1
|
Weisz DA, Rogstad SM, Zeng K, Pang E, Geerlof-Vidavsky I. Validation of a liquid chromatography-high-resolution mass spectrometry method to quantify peptide-related impurities in teriparatide. J Pharm Biomed Anal 2025; 255:116654. [PMID: 39778260 DOI: 10.1016/j.jpba.2024.116654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
With recent advances in quantitative high-resolution mass spectrometry (HRMS), there is growing interest in developing liquid chromatography (LC)-HRMS methods that can simultaneously quantify numerous critical impurities in a peptide or protein drug. This approach is attractive as it could reduce the total number of methods and instruments required during product development and quality control testing, while taking advantage of the technique's high specificity and sensitivity. To investigate the feasibility of this approach for peptide drugs, an LC-HRMS method was validated for the quantification of six peptide-related impurities in teriparatide, the 34-amino acid active ingredient in Forteo. External calibration curves were constructed to correlate the peak area ratio of impurity-to-teriparatide to a known impurity abundance. The method displayed good specificity, sensitivity, linearity, accuracy, repeatability, intermediate precision, and robustness. The lower limits of quantification were 0.02 % or 0.03 % of teriparatide, below the regulatory reporting threshold of 0.10 %. It was found that quantification using three isotopic peaks per peptide did not provide a significant benefit over quantification with one isotopic peak. The method was validated successfully without the impractical inclusion of an isotopically-labeled internal standard for each impurity. Future studies will be conducted to determine the method's longer-term reproducibility.
Collapse
Affiliation(s)
- Daniel A Weisz
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, MO 63110, USA.
| | - Sarah M Rogstad
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20902, USA
| | - Kui Zeng
- Office of Product Quality Assessment II, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20902, USA
| | - Eric Pang
- Office of Research and Standards, Office of Generic Drug Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20902, USA
| | - Ilan Geerlof-Vidavsky
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Szymanski L, Kiernozek M, Gromadka B, Straszecka W, Wiktorek-Smagur A, Matak D. Chemical Characterization in Medical Device Evaluation: Current Practices, Regulatory Requirements, and Future Directions. Ann Biomed Eng 2025:10.1007/s10439-025-03702-5. [PMID: 40035968 DOI: 10.1007/s10439-025-03702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
The rigorous regulatory landscape for medical devices demands meticulous chemical characterization to ensure safety and compliance. This review examines the critical role of chemical characterization within regulatory frameworks, emphasizing its importance in the approval and market entry of medical devices. Key challenges, including the complexity of sample matrices, trace-level impurity detection, and the necessity of method validation, are thoroughly explored. In addition, the review addresses the dynamic nature of regulatory requirements, analyzing how updates in international standards, such as those from the International Organization for Standardization (ISO), the American National Standards Institute (ANSI), and the Association for the Advancement of Medical Instrumentation (AAMI), or the American Society for Testing and Materials (ASTM), shape the chemical characterization process. The review discusses future directions, including advancements in analytical technologies, the potential for increased automation and standardization, and the growing significance of managing emerging contaminants. By offering a comprehensive analysis of current practices and future trends, this review highlights the essential role of chemical characterization in ensuring the development and regulation of safe and effective medical devices.
Collapse
Affiliation(s)
- Lukasz Szymanski
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552, Magdalenka, Poland.
- European Biomedical Institute, Nalkowskiej 5, 05-410, Jozefow, Poland.
| | - Magdalena Kiernozek
- European Biomedical Institute, Nalkowskiej 5, 05-410, Jozefow, Poland
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bartosz Gromadka
- European Biomedical Institute, Nalkowskiej 5, 05-410, Jozefow, Poland
| | | | | | - Damian Matak
- European Biomedical Institute, Nalkowskiej 5, 05-410, Jozefow, Poland.
| |
Collapse
|
3
|
Zhou S, Xia Y, Hao L, Gao Y, Zhang C. Optimization of liquid chromatography and mass spectrometry parameters based on LC-QQQ: A case study on lysinoalanine. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124427. [PMID: 39705891 DOI: 10.1016/j.jchromb.2024.124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Lysinoalanine (LAL), commonly formed in high-protein foods, raises concerns due to its nephrotoxicity and potential reduction in nutritional properties, making its accurate detection crucial for food safety. Liquid chromatography-tandem quadrupole mass spectrometry (LC-QQQ) plays a pivotal role in the quantification of compounds, and its accuracy and sensitivity are significantly influenced by specific liquid chromatography (LC) and mass spectrometry (MS) parameters. However, the procedure and considerations for LC and MS parameters optimization have often not been discussed in depth in existing literature. Therefore, this study used LAL as a model compound to systematically optimize the key LC and MS parameters using LC-QQQ. The optimized MS parameters were as follows: parent ion m/z-234.2, capillary voltage-3.5 kV, cone voltage-30 V, desolvation temperature-500 °C, daughter ion m/z-84.2, and collision voltage-20 V. The optimized LC parameters were as follows: buffer-0.1 % formic acid (v/v), column, Polaris 3 Amide-C18 (150 × 3 mm, 3 μm). Under these optimized conditions, the limit of detection (LOD) for LAL was detected as 13 ng/mL in multiple reaction monitoring mode, which is considerably lower than the 125 ng/mL detected by LC-QQQ and marginally lower than the 15.23 ng/mL detected by LC-quadrupole Exactive Orbitrap MS reported in previous studies. Additionally, this study elucidates the critical factors to be considered when selecting LC and MS parameters, providing valuable insights into the detection of other compounds using LC-QQQ.
