1
|
Rodrigues YC, Silva MJA, dos Reis HS, dos Santos PAS, Sardinha DM, Gouveia MIM, dos Santos CS, Marcon DJ, Aires CAM, Souza CDO, Quaresma AJPG, Lima LNGC, Brasiliense DM, Lima KVB. Molecular Epidemiology of Pseudomonas aeruginosa in Brazil: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:983. [PMID: 39452249 PMCID: PMC11504043 DOI: 10.3390/antibiotics13100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Globally, Pseudomonas aeruginosa is a high-priority opportunistic pathogen which displays several intrinsic and acquired antimicrobial resistance (AMR) mechanisms, leading to challenging treatments and mortality of patients. Moreover, its wide virulence arsenal, particularly the type III secretion system (T3SS) exoU+ virulotype, plays a crucial role in pathogenicity and poor outcome of infections. In depth insights into the molecular epidemiology of P. aeruginosa, especially the prevalence of high-risk clones (HRCs), are crucial for the comprehension of virulence and AMR features and their dissemination among distinct strains. This study aims to evaluate the prevalence and distribution of HRCs and non-HRCs among Brazilian isolates of P. aeruginosa. METHODS A systematic review and meta-analysis were conducted on studies published between 2011 and 2023, focusing on the prevalence of P. aeruginosa clones determined by multilocus sequence typing (MLST) in Brazil. Data were extracted from retrospective cross-sectional and case-control studies, encompassing clinical and non-clinical samples. The analysis included calculating the prevalence rates of various sequence types (STs) and assessing the regional variability in the distribution of HRCs and non-HRCs. RESULTS A total of 872 samples were analyzed within all studies, of which 298 (34.17%) were MLST typed, identifying 78 unique STs. HRCs accounted for 48.90% of the MLST-typed isolates, with ST277 being the most prevalent (100/298-33.55%), followed by ST244 (29/298-9.73%), ST235 (13/298-4.36%), ST111 (2/298-0.67%), and ST357 (2/298-0.67%). Significant regional variability was observed, with the Southeast region showing a high prevalence of ST277, while the North region shows a high prevalence of MLST-typed samples and HRCs. CONCLUSIONS Finally, this systematic review and meta-analysis highlight the role of P. aeruginosa clones in critical issue of AMR in P. aeruginosa in Brazil and the need of integration of comprehensive data from individual studies.
Collapse
Affiliation(s)
- Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Herald Souza dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Pabllo Antonny Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Daniele Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Carolynne Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Davi Josué Marcon
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Caio Augusto Martins Aires
- Department of Health Sciences (DCS), Federal Rural University of the Semi-Arid Region (UFERSA), Av. Francisco Mota, 572-Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Cintya de Oliveira Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Luana Nepomuceno Gondim Costa Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| |
Collapse
|
2
|
Vasileiadi E, Lloyd KM, Fisher BT, Hanisch B. Fluoroquinolone Prophylaxis in Children With Cancer: A Pro/Con Discussion. J Pediatric Infect Dis Soc 2024; 13:486-492. [PMID: 39073450 DOI: 10.1093/jpids/piae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
There are conflicting recommendations on whether to use or not to use fluoroquinolone prophylaxis in pediatric oncology patients. An international pediatric clinical practice guideline (CPG) recommends administering levofloxacin prophylaxis in patients with acute myeloblastic leukemia and relapsed acute lymphoblastic leukemia receiving intensive chemotherapy as this practice has been found to reduce episodes of fever and bacteremia. A separate European CPG does not recommend levofloxacin prophylaxis because of concerns for adverse effects, including potentiation of fluoroquinolone resistance and possible increased resistance to other classes of antibiotics. The nuance of the decision to give or not give prophylaxis is discussed in the context of published evidence defining the risks and benefits of levofloxacin prophylaxis for pediatric leukemia patients at high risk for bacterial infection. Knowledge gaps are also identified to guide further investigations to optimize the use of fluoroquinolone prophylaxis in pediatric patients receiving chemotherapy for cancer or undergoing a hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Eleana Vasileiadi
- Division of Infectious Disease, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin M Lloyd
- Department of Pediatric Infectious Diseases, Children's National, Washington, District of Columbia, USA
| | - Brian T Fisher
- Division of Infectious Disease, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin Hanisch
- Department of Pediatric Infectious Diseases, Children's National, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Kim N, Ko SY, Park SY, Kim SY, Lee DE, Kwon KT, Kim YK, Lee JC. Clonal Distribution and Its Association With the Carbapenem Resistance Mechanisms of Carbapenem-Non-Susceptible Pseudomonas aeruginosa Isolates From Korean Hospitals. Ann Lab Med 2024; 44:410-417. [PMID: 38433574 PMCID: PMC11169769 DOI: 10.3343/alm.2023.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Carbapenem resistance in Pseudomonas aeruginosa is a serious global health problem. We investigated the clonal distribution and its association with the carbapenem resistance mechanisms of carbapenem-non-susceptible P. aeruginosa isolates from three Korean hospitals. Methods A total of 155 carbapenem-non-susceptible P. aeruginosa isolates collected between 2011 and 2019 were analyzed for sequence types (STs), antimicrobial susceptibility, and carbapenem resistance mechanisms, including carbapenemase production, the presence of resistance genes, OprD mutations, and the hyperproduction of AmpC β-lactamase. Results Sixty STs were identified in carbapenem-non-susceptible P. aeruginosa isolates. Two high-risk clones, ST235 (N=41) and ST111 (N=20), were predominant; however, sporadic STs were more prevalent than high-risk clones. The resistance rate to amikacin was the lowest (49.7%), whereas that to piperacillin was the highest (92.3%). Of the 155 carbapenem-non-susceptible isolates, 43 (27.7%) produced carbapenemases. Three metallo-β-lactamase (MBL) genes, blaIMP-6 (N=38), blaVIM-2 (N=3), and blaNDM-1 (N=2), were detected. blaIMP-6 was detected in clonal complex 235 isolates. Two ST773 isolates carried blaNDM-1 and rmtB. Frameshift mutations in oprD were identified in all isolates tested, regardless of the presence of MBL genes. Hyperproduction of AmpC was detected in MBL gene-negative isolates. Conclusions Frameshift mutations in oprD combined with MBL production or hyperproduction of AmpC are responsible for carbapenem resistance in P. aeruginosa. Further attention is required to curb the emergence and spread of new carbapenem-resistant P. aeruginosa clones.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seo Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Yeob Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Da Eun Lee
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| | - Ki Tae Kwon
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yu Kyung Kim
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
- Department of Laboratory Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Korea
- Kyungpook National University Hospital National Culture Collection for Pathogens (KNUH-NCCP), Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
4
|
Thompson D, Xu J, Ischia J, Bolton D. Fluoroquinolone resistance in urinary tract infections: Epidemiology, mechanisms of action and management strategies. BJUI COMPASS 2024; 5:5-11. [PMID: 38179021 PMCID: PMC10764174 DOI: 10.1002/bco2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 01/06/2024] Open
Abstract
Background Fluoroquinolone resistance is an issue of concern amongst physicians worldwide. In urology, fluoroquinolones are often used in the treatment of acute pyelonephritis and prostatitis, as well as infections caused by multidrug-resistant pathogens. Aims We aim to highlight the importance of antimicrobial stewardship and the need for ongoing biomedical research to discover novel agents in our losing battle against resistant pathogens. Materials and methods In this review, we survey the literature and summarise fluoroquinolone resistance as it pertains to pyelonephritis and prostatitis, as well as alternative treatment strategies and prevention of multidrug resistance. Results The rise of fluoroquinolone resistance in bacteria has reduced the available treatment options, often necessitating hospital admission for intravenous antibiotics, which places an additional burden on both patients and the healthcare system. Many countries such as Australia have attempted to limit fluoroquinolone resistance by imposing strict prescribing criteria, though these efforts have not been entirely successful. Solutions to overcome resistance include prevention, combination therapy and the development of novel antimicrobial agents. Conclusions Prevention of the proliferation of resistant organisms by antimicrobial stewardship is paramount, and urologists are obliged to be aware of responsible prescribing practices such as referring to local guidelines when prescribing. By reserving fluoroquinolones for infections in which they are truly indicated and by prescribing based on both patient and local environmental factors, we can preserve this effective resource for future use.
