1
|
Gürkan H, Atli Eİ, Atli E, Bozatli L, Altay MA, Yalçintepe S, Özen Y, Eker D, Akurut Ç, Demır S, Görker I. Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders. Noro Psikiyatr Ars 2020; 57:177-191. [PMID: 32952419 PMCID: PMC7481981 DOI: 10.29399/npa.24890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aneuploids, copy number variations (CNVs), and single nucleotide variants in specific genes are the main genetic causes of developmental delay (DD) and intellectual disability disorder (IDD). These genetic changes can be detected using chromosome analysis, chromosomal microarray (CMA), and next-generation DNA sequencing techniques. Therefore; In this study, we aimed to investigate the importance of CMA in determining the genomic etiology of unexplained DD and IDD in 123 patients. METHOD For 123 patients, chromosome analysis, DNA fragment analysis and microarray were performed. Conventional G-band karyotype analysis from peripheral blood was performed as part of the initial screening tests. FMR1 gene CGG repeat number and methylation analysis were carried out to exclude fragile X syndrome. RESULTS CMA analysis was performed in 123 unexplained IDD/DD patients with normal karyotypes and fragile X screening, which were evaluated by conventional cytogenetics. Forty-four CNVs were detected in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients were reported. In 6 patients, one or more pathogenic CNVs were determined. Therefore, the diagnostic efficiency of CMA was found to be 31.7% (39/123). CONCLUSION Today, genetic analysis is still not part of the routine in the evaluation of IDD patients who present to psychiatry clinics. A genetic diagnosis from CMA can eliminate genetic question marks and thus alter the clinical management of patients. Approximately one-third of the positive CMA findings are clinically intervenable. However, the emergence of CNVs as important risk factors for multiple disorders increases the need for individuals with comorbid neurodevelopmental conditions to be the priority where the CMA test is recommended.
Collapse
Affiliation(s)
- Hakan Gürkan
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Emine İkbal Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Engin Atli
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Leyla Bozatli
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey
| | - Mengühan Araz Altay
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey
| | - Sinem Yalçintepe
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Yasemin Özen
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Damla Eker
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Çisem Akurut
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Selma Demır
- Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey
| | - Işık Görker
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Hu X, Li L, Zhang H, Hu Z, Li L, Sun M, Liu R. Prenatal diagnosis of a de novo tetrasomy 15q24.3-25.3: Case report and literature review. J Clin Lab Anal 2020; 34:e23288. [PMID: 32185823 PMCID: PMC7370735 DOI: 10.1002/jcla.23288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Terminal duplication on chromosome 15q is a rare chromosomal variation. Affected individuals show similar features such as growth dysplasia or the development of frontal bossing, body deformities, facial abnormalities, and genitourinary or cardiovascular disorders. However, it is not yet clear whether such 15q repeats lead to identifiable patterns of clinical abnormalities. Therefore, the purpose of this study was to analyze the prenatal diagnostic results and clinical manifestations of a fetus with 15q duplication and to summarize the literature. METHODS The case was a fetus at 28 weeks of gestation. The risk of Down syndrome from second-trimester screening was 1/140. Prenatal ultrasound and amniocentesis were performed, and chromosomal microarray analysis (CMA) was used for genetic analysis. RESULTS The fetus had abnormal clinical features, including intracardiac echogenic focus in the left ventricle, an aberrant right subclavian artery, and growth delay. The fetal chromosomal karyotype was 46,XX,15q?,12q?,21pstk+, and CMA revealed a 10.163 Mb duplication at 15q24.3-q25.3. The couple chose to terminate the pregnancy after careful consideration. CONCLUSIONS The combination and rational application of cytogenetics technology and molecular genetics technology such as CMA will open up the field of clinical application and provide useful genetic counseling for parents of fetuses carrying such chromosomal duplications.
Collapse
Affiliation(s)
- Xiaonan Hu
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Leilei Li
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Hongguo Zhang
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Zhuming Hu
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Linlin Li
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Meiling Sun
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruizhi Liu
- Reproductive Medicine & Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, China.,Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
3
|
Ochando I, Alonzo Martínez MC, Serrano AM, Urbano A, Cazorla E, Calvo D, Rueda J. Prenatal diagnosis and molecular cytogenetic characterization of a de novo duplication of 15q24.3-q26.1. APPLICATION OF CLINICAL GENETICS 2018; 11:77-80. [PMID: 30013380 PMCID: PMC6037148 DOI: 10.2147/tacg.s159377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reported cases of distal 15q interstitial duplications are uncommon and do not result in a recognizable pattern of abnormalities. Some studies report prenatal overgrowth, while others describe growth retardation. We present molecular cytogenetic characterization of a 14 Mb interstitial duplication, encompassing 81 Online Mendelian Inheritance in Man (OMIM) genes, in a fetus with single umbilical artery and short limbs. We propose that growth restriction, previously described and present in our patient, may be due to duplication of a gene or genes contained in the 15q24 region.