Collapse
Affiliation(s)
- Shaoke Zhou
- Henan Technical Institute, Zhengzhou 450042, PR China
| | - Yimiao Xia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Lihua Hao
- Henan Institute of Product Quality Inspection Technology, Zhengzhou 450000, PR China
| | - Yuanjun Gao
- Luohe Food Engineering Vocational University, Luohe 462300, PR China
| | - Caifang Zhang
- Luohe Food Engineering Vocational University, Luohe 462300, PR China
| |
Collapse
|
4
|
Cheng WL, Low HQ, Chew S, Lim CY, Loh TP. Relationship between analytical imprecision and coefficient of determination (R 2) of the calibration curve. Clin Biochem 2024; 133-134:110833. [PMID: 39395552 DOI: 10.1016/j.clinbiochem.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Affiliation(s)
- Wan Ling Cheng
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Hui Qi Low
- Engineering Cluster, Singapore Institute of Technology, Singapore
| | - Suru Chew
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Chun Yee Lim
- Engineering Cluster, Singapore Institute of Technology, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore.
| |
Collapse
|
5
|
Lee J, Choi JH, Kim EH, Im J, Hwang H, Yang S, Lee JH, Lee K, Song J, Park S, Song SH. Detecting M-Protein via Mass Spectrometry and Affinity Beads: Enrichment With Mixed Kappa-Lambda Beads Enables Prompt Application in Clinical Laboratories. Ann Lab Med 2024; 44:518-528. [PMID: 39161319 PMCID: PMC11375182 DOI: 10.3343/alm.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Background Detecting monoclonal protein (M-protein), a hallmark of plasma cell disorders, traditionally relies on methods such as protein electrophoresis, immune-electrophoresis, and immunofixation electrophoresis (IFE). Mass spectrometry (MS)-based methods, such as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization-quadrupole time-of-flight (ESI-qTOF) MS, have emerged as sensitive methods. We explored the M-protein-detection efficacies of different MS techniques. Methods To isolate immunoglobulin and light chain proteins, six types of beads (IgG, IgA, IgM, kappa, lambda, and mixed kappa and lambda) were used to prepare samples along with CaptureSelect nanobody affinity beads (NBs). After purification, both MALDI-TOF MS and liquid chromatography coupled with Synapt G2 ESI-qTOF high-resolution MS analysis were performed. We purified 25 normal and 25 abnormal IFE samples using NBs and MALDI-TOF MS (NB-MALDI-TOF). Results Abnormal samples showed monoclonal peaks, whereas normal samples showed polyclonal peaks. The IgG and mixed kappa and lambda beads showed monoclonal peaks following the use of daratumumab (an IgG/kappa type of monoclonal antibody) with both MALDI-TOF and ESI-qTOF MS analysis. The limits of detection for MALDI-TOF MS and ESI-qTOF MS were established as 0.1 g/dL and 0.025 g/dL, respectively. NB-MALDI-TOF and IFE exhibited comparable sensitivity and specificity (92% and 92%, respectively). Conclusions NBs for M-protein detection, particularly with mixed kappa-lambda beads, identified monoclonal peaks with both MALDI-TOF and ESI-qTOF analyses. Qualitative analysis using MALDI-TOF yielded results comparable with that of IFE. NB-MALDI-TOF might be used as an alternative method to replace conventional tests (such as IFE) to detect M-protein with high sensitivity.
Collapse
Affiliation(s)
- Jikyo Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jung Hoon Choi
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Korea
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Eun-Hee Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jihyun Im
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Heeyoun Hwang
- Digital OMICs Research Center, Korea Basic Science Institute, Cheongju, Korea
| | - Seojin Yang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Joon Hee Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyunghoon Lee
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seungman Park
- Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Kim JA, Lee JK, Lee SY. Serum trace elements during treatment in pancreatic cancer patients and their associations with cancer prognosis. Clin Nutr 2024; 43:1459-1472. [PMID: 38714150 DOI: 10.1016/j.clnu.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND & AIMS In this study, we assessed serum trace element concentrations in patients with pancreatic cancer and compared the results to those of healthy controls and patients with chronic pancreatitis. We evaluated the association between trace element concentrations during cancer treatment and the risk of cancer progression and mortality in pancreatic cancer patients. METHODS A retrospective cohort study was conducted at a tertiary center in Korea. Serum trace element concentrations of cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) were measured at diagnosis using an inductively coupled plasma-mass spectrometry in 124 patients with pancreatic cancer, 50 patients with chronic pancreatitis, and 120 healthy controls. Trace elements were measured after a median of 282.5 (95% confidence interval [CI], 224.0-326.5) days from treatment initiation to assess changes in trace element concentrations during treatment. RESULTS Serum Co concentrations were significantly higher in patients with chronic pancreatitis and pancreatic cancer compared to healthy controls, while serum Se concentrations were significantly lower. During treatment, serum concentrations of Cu, Se, and Zn significantly decreased in patients with pancreatic cancer. During the follow-up (median 152.5; 95% CI, 142.8-160.0 months), 85.5% of patients experienced progression or relapse, and 84.7% of patients died. Patients with decreased Se and Zn concentrations during treatment had a higher mortality (hazard ratio [HR], 2.10; 95% CI, 1.31-3.38; P = 0.0020 for Se; HR, 1.72; 95% CI, 1.06-2.79; P = 0.0269 for Zn) compared to those with unchanged or increased trace element concentrations during treatment. Patients with a greater reduction in Zn concentrations during treatment had a higher mortality than those with a smaller reduction (HR, 1.59; 95% CI, 1.01-2.52; P = 0.0483). Patients whose Zn status changed from normal to deficient during treatment had an increased mortality (HR, 1.76; 95% CI, 1.16-2.67, P = 0.0084). Patients with multiple (≥2) trace element deficiencies after treatment had poorer outcomes than those with no or single trace element deficiency. CONCLUSIONS This study revealed that decreases in Se and Zn concentrations during cancer treatment were associated with adverse outcomes in terms of cancer progression and mortality in patients with pancreatic cancer. Further prospective investigations are recommended.