Collapse
Affiliation(s)
- Daryl Thompson
- Department of SurgeryThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Jennifer Xu
- Department of SurgeryThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Joseph Ischia
- Department of SurgeryThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Damien Bolton
- Department of SurgeryThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Olivia Newton‐John Cancer Research Institute Austin HealthMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Jordana-Lluch E, Barceló IM, Escobar-Salom M, Estévez MA, Zamorano L, Gómez-Zorrilla S, Sendra E, Oliver A, Juan C. The balance between antibiotic resistance and fitness/virulence in Pseudomonas aeruginosa: an update on basic knowledge and fundamental research. Front Microbiol 2023; 14:1270999. [PMID: 37840717 PMCID: PMC10569695 DOI: 10.3389/fmicb.2023.1270999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between antibiotic resistance and bacterial fitness/virulence has attracted the interest of researchers for decades because of its therapeutic implications, since it is classically assumed that resistance usually entails certain biological costs. Reviews on this topic revise the published data from a general point of view, including studies based on clinical strains or in vitro-evolved mutants in which the resistance phenotype is seen as a final outcome, i.e., a combination of mechanisms. However, a review analyzing the resistance/fitness balance from the basic research perspective, compiling studies in which the different resistance pathways and respective biological costs are individually approached, was missing. Here we cover this gap, specifically focusing on Pseudomonas aeruginosa, a pathogen that stands out because of its extraordinary capacity for resistance development and for which a considerable number of recent and particular data on the interplay with fitness/virulence have been released. The revised information, split into horizontally-acquired vs. mutation-driven resistance, suggests a great complexity and even controversy in the resistance-fitness/virulence balance in the acute infection context, with results ranging from high costs linked to certain pathways to others that are seemingly cost-free or even cases of resistance mechanisms contributing to increased pathogenic capacities. The elusive mechanistic basis for some enigmatic data, knowledge gaps, and possibilities for therapeutic exploitation are discussed. The information gathered suggests that resistance-fitness/virulence interplay may be a source of potential antipseudomonal targets and thus, this review poses the elementary first step for the future development of these strategies harnessing certain resistance-associated biological burdens.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Mª Barceló
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Escobar-Salom
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel A. Estévez
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Silvia Gómez-Zorrilla
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Hospital del Mar Research Institute, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Universitat Autònoma de Barcelóna (UAB), Barcelona, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Microbiology, University Hospital Son Espases, Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
6
|
Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health 2022; 10:1025633. [PMID: 36620240 PMCID: PMC9815622 DOI: 10.3389/fpubh.2022.1025633] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
For around three decades, the fluoroquinolone (FQ) antibiotic ciprofloxacin has been used to treat a range of diseases, including chronic otorrhea, endocarditis, lower respiratory tract, gastrointestinal, skin and soft tissue, and urinary tract infections. Ciprofloxacin's main mode of action is to stop DNA replication by blocking the A subunit of DNA gyrase and having an extra impact on the substances in cell walls. Available in intravenous and oral formulations, ciprofloxacin reaches therapeutic concentrations in the majority of tissues and bodily fluids with a low possibility for side effects. Despite the outstanding qualities of this antibiotic, Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa have all shown an increase in ciprofloxacin resistance over time. The rise of infections that are resistant to ciprofloxacin shows that new pharmacological synergisms and derivatives are required. To this end, ciprofloxacin may be more effective against the biofilm community of microorganisms and multi-drug resistant isolates when combined with a variety of antibacterial agents, such as antibiotics from various classes, nanoparticles, natural products, bacteriophages, and photodynamic therapy. This review focuses on the resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing its efficacy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mostafa Abedinzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mahsa Ganjalishahi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran,Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran,*Correspondence: Mohsen Heidary
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran,Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran,Saeed Khoshnood
| |
Collapse
|
7
|
Bogiel T, Depka D, Rzepka M, Mikucka A. Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. Int J Mol Sci 2022; 23:ijms23169208. [PMID: 36012468 PMCID: PMC9409454 DOI: 10.3390/ijms23169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs.
Collapse
|
8
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Imipenem Resistance Mediated by blaOXA-913 Gene in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10101188. [PMID: 34680769 PMCID: PMC8532623 DOI: 10.3390/antibiotics10101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment of infectious diseases caused by carbapenem-resistant Pseudomonas aeruginosa is becoming a greater challenge. This study aimed to identify the imipenem resistance mechanism in P. aeruginosa isolated from a dog. Minimum Inhibitory Concentration (MIC) was determined by the broth microdilution method according to the Clinical and Laboratory Standards Institute recommendations. We performed polymerase chain reaction and whole-genome sequencing to detect carbapenem resistance genes. Genomic DNA of P. aeruginosa K19PSE24 was sequenced via the combined analysis of 20-kb PacBio SMRTbell and PacBio RS II. Peptide-Peptide Nucleic Acid conjugates (P-PNAs) targeting the translation initiation region of blaOXA-913 were synthesized. The isolate (K19PSE24) was resistant to imipenem and piperacillin/tazobactam yet was susceptible to most of the tested antimicrobials. Whole-genome sequencing revealed that the K19PSE24 genome comprised a single contig amounting to 6,815,777 base pairs, with 65 tRNA and 12 rRNA genes. K19PSE24 belonged to sequence type 313 and carried the genes aph(3)-IIb, fosA, catB7, crpP, and blaOXA-913 (an allele deposited in GenBank but not described in the literature). K19PSE24 also carried genes encoding for virulence factors (exoenzyme T, exotoxin A, and elastase B) that are associated with adhesion, invasion, and tissue lysis. Nevertheless, we did not detect any of the previously reported carbapenem resistance genes. This is the first report of the blaOXA-913 gene in imipenem-resistant P. aeruginosa in the literature. Notably, no viable colonies were found after co-treatment with imipenem (2 µg/mL) and either of the P-PNAs (12.5 µM or 25 µM). The imipenem resistance in K19PSE24 was primarily due to blaOXA-913 gene carriage.
