
| |
Collapse
|
3
|
Lahra MM, George CRR, Shoushtari M, Hogan TR. Australian Meningococcal Surveillance Programme Annual Report, 2020. ACTA ACUST UNITED AC 2021; 45. [PMID: 34496732 DOI: 10.33321/cdi.2021.45.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract Invasive meningococcal disease (IMD) is a notifiable disease in Australia, and both probable and laboratory-confirmed cases of IMD are reported to the National Notifiable Diseases Surveillance System (NNDSS). In 2020, there were 90 notifications of IMD, the lowest number documented since records began in the NNDSS in 1991. Of these, 97% (87/90) were laboratory-confirmed cases, with 70% (61/87) confirmed by bacterial culture and 30% (26/87) by nucleic acid amplification testing. The serogroup was determined for 85/87 laboratory-confirmed cases of IMD: serogroup B (MenB) accounted for 64% of infections (54/85); MenW for 19% (16/85); MenY for 16% (14/85); and MenC 1.2% (1/85). Fine typing was available on 60/85 (71%) of cases with serogroup determined; of the typed MenW, all were PorA antigen type P1.5,2 and sequence type 11, the hypervirulent strain reported in recent outbreaks in Australia and overseas. The primary peaks of IMD notifications in Australia in 2020 were observed in infants less than 1 year (16/87, 18%) and in adults aged 45-64 years (14/87, 16%). MenB infections predominated in those aged less than 5 years and 15-19 years; MenW and MenY infections predominated in those aged 45 years or more. All 61 IMD isolates were tested for antimicrobial susceptibility: none were penicillin resistant; however, 56/61 (92%) had decreased susceptibility to penicillin. All isolates were susceptible to ceftriaxone, ciprofloxacin and rifampicin.
Collapse
Affiliation(s)
- Monica M Lahra
- World Health Organisation Collaborating Centre for STI and AMR, Sydney and Neisseria Reference Laboratory, Department of Microbiology, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, 2031, NSW Australia
| | - C R Robert George
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, NSW, 2052 Australia.,New South Wales Health Pathology, John Hunter Hospital, Newcastle, 2300, NSW Australia
| | - Masoud Shoushtari
- World Health Organisation Collaborating Centre for STI and AMR, Sydney and Neisseria Reference Laboratory, Department of Microbiology, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, 2031, NSW Australia
| | - Tiffany R Hogan
- World Health Organisation Collaborating Centre for STI and AMR, Sydney and Neisseria Reference Laboratory, Department of Microbiology, New South Wales Health Pathology, The Prince of Wales Hospital, Randwick, 2031, NSW Australia
| |
Collapse
|