Collapse
Affiliation(s)
- Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea; Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, South Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
8
|
Scherf-Clavel M, Baumann P, Hart XM, Schneider H, Schoretsanitis G, Steimer W, Zernig G, Zurek G. Behind the Curtain: Therapeutic Drug Monitoring of Psychotropic Drugs from a Laboratory Analytical Perspective. Ther Drug Monit 2024; 46:143-154. [PMID: 36941240 DOI: 10.1097/ftd.0000000000001092] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a well-established tool for guiding psychopharmacotherapy and improving patient care. Despite their established roles in the prescription of psychotropic drugs, the "behind the curtain" processes of TDM requests are invariably obscure to clinicians, and literature addressing this topic is scarce. METHODS In the present narrative review, we provide a comprehensive overview of the various steps, starting from requesting TDM to interpreting TDM findings, in routine clinical practice. Our goal was to improve clinicians' insights into the numerous factors that may explain the variations in TDM findings due to methodological issues. RESULTS We discussed challenges throughout the TDM process, starting from the analyte and its major variation forms, through sampling procedures and pre-analytical conditions, time of blood sampling, sample matrices, and collection tubes, to analytical methods, their advantages and shortcomings, and the applied quality procedures. Additionally, we critically reviewed the current and future advances in the TDM of psychotropic drugs. CONCLUSIONS The "behind the curtain" processes enabling TDM involve a multidisciplinary team, which faces numerous challenges in clinical routine. A better understanding of these processes will allow clinicians to join the efforts for achieving higher-quality TDM findings, which will in turn improve treatment effectiveness and safety outcomes of psychotropic agents.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
| | - Pierre Baumann
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn, Germany
| | - Xenia M Hart
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Schneider
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn
- INSTAND e.V. Society for Promoting Quality Assurance in Medical Laboratories, Duesseldorf, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn, Germany
| | - Georgios Schoretsanitis
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Werner Steimer
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
- German Society for Clinical Chemistry and Laboratory Medicine e. V. (DGKL), Section Therapeutic Drug Monitoring and Clinical Toxicology, Berlin/Bonn
| | - Gerald Zernig
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Private Practice for Psychotherapy and Court-certified Expert Witness, Hall in Tirol, Austria; and
| | - Gabriela Zurek
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) Work Group on "Therapeutic Drug Monitoring" (Chair: Prof. Dr Med. Dipl.-Psych. Stefan Unterecker, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Germany)
- Medical Laboratory Bremen, Bremen, Germany
| |
Collapse
|
9
|
Srinivas NR, Bartlett MG. Incurred sample reanalysis (ISR) in clinical bioanalysis-Is it really a one-size-fits-all solution? Biomed Chromatogr 2024; 38:e5843. [PMID: 38316616 DOI: 10.1002/bmc.5843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Affiliation(s)
- Nuggehally R Srinivas
- Department of Clinical Pharmacology and Pharmacometrics, Longboard Pharmaceuticals, La Jolla, CA, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Lee HS, Chun MR, Lee SY. Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3'-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population. Molecules 2023; 28:7685. [PMID: 38067415 PMCID: PMC10708046 DOI: 10.3390/molecules28237685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Measurement of multiple nicotine metabolites and total nicotine equivalents (TNE) might be a more reliable strategy for tobacco exposure verification than measuring single urinary cotinine alone. We simultaneously measured nicotine, cotinine, 3-OH cotinine, nornicotine, and anabasine using 19,874 urine samples collected from the Korean National Health and Nutrition Examination Survey. Of all samples, 18.6% were positive for cotinine, 17.4% for nicotine, 17.3% for nornicotine, 17.6% for 3-OH cotinine, and 13.2% for anabasine. Of the cotinine negative samples, less than 0.3% were positive for all nicotine metabolites, but not for anabasine (5.7%). The agreement of the classification of smoking status by cotinine combined with nicotine metabolites was 0.982-0.994 (Cohen's kappa). TNE3 (the molar sum of urinary nicotine, cotinine, and 3-OH cotinine) was most strongly correlated with cotinine compared to the other nicotine metabolites; however, anabasine was less strongly correlated with other biomarkers. Among anabasine-positive samples, 30% were negative for nicotine or its metabolites, and 25% were undetectable. Our study shows that the single measurement of urinary cotinine is simple and has a comparable classification of smoking status to differentiate between current smokers and non-smokers relative to the measurement of multiple nicotine metabolites. However, measurement of multiple nicotine metabolites and TNE3 could be useful for monitoring exposure to low-level or secondhand smoke exposure and for determining individual differences in nicotine metabolism. Geometric or cultural factors should be considered for the differentiation of tobacco use from patients with nicotine replacement therapy by anabasine.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Department of Laboratory Medicine, School of Medicine, Wonkwang University, 895 Muwang-ro, Iksan-si 54538, Jeollabuk-do, Republic of Korea;