Collapse
|
10
|
Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil? GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Datar R, Coello Pelegrin A, Orenga S, Chalansonnet V, Mirande C, Dombrecht J, Perry JD, Perry A, Goossens H, van Belkum A. Phenotypic and Genomic Variability of Serial Peri-Lung Transplantation Pseudomonas aeruginosa Isolates From Cystic Fibrosis Patients. Front Microbiol 2021; 12:604555. [PMID: 33897629 PMCID: PMC8058383 DOI: 10.3389/fmicb.2021.604555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis (CF) represents one of the major genetic and chronic lung diseases affecting Caucasians of European descent. Patients with CF suffer from recurring infections that lead to further damage of the lungs. Pulmonary infection due to Pseudomonas aeruginosa is most prevalent, further increasing CF-related mortality. The present study describes the phenotypic and genotypic variations among 36 P. aeruginosa isolates obtained serially from a non-CF and five CF patients before, during and after lung transplantation (LTx). The classical and genomic investigation of these isolates revealed a common mucoid phenotype and only subtle differences in the genomes. Isolates originating from an individual patient shared ≥98.7% average nucleotide identity (ANI). However, when considering isolates from different patients, substantial variations in terms of sequence type (ST), virulence factors and antimicrobial resistance (AMR) genes were observed. Whole genome multi-locus sequence typing (MLST) confirmed the presence of unique STs per patient regardless of the time from LTx. It was supported by the monophyletic clustering found in the genome-wide phylogeny. The antibiogram shows that ≥91.6% of the isolates were susceptible to amikacin, colistin and tobramycin. For other antibiotics from the panel, isolates frequently showed resistance. Alternatively, a comparative analysis of the 36 P. aeruginosa isolates with 672 strains isolated from diverse ecologies demonstrated clustering of the CF isolates according to the LTx patients from whom they were isolated. We observed that despite LTx and associated measures, all patients remained persistently colonized with similar isolates. The present study shows how whole genome sequencing (WGS) along with phenotypic analysis can help us understand the evolution of P. aeruginosa over time especially its antibiotic resistance.
Collapse
Affiliation(s)
| | - Andreu Coello Pelegrin
- BioMérieux, La Balme les Grottes, France
- Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - John D. Perry
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Audrey Perry
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Herman Goossens
- Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
12
|
Prevalence of the Genes Associated with Biofilm and Toxins Synthesis amongst the Pseudomonas aeruginosa Clinical Strains. Antibiotics (Basel) 2021; 10:antibiotics10030241. [PMID: 33670887 PMCID: PMC7997207 DOI: 10.3390/antibiotics10030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with an increasing isolation frequency in nosocomial outbreaks. The hypothesis tested was whether carbapenem-resistant P. aeruginosa strains display an altered carriage of the virulence factor genes, depending on the type of carbapenem resistance. The aim of the study was to investigate, by PCR, the frequency of 10 chosen virulence factors genes (phzM, phzS, exoT, exoY, exoU, toxA, exoS, algD, pilA and pilB) and the genotype distribution in 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. P. aeruginosa genes involved in phenazine dyes and exoenzyme T synthesis were noted with the highest frequency (100%). Fimbriae-encoding genes were detected with the lowest incidence: 15.9% and 4.7% for pilin A and B, respectively. The differences observed between the exoS gene prevalence amongst the carbapenemase-positive and the carbapenemase-negative strains and the pilA gene prevalence amongst the strains of different origins were statistically significant. Virulence genes’ prevalence and the genotype distribution vary amongst P. aeruginosa strains resistant to carbapenems, especially in terms of their carbapenemase synthesis ability and the strain origin.
Collapse
|
13
|
Urzedo JE, de Paula Menezes R, Porto JP, Ferreira ML, Gonçalves IR, de Brito CS, Gontijo-Filho PP, Ribas RM. High mortality by nosocomial infections caused by carbapenem-resistant P. aeruginosa in a referral hospital in Brazil: facing the perfect storm. J Med Microbiol 2020; 69:1388-1397. [PMID: 33170119 DOI: 10.1099/jmm.0.001273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Carbapenem-resistant Pseudomonas aeruginosa is responsible for increased patient mortality.Gap Statement. Five and 30 day in-hospital all-cause mortality in patients with P. aeruginosa infections were assessed, followed by evaluations concerning potential correlations between the type III secretion system (TTSS) genotype and the production of metallo-β-lactamase (MBL).Methodology. This assessment comprised a retrospective cohort study including consecutive patients with carbapenem-resistant infections hospitalized in Brazil from January 2009 to June 2019. PCR analyses were performed to determine the presence of TTSS-encoding genes and MBL genes.Results. The 30-day and 5-day mortality rates for 262 patients were 36.6 and 17.9 %, respectively. The unadjusted survival probabilities for up to 5 days were 70.55 % for patients presenting exoU-positive isolates and 86 % for those presenting exo-negative isolates. The use of urinary catheters, as well as the presence of comorbidity conditions, secondary bacteremia related to the respiratory tract, were independently associated with death at 5 and 30 days. The exoS gene was detected in 64.8 % of the isolates, the presence of the exoT and exoY genes varied and exoU genes occurred in 19.3 % of the isolates. The exoU genotype was significantly more frequent among multiresistant strains. MBL genes were not detected in 92 % of the isolates.Conclusions. Inappropriate therapy is a crucial factor regarding the worse prognosis among patients with infections caused by multiresistant P. aeruginosa, especially those who died within 5 days of diagnosis, regardless of the genotype associated with TTSS virulence.
Collapse
Affiliation(s)
- Jane Eire Urzedo
- Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Ralciane de Paula Menezes
- Technical School of Health (ESTES), Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Juliana Pena Porto
- Medical College (FAMED), Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Melina Lorraine Ferreira
- Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Iara Rossi Gonçalves
- Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Cristiane Silveira de Brito
- Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Paulo P Gontijo-Filho
- Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Rosineide Marques Ribas
- Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| |
Collapse
|
14
|
Khan M, Summers S, Rice SA, Stapleton F, Willcox MD, Subedi D. Acquired fluoroquinolone resistance genes in corneal isolates of Pseudomonas aeruginosa. INFECTION GENETICS AND EVOLUTION 2020; 85:104574. [DOI: 10.1016/j.meegid.2020.104574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
|
15
|
Cepas V, Soto SM. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9100719. [PMID: 33092201 PMCID: PMC7589547 DOI: 10.3390/antibiotics9100719] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Bacteria present in the human body are innocuous, providing beneficial functions, some of which are necessary for correct body function. However, other bacteria are able to colonize, invade, and cause damage to different tissues, and these are categorised as pathogens. These pathogenic bacteria possess several factors that enable them to be more virulent and cause infection. Bacteria have a great capacity to adapt to different niches and environmental conditions (presence of antibiotics, iron depletion, etc.). Antibiotic pressure has favoured the emergence and spread of antibiotic-resistant bacteria worldwide. Several studies have reported the presence of a relationship (both positive and negative, and both direct and indirect) between antimicrobial resistance and virulence among bacterial pathogens. This review studies the relationship among the most important Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) taking into account two points of view: (i) the effect the acquisition of resistance has on virulence, and (ii) co-selection of resistance and virulence. The relationship between resistance and virulence among bacteria depends on the bacterial species, the specific mechanisms of resistance and virulence, the ecological niche, and the host.
Collapse
|
16
|
Rodrigues YC, Furlaneto IP, Maciel AHP, Quaresma AJPG, de Matos ECO, Conceição ML, Vieira MCDS, Brabo GLDC, Sarges EDSNF, Lima LNGC, Lima KVB. High prevalence of atypical virulotype and genetically diverse background among Pseudomonas aeruginosa isolates from a referral hospital in the Brazilian Amazon. PLoS One 2020; 15:e0238741. [PMID: 32911510 PMCID: PMC7482967 DOI: 10.1371/journal.pone.0238741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing different types of infections, particularly in intensive care unit patients. Characteristics that favor its persistence artificial environments are related to its high adaptability, wide arsenal of virulence factors and resistance to several antimicrobial classes. Among the several virulence determinants, T3SS stands as the most important due to the clinical impact of exoS and exoU genes in patient’s outcome. The molecular characterization of P. aeruginosa isolates helps in the comprehension of transmission dynamics and enhance knowledge of virulence and resistance roles in infection process. In the present study, we investigated virulence and resistance properties and the genetic background of P. aeruginosa isolated from ICUs patients at a referral hospital in Brazilian Amazon. A total of 54 P. aeruginosa isolates were characterized by detecting 19 virulence-related genes, antimicrobial susceptibility testing, molecular detection of β-lactamase-encoding genes and genotyping by MLST and rep-PCR. Our findings showed high prevalence of virulence-related markers, where 53.7% of the isolates presented at least 17 genes among the 19 investigated (P = 0.01). The rare exoS+/exoU+ cytotoxic virulotype was detected in 55.6% of isolates. Antimicrobial susceptibility testing revealed percentages of antibiotic resistance above 50% to carbapenems, cephalosporins and fluoroquinolones associated to MDR/XDR isolates. Isolates harboring both blaSPM-1 and blaOXA genes were also detected. Genotyping methods demonstrated a wide genetic diversity of strains spread among the different intensive care units, circulation of international MDR/XDR high-risk clones (ST111, ST235, ST244 and ST277) and emergence of seven novel MLST lineages. Finally, our findings highlight the circulation of strains with high virulence potential and resistance to antimicrobials and may be useful on comprehension of pathogenicity process, treatment guidance and establishment of strategies to control the spread of epidemic P. aeruginosa strains.
Collapse
Affiliation(s)
- Yan Corrêa Rodrigues
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil
- * E-mail: (YCR); (KVBL)
| | - Ismari Perini Furlaneto
- Programa de Pós-graduação em Educação em Saúde, Centro Universitário do Pará (CESUPA), Belém, Pará Brazil
| | - Arthur Henrique Pinto Maciel
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Eliseth Costa Oliveira de Matos
- Departamento de Patologia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil
| | - Marília Lima Conceição
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil
| | - Marcelo Cleyton da Silva Vieira
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Giulia Leão da Cunha Brabo
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Ministério da Saúde, Ananindeua, Pará, Brazil
| | | | - Luana Nepomuceno Godim Costa Lima
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Karla Valéria Batista Lima
- Programa de Pós-graduação em Biologia Parasitária na Amazônia, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará (UEPA), Belém, Pará, Brazil
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (IEC), Ministério da Saúde, Ananindeua, Pará, Brazil
- * E-mail: (YCR); (KVBL)
| |
Collapse
|
17
|
Dave A, Samarth A, Karolia R, Sharma S, Karunakaran E, Partridge L, MacNeil S, Monk PN, Garg P, Roy S. Characterization of Ocular Clinical Isolates of Pseudomonas aeruginosa from Non-Contact Lens Related Keratitis Patients from South India. Microorganisms 2020; 8:microorganisms8020260. [PMID: 32075262 PMCID: PMC7074794 DOI: 10.3390/microorganisms8020260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
P. aeruginosa is the most common Gram-negative organism causing bacterial keratitis. Pseudomonas utilizes various virulence mechanisms to adhere and colonize in the host tissue. In the present study, we examined virulence factors associated with thirty-four clinical P. aeruginosa isolates collected from keratitis patients seeking care at L V Prasad Eye Institute, Hyderabad. The virulence-associated genes in all the isolates were genotyped and characteristics such as antibiotic susceptibility, biofilm formation, swarming motility, pyoverdine production and cell cytotoxicity were analyzed. All the isolates showed the presence of genes related to biofilm formation, alkaline proteases and elastases; however, there was a difference in the presence of genes related to the type III secretion system (T3SS). A higher prevalence of exoU+ genotype was noted in the drug-resistant isolates. All the isolates were capable of forming biofilms and more than 70% of the isolates showed good swarming motility. Pyoverdine production was not associated with the T3SS genotype. In the cytotoxicity assay, the presence of exoS,exoU or both resulted in higher cytotoxicity compared to the absence of both the genes. Overall, our results suggest that the T3SS profile is a good indicator of P. aeruginosa virulence characteristics and the isolates lacking the effector genes may have evolved alternate mechanisms of colonization in the host.
Collapse
Affiliation(s)
- Alpana Dave
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Apurwa Samarth
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Roshni Karolia
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (R.K.); (S.S.)
| | - Savitri Sharma
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (R.K.); (S.S.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S102TG, UK;
| | - Lynda Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S102TG, UK;
| | - Sheila MacNeil
- Department of Material Science and Engineering, University of Sheffield, Sheffield S102TG, UK;
| | - Peter N. Monk
- Department of Infection Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S102RX, UK;
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India; (A.D.); (A.S.); (P.G.)