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Mi-Ryung Chun
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
- Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
11
|
Thomas G, Syngelaki A, Hamed K, Perez-Montaño A, Panigassi A, Tuytten R, Nicolaides KH. Preterm preeclampsia screening using biomarkers: combining phenotypic classifiers into robust prediction models. Am J Obstet Gynecol MFM 2023; 5:101110. [PMID: 37752025 DOI: 10.1016/j.ajogmf.2023.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Preeclampsia screening is a critical component of antenatal care worldwide. Currently, the most developed screening test for preeclampsia at 11 to 13 weeks' gestation integrates maternal demographic characteristics and medical history with 3 biomarkers-serum placental growth factor, mean arterial pressure, and uterine artery pulsatility index-to identify approximately 75% of women who develop preterm preeclampsia with delivery before 37 weeks of gestation. It is generally accepted that further improvements to preeclampsia screening require the use of additional biomarkers. We recently reported that the levels of specific metabolites and metabolite ratios are associated with preterm preeclampsia. Notably, for several of these markers, preterm preeclampsia prediction varied according to maternal body mass index class. These findings motivated us to study whether patient classification allowed for combining metabolites with the current biomarkers more effectively to improve prediction of preterm preeclampsia. OBJECTIVE This study aimed to investigate whether metabolite biomarkers can improve biomarker-based preterm preeclampsia prediction in 3 screening resource scenarios according to the availability of: (1) placental growth factor, (2) placental growth factor+mean arterial pressure, and (3) placental growth factor+mean arterial pressure+uterine artery pulsatility index. STUDY DESIGN This was an observational case-control study, drawn from a large prospective screening study at 11 to 13 weeks' gestation on the prediction of pregnancy complications, conducted at King's College Hospital, London, United Kingdom. Maternal blood samples were also collected for subsequent research studies. We used liquid chromatography-mass spectrometry to quantify levels of 50 metabolites previously associated with pregnancy complications in plasma samples from singleton pregnancies. Biomarker data, normalized using multiples of medians, on 1635 control and 106 preterm preeclampsia pregnancies were available for model development. Modeling was performed using a methodology that generated a prediction model for preterm preeclampsia in 4 consecutive steps: (1) z-normalization of predictors, (2) combinatorial modeling of so-called (weak) classifiers in the unstratified patient set and in discrete patient strata based on body mass index and/or race, (3) selection of classifiers, and (4) aggregation of the selected classifiers (ie, bagging) into the final prediction model. The prediction performance of models was evaluated using the area under the receiver operating characteristic curve, and detection rate at 10% false-positive rate. RESULTS First, the predictor development methodology itself was evaluated. The patient set was split into a training set (2/3) and a test set (1/3) for predictor model development and internal validation. A prediction model was developed for each of the 3 different predictor panels, that is, placental growth factor+metabolites, placental growth factor+mean arterial pressure+metabolites, and placental growth factor+mean arterial pressure+uterine artery pulsatility index+metabolites. For all 3 models, the area under the receiver operating characteristic curve in the test set did not differ significantly from that of the training set. Next, a prediction model was developed using the complete data set for the 3 predictor panels. Among the 50 metabolites available for modeling, 26 were selected across the 3 prediction models; 21 contributed to at least 2 out of the 3 prediction models developed. Each time, area under the receiver operating characteristic curve and detection rate were significantly higher with the new prediction model than with the reference model. Markedly, the estimated detection rate with the placental growth factor+mean arterial pressure+metabolites prediction model in all patients was 0.58 (95% confidence interval, 0.49-0.70), a 15% increase (P<.001) over the detection rate of 0.43 (95% confidence interval, 0.33-0.55) estimated for the reference placental growth factor+mean arterial pressure. The same prediction model significantly improved detection in Black (14%) and White (19%) patients, and in the normal-weight group (18.5≤body mass index<25) and the obese group (body mass index≥30), with respectively 19% and 20% more cases detected, but not in the overweight group, when compared with the reference model. Similar improvement patterns in detection rates were found in the other 2 scenarios, but with smaller improvement amplitudes. CONCLUSION Metabolite biomarkers can be combined with the established biomarkers of placental growth factor, mean arterial pressure, and uterine artery pulsatility index to improve the biomarker component of early-pregnancy preterm preeclampsia prediction tests. Classification of the pregnant women according to the maternal characteristics of body mass index and/or race proved instrumental in achieving improved prediction. This suggests that maternal phenotyping can have a role in improving the prediction of obstetrical syndromes such as preeclampsia.