- Correspondence: ; Tel.: +91-40-30612529; Fax: +91-40-30612535
| |
Collapse
|
18
|
Javanmardi F, Emami A, Pirbonyeh N, Keshavarzi A, Rajaee M. A systematic review and meta-analysis on Exo-toxins prevalence in hospital acquired Pseudomonas aeruginosa isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:104037. [PMID: 31518698 DOI: 10.1016/j.meegid.2019.104037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Pseudomonas aeruginosa (PA) is an opportunistic pathogen that produces widespread and often overwhelming infections. Among different virulence factors, toxins are important bacterial agent which increases PA pathogenesis especially in immunocompromised patients. The aim of this meta-analysis was to determine the prevalence of exotoxin production in PA isolates in the world. Also according to the importance of drug resistance in isolates with more pathogenicity this estimation was conducted in resistant isolates. METHODS A systematic search was conducted in international database like PubMed, Scopus, Web of Science and Embase up to December 2018. Joanna Briggs Institute Checklist was used to evaluate the quality assessment of studies. Random effect model was applied to pool the prevalence data. Stata 13 software was used to analyze the data. RESULTS Total of 58 eligible studies that fulfilled the inclusion criteria of the study were selected for qualitative synthesis. Among exotoxins; the highest prevalence was related to exoT (0.83 (CI95%: 0.64-0.96)). Lowest prevalence rate was seen in exoU with estimated prevalence 0.32 (CI95%: 0.24-0.41). In Carbapenem resistance isolates exoA and exoT had the highest prevalence (1.00 (CI95%: 0.98-1.00)). CONCLUSION This first meta-analysis on PA isolates with toxin potency indicated high prevalence of exotoxin production in clinical isolates of PA which is an alarming point as a clinical aspect. It was found that the ExoT has the most prevalence rate among toxins. The results of simultaneous evaluation of exotoxins and antimicrobial resistance can develop treatment policies against PA infections in hospitals and hospitalized patients.
Collapse
Affiliation(s)
- Fatemeh Javanmardi
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Neda Pirbonyeh
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9:10874. [PMID: 31350412 PMCID: PMC6659710 DOI: 10.1038/s41598-019-47303-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system of Pseudomonas aeruginosa is an important virulence factor contributing to the cytotoxicity and the invasion process of this microorganism. The current study aimed to determine the presence of the exoU+/exoS+ genotype in P. aeruginosa clinical isolates. The presence of exoS, exoT, exoU and exoY was determined in 189 P. aeruginosa by PCR, and the presence/absence of exoU was analysed according to source infection, clonal relationships, biofilm formation, motility and antimicrobial susceptibility. The gyrA, parC, oprD, efflux pump regulators and β-lactamases genes were also analysed by PCR/sequencing. The exoS, exoT and exoY genes were found in 100% of the isolates. Meanwhile, exoU was present in 43/189 (22.8%) of the isolates, being significantly associated with multidrug resistance, extensively drug resistance as well as with higher level quinolone resistance. However, the presence of β-lactamases, mutations in gyrA and parC, and relevant modifications in efflux pumps and OprD were not significantly associated with exoU+ isolates. MLST analysis of a subset of 25 isolates showed 8 different STs displaying the exoU+/exoS+ genotype. The MDR basis of the exoU+ isolates remain to be elucidated. Furthermore, the clinical implications and spread of exoU+/exoS+ P. aeruginosa isolates need to be established.
Collapse
|
20
|
Khodayary R, Nikokar I, Mobayen MR, Afrasiabi F, Araghian A, Elmi A, Moradzadeh M. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res Notes 2019; 12:28. [PMID: 30646938 PMCID: PMC6334392 DOI: 10.1186/s13104-019-4071-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 01/09/2023] Open
Abstract
Objective The present study aimed to determine the prevalence of virulence factors and antimicrobial resistance profile of Pseudomonas aeruginosa strains isolated from Iranian burn patients. Results This cross-sectional study performed on 100 P. aeruginosa isolates which were recovered from burn wound specimens in 2014–2015. All presumptive isolates were identified by standard microbiologic tests. Antimicrobial susceptibility test was carried out by disk diffusion method. The presence of virulence genes was determined by PCR method. Antibiotic susceptibility results revealed that the isolates were mostly susceptible to amikacin (61%), ceftazidime (60%), and imipenem (55%). Moreover, 59% of the isolates were multi-drug resistance (MDR). The most prevalent MDR pattern was aminoglycosides–penicillins–fluoroquinolones–carbapenems (15%). The presence of exoT, exoY, exoS and exoU genes was detected in 100%, 100%, 59%, and 41% of the tested isolates, respectively. Results points out the pattern of MDR and genetic diversity of type III secretion system among P. aeruginosa strains isolated from the burn population. Overall, the association of MDR and the presence of the specific virulence genes can be a predictive marker for the persistence of these isolates in the hospitals and subsequently a worse clinical condition for the affected patients.
Collapse
Affiliation(s)
- Ramin Khodayary
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Iraj Nikokar
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran. .,Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran. .,Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences, P.O. Box: 44715-1361, Langeroud, IR, Iran.
| | | | - Farhad Afrasiabi
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Afshin Araghian
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Elmi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Meisam Moradzadeh
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
21
|
Orsi TD, Perdigão Neto LV, Martins RCR, Levin AS, Costa SF. Polymyxin-resistant Pseudomonas aeruginosa assigned as ST245: First report in an intensive care unit in São Paulo, Brazil. J Glob Antimicrob Resist 2019; 16:147-149. [PMID: 30634055 DOI: 10.1016/j.jgar.2018.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a Gram-negative bacterium that causes severe infections, especially in hospitalised and immunocompromised patients. Polymyxins are the last therapeutic option to treat infections caused by this micro-organism. Here we describe a polymyxin-resistant P. aeruginosa assigned as sequence type (ST) 245 for the first time in Brazil. METHODS Antimicrobial susceptibility testing of the isolate was performed. In addition, whole-genome sequencing was performed and its virulence and resistance genes were analysed. RESULTS The P. aeruginosa ST245 isolate was identified for the first time in Brazil in a patient with ventilator-associated pneumonia hospitalised at Hospital das Clínicas, São Paulo. Analysis of the genome showed the presence of several resistance and virulence genes. Mutations in β-lactam resistance genes were found in β-lactamases, outer membrane proteins, efflux pump and penicillin-binding proteins. Polymorphisms related to pathways leading to polymyxin resistance are also present, such as lipid A or keto-deoxyoctulosonate modification with aminoarabinose as well as activation of lipopolysaccharide (LPS). CONCLUSION Such findings may represent an alert for the spread of an unusual profile in the country.
Collapse
Affiliation(s)
- Tatiana D'Annibale Orsi
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil.
| | - Lauro Vieira Perdigão Neto
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil; Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo - SP, 05403-010, Brazil
| | - Roberta Cristina Ruedas Martins
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil
| | - Anna S Levin
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil; Department of Infection Control of Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos 225, Sala 629, São Paulo - SP, 05403-010, Brazil
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and LIM-54, Universidade de São Paulo, Av. Dr Enéas de Carvalho Aguiar 470, São Paulo - SP, 05403-000, Brazil
| |
Collapse
|
22
|
Rehman A, Patrick WM, Lamont IL. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: new approaches to an old problem. J Med Microbiol 2019; 68:1-10. [DOI: 10.1099/jmm.0.000873] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Attika Rehman
- 1Department of Biochemistry, University of Otago, New Zealand
| | - Wayne M. Patrick
- 1Department of Biochemistry, University of Otago, New Zealand
- 2School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Iain L. Lamont
- 1Department of Biochemistry, University of Otago, New Zealand
| |
Collapse
|
23
|
Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One 2018; 13:e0204936. [PMID: 30265709 PMCID: PMC6161911 DOI: 10.1371/journal.pone.0204936] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Virulent strains of Pseudomonas aeruginosa are often associated with an acquired cytotoxic protein, exoenzyme U (ExoU) that rapidly destroys the cell membranes of host cells by its phospholipase activity. Strains possessing the exoU gene are predominant in eye infections and are more resistant to antibiotics. Thus, it is essential to understand treatment options for these strains. Here, we have investigated the resistance profiles and genes associated with resistance for fluoroquinolone and beta-lactams. A total of 22 strains of P. aeruginosa from anterior eye infections, microbial keratitis (MK), and the lungs of cystic fibrosis (CF) patients were used. Based on whole genome sequencing, the prevalence of the exoU gene was 61.5% in MK isolates whereas none of the CF isolates possessed this gene. Overall, higher antibiotic resistance was observed in the isolates possessing exoU. Of the exoU strains, all except one were resistant to fluoroquinolones, 100% were resistant to beta-lactams. 75% had mutations in quinolone resistance determining regions (T81I gyrA and/or S87L parC) which correlated with fluoroquinolone resistance. In addition, exoU strains had mutations at K76Q, A110T, and V126E in ampC, Q155I and V356I in ampR and E114A, G283E, and M288R in mexR genes that are associated with higher beta-lactamase and efflux pump activities. In contrast, such mutations were not observed in the strains lacking exoU. The expression of the ampC gene increased by up to nine-fold in all eight exoU strains and the ampR was upregulated in seven exoU strains compared to PAO1. The expression of mexR gene was 1.4 to 3.6 fold lower in 75% of exoU strains. This study highlights the association between virulence traits and antibiotic resistance in pathogenic P. aeruginosa.
Collapse
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Gurjeet Singh Kohli
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore
- The ithree institute, The University of Technology Sydney, Sydney NSW Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Saputra IWAGM, Mertaniasih NM, Fatmawati NND. Positivity of ExoU Gene of Type III Secretion System and Fluoroquinolone Resistance of Psedomonas aeruginosa from Sputum of Nosocomial Pneumonia Patients in Sanglah Hospital, Bali. FOLIA MEDICA INDONESIANA 2018. [DOI: 10.20473/fmi.v54i2.8863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa is one of the Gram-negative rods bacteria that frequently cause nosocomial pneumonia. One of the main virulent effector proteins on Type III secretion system (TTSS) of P. aeruginosa is Exoenzyme U ( ExoU). ExoU works as a phospholipase A2 activity and exhibits lung tissue injury effect in pneumonia. As an antibiotic that has activity against P. aeruginosa, fluoroquinolone resistance has increased as many as three fold since the last decade. Infections caused by P. aeruginosa that are fluoroquinolone resistant and positive for ExoU gene show worse clinical outcome. The aim of this study was to determine the positivity of ExoU gene TTSS and fluoroquinolone resistance of P. aeruginosa that isolated from sputum of nosocomial pneumonia patients in Sanglah Hospital, Bali. P. aeruginosa isolated from sputum of patient that diagnosed as nosocomial pneumonia, isolates had been identified phenotypically by Vitek2 Compact system (bioMérieux, Inc., Marcy-l'Etoile - France), and then continued by genotypic detection by PCR. The susceptibility testing of P. aeruginosa isolates to Ciprofloxacin were conducted by Vitek2 Compact, whereas ExoU genes were detected by PCR. Fifty-three P. aeruginosa isolates were identified in this study, in which 35 isolates (66.1%) had ExoU gene and 22 isolates (41.5%) were resistant to Ciprofloxacin. Based on nosocomial pneumonia type, the highest proportion of isolates genotipically ExoU+ and phenotypically Ciprofloxacin were on VAP group accounted for 57.1% and 54.5%, respectively. Chi-square analysis showed significant correlation between Ciprofloxacin resistance and ExoU gene (p=0.001). As a conclusion, the positivity of ExoU+ isolates were more likely found in Ciprofloxacin resistant group.
Collapse
|
25
|
Kainuma A, Momiyama K, Kimura T, Akiyama K, Inoue K, Naito Y, Kinoshita M, Shimizu M, Kato H, Shime N, Fujita N, Sawa T. An outbreak of fluoroquinolone-resistant Pseudomonas aeruginosa ST357 harboring the exoU gene. J Infect Chemother 2018; 24:615-622. [PMID: 29628388 DOI: 10.1016/j.jiac.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial-resistant isolates of Pseudomonas aeruginosa collected from 2005 to 2014 in a university hospital in Kyoto, Japan, were retrospectively analyzed by multilocus sequence typing (MLST), exoenzyme genotype determination, integron characterization, and clinical associations. During the study, 1573 P. aeruginosa isolates were detected, and 41 of these were resistant to more than two classes of antimicrobial agents. Twenty-five (61.0%) isolates were collected from urine. All isolates were resistant to ciprofloxacin, 8 (19.5%) isolates showed resistance to imipenem/cilastatin, and 8 (19.5%) isolates showed resistance to meropenem. None of the isolates fulfilled the clinical criteria for multidrug-resistant P. aeruginosa. All isolates were negative in the metallo-β lactamase test. Thirty-six (87.8%) isolates were of the exoS-exoU+ genotype and 5 (12.2%) isolates were of the exoS+exoU- genotype. Among 36 exoS-exoU+ isolates, 33 (80.5%) were ST357, and 3 (7.3%) were ST235. Five isolates of exoS+exoU- were ST186, ST244, ST314, ST508, and ST512. Thirty-three isolates were positive for class 1 integrons and four different class 1 integrons were detected: aminoglycoside (2') adenyltransferase and chloramphenicol transporter (AadB+CmlA6), OXA-4 β-lactamase and aminoglycoside 3'-adenyltransferase (OXA4+AadA2), AadB alone, and aminoglycoside acetyltransferase alone (AacA31). Among the 41 patients from which the isolates originated, the most common underlying disease was cancer in 16 patients (39%), and 9 patients (22.0%) died during the hospitalization period. There was no statistical correlation between MLST, exoenzyme genotype, and patient mortality. The results indicated outbreaks of fluoroquinolone-resistant P. aeruginosa in immunocompromised patients mainly due to the propagation of potentially virulent ST357 isolates possessing the exoU+ genotype.
Collapse
Affiliation(s)
| | - Kyoko Momiyama
- School of Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Takeshi Kimura
- Division of Infection Control & Laboratory Medicine at University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Koichi Akiyama
- Department of Anesthesiology, School of Medicine, Japan.
| | - Keita Inoue
- Department of Anesthesiology, School of Medicine, Japan.
| | | | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Japan.
| | - Masaru Shimizu
- Department of Anesthesiology, School of Medicine, Japan.
| | - Hideya Kato
- Department of Anesthesiology, School of Medicine, Japan.