Collapse
Affiliation(s)
- Grégoire Thomas
- SQU4RE, Lokeren, Belgium (Dr Thomas); Metabolomic Diagnostics, Cork, Ireland (Drs Thomas, Panigassi, and Tuytten)
| | - Argyro Syngelaki
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| | - Karam Hamed
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| | - Anais Perez-Montaño
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| | - Ana Panigassi
- Metabolomic Diagnostics, Cork, Ireland (Drs Thomas, Panigassi, and Tuytten)
| | - Robin Tuytten
- Metabolomic Diagnostics, Cork, Ireland (Drs Thomas, Panigassi, and Tuytten).
| | - Kypros H Nicolaides
- The Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Syngelaki, Hamed, Perez-Montaño, and Nicolaides)
| |
Collapse
|
12
|
Bader JM, Albrecht V, Mann M. MS-based proteomics of body fluids: The end of the beginning. Mol Cell Proteomics 2023:100577. [PMID: 37209816 PMCID: PMC10388585 DOI: 10.1016/j.mcpro.2023.100577] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Accurate biomarkers are a crucial and necessary precondition for precision medicine, yet existing ones are often unspecific and new ones have been very slow to enter the clinic. Mass spectrometry (MS)-based proteomics excels by its untargeted nature, specificity of identification and quantification making it an ideal technology for biomarker discovery and routine measurement. It has unique attributes compared to affinity binder technologies, such as OLINK Proximity Extension Assay and SOMAscan. In a previous review we described technological and conceptual limitations that had held back success (Geyer et al., 2017). We proposed a 'rectangular strategy' to better separate true biomarkers by minimizing cohort-specific effects. Today, this has converged with advances in MS-based proteomics technology, such as increased sample throughput, depth of identification and quantification. As a result, biomarker discovery studies have become more successful, producing biomarker candidates that withstand independent verification and, in some cases, already outperform state-of-the-art clinical assays. We summarize developments over the last years, including the benefits of large and independent cohorts, which are necessary for clinical acceptance. They are also required for machine learning or deep learning. Shorter gradients, new scan modes and multiplexing are about to drastically increase throughput, cross-study integration, and quantification, including proxies for absolute levels. We have found that multi-protein panels are inherently more robust than current single analyte tests and better capture the complexity of human phenotypes. Routine MS measurement in the clinic is fast becoming a viable option. The full set of proteins in a body fluid (global proteome) is the most important reference and the best process control. Additionally, it increasingly has all the information that could be obtained from targeted analysis although the latter may be the most straightforward way to enter into regular use. Many challenges remain, not least of a regulatory and ethical nature, but the outlook for MS-based clinical applications has never been brighter.
Collapse
Affiliation(s)
- Jakob M Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Vincent Albrecht
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
13
|
Stone JA, van der Gugten JG. Quantitative tandem mass spectrometry in the clinical laboratory: Regulation and opportunity for validation of laboratory developed tests. J Mass Spectrom Adv Clin Lab 2023; 28:82-90. [PMID: 36937811 PMCID: PMC10017411 DOI: 10.1016/j.jmsacl.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Tandem mass spectrometry is an important analytical tool for clinical laboratories, but tests developed and validated in-house (laboratory developed tests, or LDTs) require special consideration. In late 2022, the forecast for United States (U.S.) federal regulation of LDTs changed unexpectedly when the VALID Act was not passed by the U.S. Congress. This Act would have modified the Food and Drug Administration's (FDA's) role to increase regulatory oversight for LDT providers. In this revised context, we review optimization of quantitative mass spectrometry LDT validation and suggest avenues other than an additional FDA mandate to achieve uniform best practice. Common challenges, logistical barriers, and recommendations for easing the burden of best-quality quantitative mass spectrometry LDT method validation are discussed.
Collapse
Key Words
- AACC, American Association for Clinical Chemistry
- AMP, Association for Molecular Pathology
- CAP, College of Amercian Pathologists
- CLIA’88, Clinical Laboratory Improvement Amendments of 1988
- CLSI, Clinical Laboratory Standards Institute
- CMS, Centers for Medicare & Medicaid Services
- CoA, Certificate of Analysis
- FDA, Federal Drug Administration
- FFDCA, Federal Food, Drug and Cosmetics Act
- GC–MS, Gas Chromatography-Mass Spectrometry
- HELP, U.S. Senate Committee on Health, Education, Labor & Pensions
- IA, Immunoassay(s)
- IVD, In-vitro Device
- LC-MSMS, Liquid Chromatography-Tandem Mass Spectrometry
- LDT, Laboratory Developed Test
- Laboratory diagnosis
- Liquid chromatography-tandem mass spectrometry
- MDA, Medical Device Amendments
- MLS, Medical Laboratory Scientist(s)
- MSACL, Mass Spectrometry & Advances in the Clinical Laboratory
- Method validation
- QntLCMS-LDT, Quantitative LC-MSMS LDT
- SOP, Standard Operating Procedure
- VALID, Verifying Accurate Leading-edge IVCT Development Act of 2021
- VITAL, Verified Innovative Testing in American Laboratories Act of 2021
Collapse
Affiliation(s)
- Judith A. Stone
- Department of Clinical Laboratories, University of California San Francisco Health, San Francisco, CA, United States
| | - J. Grace van der Gugten
- Office of the Chief Medical Examiner, Government of Alberta, Edmonton, AB, Canada
- Corresponding author.