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Institute of Biochemical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Naohisa Fujita
- Division of Infection Control & Laboratory Medicine at University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Teiji Sawa
- Department of Anesthesiology, School of Medicine, Japan.
| |
Collapse
|
26
|
Takata I, Yamagishi Y, Mikamo H. Association of the exoU genotype with a multidrug non-susceptible phenotype and mRNA expressions of resistance genes in Pseudomonas aeruginosa. J Infect Chemother 2017; 24:45-52. [PMID: 29107652 DOI: 10.1016/j.jiac.2017.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022]
Abstract
The increased prevalence of the virulence factor exoU + genotype among multidrug-resistant Pseudomonas aeruginosa has been previously reported. However, the genes that are related to the multidrug resistance of the exoU + genotype strain have not been analyzed and remain to be elucidated. The objective of this study was to analyze the correlations between virulence factors and resistance genes. The exoU + genotype was frequently found in carbapenem and fluoroquinolone non-susceptible strains. The imp carbapenemase genotype, the quinolone-resistance-determining region mutation in GyrA and ParC and the defective mutation in OprD were not frequently found in the exoU + genotype and carbapenem and fluoroquinolone non-susceptible strains. On the other hand, mexY and ampC mRNA overexpressing strains were more frequently found in the exoU + genotype and carbapenem and fluoroquinolone non-susceptible strains. Moreover, sequence type 235, a high risk clone of multidrug-resistant P. aeruginosa, was prevalent among the exoU + genotype and carbapenem and fluoroquinolone non-susceptible strains. ExoU is highly virulent protein, and the overexpression of efflux pumps and AmpC β-lactamase induce a multidrug-resistant phenotype. Therefore, the increased prevalence of P. aeruginosa strains with an exoU + genotype and the overexpression of efflux pumps and AmpC β-lactamase are likely to make P. aeruginosa infections difficult to treat. An understanding of the prevalence of both the exoU + genotype and the mRNA overexpression of resistance genes may help to select empirical therapy for the treatment of nosocomial infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Iichiro Takata
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Aichi, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Aichi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Aichi, Japan.
| |
Collapse
|
27
|
Prevalence, Antimicrobial Susceptibility, and Clonal Diversity of Pseudomonas aeruginosa in Chronic Wounds. J Wound Ostomy Continence Nurs 2017; 44:528-535. [DOI: 10.1097/won.0000000000000373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int J Antimicrob Agents 2017; 50:210-218. [PMID: 28554735 DOI: 10.1016/j.ijantimicag.2017.02.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Genetic determinants of antibiotic resistance (AR) have been extensively investigated. High-throughput sequencing allows for the assessment of the relationship between genotype and phenotype. A panel of 672 Pseudomonas aeruginosa strains was analysed, including representatives of globally disseminated multidrug-resistant and extensively drug-resistant clones; genomes and multiple antibiograms were available. This panel was annotated for AR gene presence and polymorphism, defining a resistome in which integrons were included. Integrons were present in >70 distinct cassettes, with In5 being the most prevalent. Some cassettes closely associated with clonal complexes, whereas others spread across the phylogenetic diversity, highlighting the importance of horizontal transfer. A resistome-wide association study (RWAS) was performed for clinically relevant antibiotics by correlating the variability in minimum inhibitory concentration (MIC) values with resistome data. Resistome annotation identified 147 loci associated with AR. These loci consisted mainly of acquired genomic elements and intrinsic genes. The RWAS allowed for correct identification of resistance mechanisms for meropenem, amikacin, levofloxacin and cefepime, and added 46 novel mutations. Among these, 29 were variants of the oprD gene associated with variation in meropenem MIC. Using genomic and MIC data, phenotypic AR was successfully correlated with molecular determinants at the whole-genome sequence level.
Collapse
|
29
|
Malek Mohamad S, Rostami S, Zamanzad B, Gholipour A, Drees F. Detection of Exotoxins and Antimicrobial Susceptibility Pattern in Clinical Pseudomonas aeruginosa Isolates. ACTA ACUST UNITED AC 2017. [DOI: 10.34172/ajcmi.2018.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Kaiser SJ, Mutters NT, DeRosa A, Ewers C, Frank U, Günther F. Determinants for persistence of Pseudomonas aeruginosa in hospitals: interplay between resistance, virulence and biofilm formation. Eur J Clin Microbiol Infect Dis 2016; 36:243-253. [PMID: 27734161 DOI: 10.1007/s10096-016-2792-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa (Pa) is one of the major bacterial pathogens causing nosocomial infections. During the past few decades, multidrug-resistant (MDR) and extensively drug-resistant (XDR) lineages of Pa have emerged in hospital settings with increasing numbers. However, it remains unclear which determinants of Pa facilitated this spread. A total of 211 clinical XDR and 38 susceptible clinical Pa isolates (nonXDR), as well as 47 environmental isolates (EI), were collected at the Heidelberg University Hospital. We used RAPD PCR to identify genetic clusters. Carriage of carbapenamases (CPM) and virulence genes were analyzed by PCR, biofilm formation capacity was assessed, in vitro fitness was evaluated using competitive growth assays, and interaction with the host's immune system was analyzed using serum killing and neutrophil killing assays. XDR isolates showed significantly elevated biofilm formation (p < 0.05) and higher competitive fitness compared to nonXDR and EI isolates. Thirty percent (62/205) of the XDR isolates carried a CPM. Similarities in distribution of virulence factors, as well as biofilm formation properties, between CPM+ Pa isolates and EI and between CPM- and nonXDR isolates were detected. Molecular typing revealed two distinct genetic clusters within the XDR population, which were characterized by even higher biofilm formation. In contrast, XDR isolates were more susceptible to the immune response than nonXDR isolates. Our study provides evidence that the ability to form biofilms is an outstanding determinant for persistence and endemic spread of Pa in the hospital setting.
Collapse
Affiliation(s)
- S J Kaiser
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - N T Mutters
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - A DeRosa
- Department of Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - C Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - U Frank
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - F Günther
- Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
31
|
Hassuna NA. Molecular Detection of the Virulent ExoU Genotype of Pseudomonas aeruginosa Isolated from Infected Surgical Incisions. Surg Infect (Larchmt) 2016; 17:610-4. [PMID: 27441791 DOI: 10.1089/sur.2016.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is one of the major pathogens responsible for hospital-acquired infections, which harbor a wide array of virulence factors. The main aim of this study was to determine the frequency of the virulent ExoU genotype in relation to the ExoS genotype among isolated P. aeruginosa from infected surgical incisions, followed by phylogenetic analysis. METHODS A total of 66 P. aeruginosa isolates were identified by cultural and biochemical characteristics. All isolates were tested for antimicrobial susceptibility against the following antimicrobial agents: imipenem, amikacin, gentamicin, amoxycillin, cefotaxime, cefepime, and levofloxacin. Molecular detection of the ExoS and ExoU as well as two other virulence genes was done by polymerase chain reaction (PCR). Sequencing of ExoU gene and phylogenetic analysis was performed. RESULTS Approximately 81% of the isolated P. aeruginosa were multi-drug resistant. The ExoS genotype was more prevalent (63%) among the isolates than the ExoU genotype (18%), with 9% of the isolates possessing both toxins. LasB and AprA were detected in 63.6% and 27.2% of the isolates, respectively. An association was observed between the number of virulence genes and the presence of multi-drug resistance. All the ExoU were multi-drug resistant (MDR), whereas 71% of the ExoS were MDR. Phylogenetic analysis of ExoU gene showed a 99% similarity with four different strains. CONCLUSION Despite the greater frequency of the ExoS genotype, the presence of the virulent MDR ExoU genotype isolates from surgical site infections is an alarming sign requiring further intervention and investigations.
Collapse
Affiliation(s)
- Noha A Hassuna
- Department of Microbiology and Immunology, Minia University , Minia, Egypt
| |
Collapse
|
32
|
Meradji S, Barguigua A, Bentakouk MC, Nayme K, Zerouali K, Mazouz D, Chettibi H, Timinouni M. Epidemiology and virulence of VIM-4 metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from burn patients in eastern Algeria. Burns 2016; 42:906-18. [PMID: 27156788 DOI: 10.1016/j.burns.2016.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 10/21/2022]
Abstract
In this study, we investigated the prevalence of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in burn patients from eastern Algeria, CRPA virulence factors and the molecular epidemiology of CRPA. The overall prevalence of CRPA was 48.38%. Seven (46.66%) isolates were metallo-β-lactamases (MBL) producers and contained the MBL genes blaVIM-4 (n=6) and blaVIM-2 (n=1). Risk factors for CRPA infection were urinary catheter use and intubation (p=0.008). A high percentage of virulence factors (86.6% of these isolates were able to produce protease; 73.3% of isolates has DNase; and 66.6% were haemolysin positive) was observed in CRPA isolates. Among the seven MBL-producing isolates, four had the same clonal profile. The class 1 integrons, which contained the aadA7 gene cassette, were detected in six isolates. The 16SrRNA methylase gene, rmtB, was detected in one strain. All CRPA isolates were biofilm formers. A study on the kinetics of biofilm production revealed that biofilm production increased when the concentration of imipenem or ciprofloxacin and the incubation time increased. This is the first study to report the presence of VIM-4-producing P. aeruginosa from North Africa and also of the high prevalence of CRPA isolates. Based on our study of burn unit patients, the high percentage of P. aeruginosa with virulence factors and multi-drug resistance is alarming.
Collapse
Affiliation(s)
- Samah Meradji
- Biochemistry and Applied Microbiology Laboratory, Badji Mokhtar Faculty of Sciences, Department of Biology, Annaba University, Box 12 Sidi Amar, 23000 Annaba, Algeria
| | - Abouddihaj Barguigua
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360 Casablanca, Morocco; Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | | | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360 Casablanca, Morocco; Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | - Khalid Zerouali
- Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | - Dekhil Mazouz
- Microbiology Laboratory, University Hospital Dorban, 23000 Annaba, Algeria
| | - Houria Chettibi
- Biochemistry and Applied Microbiology Laboratory, Badji Mokhtar Faculty of Sciences, Department of Biology, Annaba University, Box 12 Sidi Amar, 23000 Annaba, Algeria
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360 Casablanca, Morocco.
| |
Collapse
|
33
|
IV Immunoglobulin for Acute Lung Injury and Bacteremia in Pseudomonas aeruginosa Pneumonia. Crit Care Med 2016; 44:e12-24. [PMID: 26317571 DOI: 10.1097/ccm.0000000000001271] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Virulent and multidrug-resistant Pseudomonas aeruginosa causes a lethal pneumonia, especially in patients who are artificially ventilated. It has been reported that the virulence mechanism used by P. aeruginosa, which is linked to acute lung injury, is strongly associated with the type III secretion system, and specific antibodies targeting this system have shown a protective effect in both experimental and clinical settings. We investigated the effect of administering IV immunoglobulins on P. aeruginosa pneumonia, including its associated bacteremia and mortality, although focusing especially on type III secretion system-associated P. aeruginosa virulence. DESIGN Prospective randomized and controlled animal study. SETTING University laboratory. SUBJECTS Male ICR mice. INTERVENTIONS Mice were infected intratracheally with a lethal dose of the virulent P. aeruginosa PA103 strain. IV immunoglobulin administration was examined in three different settings: 1) premixed; 2) pre-IV, prophylactic administration before bacterial infection; and 3) post-IV, therapeutic administration after bacterial infection. The effect of specific antigen titer depletion of IV immunoglobulins was also examined. MEASUREMENTS AND MAIN RESULTS Survival and body temperature were monitored for 24 hours. Bacteremia, cytokine concentration, myeloperoxidase activity, WBC counts in the blood, and lung bacterial load were evaluated. Survival improved significantly in mice that received IV immunoglobulins (p < 0.05). Lung edema, lung bacteriologic load, and bacteremia decreased significantly in the IV immunoglobulin-treated mice (p < 0.05). The mechanism of protection was associated with the presence of antibodies against both PcrV and some bacterial surface antigens in the IV immunoglobulins. CONCLUSIONS IV immunoglobulin administration had a significantly protective effect against lethal infection from virulent P. aeruginosa. Prophylactic IV immunoglobulin administration at the highest dose was comparable with that achieved by administrating a specific anti-PcrV polyclonal IgG into the mice. The mechanism of protection is likely to involve the synergic action of anti-PcrV titers and antibodies against some surface antigen(s) that block the type III secretion system-associated virulence of P. aeruginosa.
Collapse
|
34
|
Shimizu M, Katoh H, Hamaoka S, Kinoshita M, Akiyama K, Naito Y, Sawa T. Protective effects of intravenous immunoglobulin and antimicrobial agents on acute pneumonia in leukopenic mice. J Infect Chemother 2016; 22:240-7. [DOI: 10.1016/j.jiac.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/10/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
35
|
Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:668. [PMID: 25672496 PMCID: PMC4331484 DOI: 10.1186/s13054-014-0668-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas non-virulent strains lack this particular gene. The mechanism of virulence for the exoU+ genotype relies on the presence of a pathogenic gene cluster (PAPI-2) encoding exoU and its chaperone, spcU. The ExoU toxin has a patatin-like phospholipase domain in its N-terminal, exhibits phospholipase A2 activity, and requires a eukaryotic cell factor for activation. The C-terminal of ExoU has a ubiquitinylation mechanism of activation. This probably induces a structural change in enzymatic active sites required for phospholipase A2 activity. In P. aeruginosa clinical isolates, the exoU+ genotype correlates with a fluoroquinolone resistance phenotype. Additionally, poor clinical outcomes have been observed in patients with pneumonia caused by exoU+-fluoroquinolone-resistant isolates. Therefore, the potential exists to improve clinical outcomes in patients with P. aeruginosa pneumonia by identifying virulent and antimicrobial drug-resistant strains through exoU genotyping or ExoU protein phenotyping or both.
Collapse
|