| |
Collapse
|
14
|
Lee B, Heo WY, Kim JA, Lee HS, Hwang N, Park HD, Sung SI, Chang YS, Park WS, Lee SY. Comprehensive Evaluation of the NeoBase 2 Non-derivatized MSMS Assay and Exploration of Analytes With Significantly Different Concentrations Between Term and Preterm Neonates. Ann Lab Med 2023; 43:153-166. [PMID: 36281509 PMCID: PMC9618896 DOI: 10.3343/alm.2023.43.2.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Despite the popularity of the NeoBase 2 Non-derivatized MSMS assay (PerkinElmer, Turku, Finland), there are no reports of its comprehensive evaluation, including the ability to distinguish transient tyrosinemia of the newborn (TTN) from tyrosinemia type 1 (TYR 1) using succinylacetone (SUAC). No newborn screening (NBS) cutoffs for preterm neonates in the Korean population have been suggested. We evaluated the NeoBase 2 assay and identified analytes requiring different cutoffs in preterm neonates. Methods Residual NBS dried blood spot samples and proficiency testing (PT) materials of the Newborn Screening Quality Assurance Program and the Korean Association of External Quality Assessment Service were used. Precision, accuracy, limit of detection (LOD), lower limit of quantification (LLOQ), linearity, recovery, carryover, and performance of SUAC were evaluated. Cutoffs were determined, and analytes requiring different cutoffs in preterm neonates were investigated. Results Mean CVs for within-run and between-day precision were within 15%. Accuracy analysis indicated high agreement with in-house derivatized assay results and results of other PT participants. All analytes demonstrated acceptable LOD, LLOQ, and linearity. Recoveries were acceptable, except for SUAC. Carryover was negligible. Cutoffs were established for all analytes; Tyr, adenosine, and C20:0-lysophosphatidylcholine required different cutoffs in preterm neonates. Differential diagnosis of TYR 1 and TTN was successful with simultaneous Tyr and SUAC measurement. Conclusions The NeoBase 2 assay demonstrated satisfactory performance. The additional analytes provide a wider diagnostic coverage, and the simultaneous measurement of Tyr and SUAC is efficient in excluding TYR 1. The new cutoffs for preterm neonates may decrease false-positive rates, without compromising diagnostic sensitivity.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Young Heo
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun-Seung Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Narae Hwang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Lee JH, Song J. Non-derivatizing Tandem Mass Spectrometry Assay for Expanded Newborn Screening and Cutoffs for Preterm Neonates. Ann Lab Med 2023; 43:133-134. [PMID: 36281505 PMCID: PMC9618909 DOI: 10.3343/alm.2023.43.2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Joon Hee Lee
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea,Corresponding author: Junghan Song, M.D., Ph.D. Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 beon-gil, Bundang-du, Seongnam 13620, Korea Tel: +82-31-787-7691, Fax: +82-31-787-4015, E-mail:
| |
Collapse
|
16
|
Tan J, Ng CA, Hart NH, Rantalainen T, Sim M, Scott D, Zhu K, Hands B, Chivers P. Reduced Peak Bone Mass in Young Adults With Low Motor Competence. J Bone Miner Res 2023; 38:665-677. [PMID: 36795323 DOI: 10.1002/jbmr.4788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Although suboptimal bone health has been reported in children and adolescents with low motor competence (LMC), it is not known whether such deficits are present at the time of peak bone mass. We examined the impact of LMC on bone mineral density (BMD) in 1043 participants (484 females) from the Raine Cohort Study. Participants had motor competence assessed using the McCarron Assessment of Neuromuscular Development at 10, 14, and 17 years, and a whole-body dual-energy X-ray absorptiometry (DXA) scan at 20 years. Bone loading from physical activity was estimated from the International Physical Activity Questionnaire at the age of 17 years. The association between LMC and BMD was determined using general linear models that controlled for sex, age, body mass index, vitamin D status, and prior bone loading. Results indicated LMC status (present in 29.6% males and 21.9% females) was associated with a 1.8% to 2.6% decrease in BMD at all load-bearing bone sites. Assessment by sex showed that the association was mainly in males. Osteogenic potential of physical activity was associated with increased BMD dependent on sex and LMC status, with males with LMC showing a reduced effect from increasing bone loading. As such, although engagement in osteogenic physical activity is associated with BMD, other factors involved in physical activity, eg, diversity, movement quality, may also contribute to BMD differences based upon LMC status. The finding of lower peak bone mass for individuals with LMC may reflect a higher risk of osteoporosis, especially for males; however, further research is required. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jocelyn Tan
- School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, Australia.,Western Australian Bone Research Collaboration, Perth, Australia
| | - Carrie-Anne Ng
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Nicolas H Hart
- Western Australian Bone Research Collaboration, Perth, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, Australia.,School of Sport, Exercise and Rehabilitation, University of Technology Sydney, Sydney, Australia
| | - Timo Rantalainen
- Western Australian Bone Research Collaboration, Perth, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, Australia.,Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Marc Sim
- Western Australian Bone Research Collaboration, Perth, Australia.,Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Medical School, The University of Western Australia, Perth, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Kun Zhu
- Nutrition & Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Beth Hands
- Institute for Health Research, University of Notre Dame Australia, Fremantle, Australia
| | - Paola Chivers
- Western Australian Bone Research Collaboration, Perth, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, Australia
| |
Collapse
|
17
|
Impact of VALID Act implementation on mass spectrometry-based clinical proteomic laboratory developed tests. J Mass Spectrom Adv Clin Lab 2023; 28:30-34. [PMID: 36865788 PMCID: PMC9971545 DOI: 10.1016/j.jmsacl.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Mass spectrometry (MS)-based clinical proteomic Laboratory Developed Tests (LDTs) for the measurement of protein biomarkers related to endocrinology, cardiovascular disease, cancer, and Alzheimer's disease are gaining traction in clinical laboratories due to their value in supporting diagnostic and treatment decisions for patients. Under the current regulatory landscape, MS-based clinical proteomic LDTs are regulated by Clinical Laboratory Improvement Amendments (CLIA) under the auspices of the Centers for Medicaid and Medicare Services (CMS). However, should the Verifying Accurate Leading-Edge In Vitro Clinical Test Development (VALID) Act pass, it will grant the FDA greater authority to oversee diagnostic tests, including LDTs. This could impede clinical laboratories' ability to develop new MS-based proteomic LDTs to support existing and emerging patient care needs. Therefore, this review discusses the currently available MS-based proteomic LDTs and their current regulatory landscape in the context of the potential impacts imposed by the passage of the VALID Act.
Collapse
|
18
|
Cho SE, Han J, Park JH, Park E, Kim GY, Lee JH, Yi A, Lee SG, Lee EH, Yun YM. Clinical Usefulness of Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry Method for Low Serum Testosterone Measurement. Ann Lab Med 2023; 43:19-28. [PMID: 36045053 PMCID: PMC9467846 DOI: 10.3343/alm.2023.43.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/27/2022] [Accepted: 08/03/2022] [Indexed: 12/27/2022] Open
Abstract
Background Mass spectrometry methods exhibit higher accuracy and lower variability than immunoassays at low testosterone concentrations. We developed and validated an ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay for quantifying serum total testosterone. Methods We used an ExionLC UPLC (Sciex, Framingham, MA, USA) system and a Sciex Triple Quad 6500+ (Sciex) MS/MS system in electrospray ionization and positive ion modes with multiple reaction monitoring transitions to evaluate precision, accuracy, linearity, lower limit of quantitation (LLOQ), carryover, ion suppression, stability, and reference intervals. For method comparison, we measured serum testosterone concentrations using this method in 40 subjects whose testosterone concentrations ranged from 0.14 to 55.48 nmol/L as determined using the Architect i2000 immunoassay (Abbott Diagnostics, Abbott Park, IL, USA) and in an additional 160 sera with testosterone concentrations <1.67 nmol/L. Results The intra- and inter-run precision CVs were <2.81%, and the accuracy bias values were <3.85%, which were all acceptable. The verified linear interval was 0.03-180.84 nmol/L; the LLOQ was 0.03 nmol/L. No significant carryover and ion suppression were observed. The testosterone in serum was stable at 4°C, at -20°C, and after three freeze-thaw cycles. The reference intervals were successfully verified. The correlation was good at testosterone concentrations of 0.14-55.48 nmol/L; however, the Architect assay showed positive percent bias at concentrations <1.67 nmol/L. Conclusions The UPLC-MS/MS assay shows acceptable performance, with a lower LLOQ than the immunoassay. This method will enable the quantitation of low testosterone concentrations.
Collapse
Affiliation(s)
- Sung-Eun Cho
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Jungsun Han
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Ju-Hee Park
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Euna Park
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Geun Young Kim
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Jun Hyung Lee
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Ahram Yi
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Sang Gon Lee
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Eun Hee Lee
- Department of Laboratory Medicine, GCLabs, Yongin, Korea
| | - Yeo-Min Yun
- Department of Laboratory Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Cheng WL, Markus C, Lim CY, Tan RZ, Sethi SK, Loh TP. Calibration Practices in Clinical Mass Spectrometry: Review and Recommendations. Ann Lab Med 2023; 43:5-18. [PMID: 36045052 PMCID: PMC9467832 DOI: 10.3343/alm.2023.43.1.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022] Open
Abstract
Background Calibration is a critical component for the reliability, accuracy, and precision of mass spectrometry measurements. Optimal practice in the construction, evaluation, and implementation of a new calibration curve is often underappreciated. This systematic review examined how calibration practices are applied to liquid chromatography-tandem mass spectrometry measurement procedures. Methods The electronic database PubMed was searched from the date of database inception to April 1, 2022. The search terms used were "calibration," "mass spectrometry," and "regression." Twenty-one articles were identified and included in this review, following evaluation of the titles, abstracts, full text, and reference lists of the search results. Results The use of matrix-matched calibrators and stable isotope-labeled internal standards helps to mitigate the impact of matrix effects. A higher number of calibration standards or replicate measurements improves the mapping of the detector response and hence the accuracy and precision of the regression model. Constructing a calibration curve with each analytical batch recharacterizes the instrument detector but does not reduce the actual variability. The analytical response and measurand concentrations should be considered when constructing a calibration curve, along with subsequent use of quality controls to confirm assay performance. It is important to assess the linearity of the calibration curve by using actual experimental data and appropriate statistics. The heteroscedasticity of the calibration data should be investigated, and appropriate weighting should be applied during regression modeling. Conclusions This review provides an outline and guidance for optimal calibration practices in clinical mass spectrometry laboratories.
Collapse
Affiliation(s)
- Wan Ling Cheng
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Corey Markus
- Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Chun Yee Lim
- Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Sunil Kumar Sethi
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | | |
Collapse
|
20
|
Haymond S. System Performance Monitoring in Clinical Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Methods Mol Biol 2022; 2546:13-25. [PMID: 36127574 DOI: 10.1007/978-1-0716-2565-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quality assurance (QA) activities enable continuous improvement through ongoing post-implementation monitoring to identify, evaluate, and correct problems. QA for clinical liquid chromatography tandem mass spectrometry (LC-MS/MS) assays should include specific components that address the unique aspects of these methods. This chapter briefly describes approaches for clinical LC-MS/MS system performance monitoring using batch and peak review metrics, largely following CLSI-C62A guidance. Though routine checks ensure the quality of results reported for each run, there is also a need to evaluate metrics between runs over time. Post-implementation performance monitoring of LC-MS/MS methods is typically focused on calibration curves, retention times, peak intensities, and ion ratios.
Collapse
Affiliation(s)
- Shannon Haymond
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA. .,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
21
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part II-Operations. Ann Lab Med 2022; 42:531-557. [PMID: 35470272 PMCID: PMC9057814 DOI: 10.3343/alm.2022.42.5.531] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is increasingly utilized in clinical laboratories because it has advantages in terms of specificity and sensitivity over other analytical technologies. These advantages come with additional responsibilities and challenges given that many assays and platforms are not provided to laboratories as a single kit or device. The skills, staff, and assays used in LC-MS/MS are internally developed by the laboratory, with relatively few exceptions. Hence, a laboratory that deploys LC-MS/MS assays must be conscientious of the practices and procedures adopted to overcome the challenges associated with the technology. This review discusses the post-development landscape of LC-MS/MS assays, including validation, quality assurance, operations, and troubleshooting. The content knowledge of LC-MS/MS users is quite broad and deep and spans multiple scientific fields, including biology, clinical chemistry, chromatography, engineering, and MS. However, there are no formal academic programs or specific literature to train laboratory staff on the fundamentals of LC-MS/MS beyond the reports on method development. Therefore, depending on their experience level, some readers may be familiar with aspects of the laboratory practices described herein, while others may be not. This review endeavors to assemble aspects of LC-MS/MS operations in the clinical laboratory to provide a framework for the thoughtful development and execution of LC-MS/MS applications.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
22
|
Rodríguez-García M, Fernández-Varo G, Hidalgo S, Rodríguez G, Martínez I, Zeng M, Casals E, Morales-Ruiz M, Casals G. Validation of a Microwave-Assisted Derivatization Gas Chromatography-Mass Spectrometry Method for the Quantification of 2-Hydroxybutyrate in Human Serum as an Early Marker of Diabetes Mellitus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061889. [PMID: 35335253 PMCID: PMC8950062 DOI: 10.3390/molecules27061889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022]
Abstract
Circulating levels of 2-hydroxybutyrate (2HB) are highly related to glycemic status in different metabolomic studies. According to recent evidence, 2HB is an early biomarker of the future development of dysglycemia and type 2 diabetes mellitus and may be causally related to the progression of normal subjects to impaired fasting glucose or insulin resistance. In the present study, we developed and validated a simple, specific and sensitive gas chromatography-mass spectrometry (GC-MS) method specifically intended to quantify serum levels of 2HB. Liquid–liquid extraction with ethyl acetate was followed by 2 min of microwave-assisted derivatization. The method presented acceptable accuracy, precision and recovery, and the limit of quantification was 5 µM. Levels of 2HB were found to be stable in serum after three freeze-thaw cycles, and at ambient temperature and at a temperature of 4 °C for up to 24 h. Extracts derivatized under microwave irradiation were stable for up to 96 h. No differences were found in 2HB concentrations measured in serum or plasma EDTA samples. In summary, the method is useful for a rapid, precise and accurate quantification of 2HB in serum samples assessed for the evaluation of dysglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- María Rodríguez-García
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
- Department of Biomedicine, University of Barcelona, 08905 Barcelona, Spain
| | - Susana Hidalgo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
| | - Gabriela Rodríguez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
| | - Irene Martínez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
- Correspondence: (E.C.); (G.C.); Tel.: +34-93-227-5400-2667 (G.C.)
| | - Manuel Morales-Ruiz
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
- Department of Biomedicine, University of Barcelona, 08905 Barcelona, Spain
- Commission for the Biochemical Assessment of Hepatic Disease-SEQCML, 08036 Barcelona, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.R.-G.); (G.F.-V.); (S.H.); (G.R.); (I.M.); (M.M.-R.)
- Commission for the Biochemical Assessment of Hepatic Disease-SEQCML, 08036 Barcelona, Spain
- Correspondence: (E.C.); (G.C.); Tel.: +34-93-227-5400-2667 (G.C.)
| |
Collapse
|
23
|
Affiliation(s)
- Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mina Hur
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Thomas SN, French D, Jannetto PJ, Rappold BA, Clarke WA. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. NATURE REVIEWS. METHODS PRIMERS 2022; 2:96. [PMCID: PMC9735147 DOI: 10.1038/s43586-022-00175-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 12/13/2022]
Abstract
Mass spectrometry is a powerful analytical tool used for the analysis of a wide range of substances and matrices; it is increasingly utilized for clinical applications in laboratory medicine. This Primer includes an overview of basic mass spectrometry concepts, focusing primarily on tandem mass spectrometry. We discuss experimental considerations and quality management, and provide an overview of some key applications in the clinic. Lastly, the Primer discusses significant challenges for implementation of mass spectrometry in clinical laboratories and provides an outlook of where there are emerging clinical applications for this technology. Tandem mass spectrometry is increasingly utilized for clinical applications in laboratory medicine. In this Primer, Thomas et al. discuss experimental considerations and quality management for implementing clinical tandem mass spectrometry in the clinic with an overview of some key applications.
Collapse
Affiliation(s)
- Stefani N. Thomas
- grid.17635.360000000419368657Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - Deborah French
- grid.266102.10000 0001 2297 6811Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Paul J. Jannetto
- grid.66875.3a0000 0004 0459 167XDepartment of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN USA
| | - Brian A. Rappold
- grid.419316.80000 0004 0550 1859Research and Development, Labcorp, Burlington, NC USA
| | - William A. Clarke
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|