Collapse
Affiliation(s)
- Isabel Ochando
- Genetics Unit, Unidad de Genética, Hospital Clínica Vistahermosa, Alicante, Spain, .,Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain,
| | - Melanie Cristine Alonzo Martínez
- Department of Obstetrics and Gynecology, Servicio de Ginecología y Obstetricia, Hospital Universitario de Torrevieja, Alicante, Spain
| | - Ana María Serrano
- Department of Obstetrics and Gynecology, Servicio de Ginecología y Obstetricia, Hospital Universitario de Torrevieja, Alicante, Spain
| | - Antonio Urbano
- Genetics Unit, Unidad de Genética, Hospital Clínica Vistahermosa, Alicante, Spain,
| | - Eduardo Cazorla
- Department of Obstetrics and Gynecology, Servicio de Ginecología y Obstetricia, Hospital Universitario de Torrevieja, Alicante, Spain
| | - Dolores Calvo
- Emergency Laboratory, Laboratorio Urgencias, Hospital Clínico Universitario, Valladolid, Spain
| | - Joaquín Rueda
- Genetics Unit, Unidad de Genética, Hospital Clínica Vistahermosa, Alicante, Spain, .,Departamento de Histología y Anatomía, Universidad Miguel Hernández, Alicante, Spain,
| |
Collapse
|
4
|
Cannarella R, Mattina T, Condorelli RA, Mongioì LM, Pandini G, La Vignera S, Calogero AE. Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function. Endocr Connect 2017; 6:528-539. [PMID: 28899882 PMCID: PMC5597972 DOI: 10.1530/ec-17-0158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/27/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R), mapping on the 15q26.3 chromosome, is required for normal embryonic and postnatal growth. The aim of the present study was to evaluate the IGF1R gene expression and function in three unrelated patients with chromosome 15 structural abnormalities. We report two male patients with the smallest 15q26.3 chromosome duplication described so far, and a female patient with ring chromosome 15 syndrome. Patient one, with a 568 kb pure duplication, had overgrowth, developmental delay, mental and psychomotor retardation, obesity, cryptorchidism, borderline low testis volume, severe oligoasthenoteratozoospermia and gynecomastia. We found a 1.8-fold increase in the IGF1R mRNA and a 1.3-fold increase in the IGF1R protein expression (P < 0.05). Patient two, with a 650 kb impure duplication, showed overgrowth, developmental delay, mild mental retardation, precocious puberty, low testicular volume and severe oligoasthenoteratozoospermia. The IGF1R mRNA and protein expression was similar to that of the control. Patient three, with a 46,XX r(15) (p10q26.2) karyotype, displayed intrauterine growth retardation, developmental delay, mental and psychomotor retardation. We found a <0.5-fold decrease in the IGF1R mRNA expression and an undetectable IGF1R activity. After reviewing the previously 96 published cases of chromosome 15q duplication, we found that neurological disorders, congenital cardiac defects, typical facial traits and gonadal abnormalities are the prominent features in patients with chromosome 15q duplication. Interestingly, patients with 15q deletion syndrome display similar features. We speculate that both the increased and decreased IGF1R gene expression may play a role in the etiology of neurological and gonadal disorders.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Giuseppe Pandini
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental MedicineUniversity of Catania, Catania, Italy
| |
Collapse
|
5
|
Deng H, Deng S, Xu H, Deng HX, Chen Y, Yuan L, Deng X, Yang S, Guan L, Zhang J, Yuan H, Guo Y. Exome Sequencing of a Pedigree Reveals S339L Mutation in the TLN2 Gene as a Cause of Fifth Finger Camptodactyly. PLoS One 2016; 11:e0155180. [PMID: 27223613 PMCID: PMC4880340 DOI: 10.1371/journal.pone.0155180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
Camptodactyly is a digit deformity characterized by permanent flexion contracture of one or both fifth fingers at the proximal interphalangeal joints. Though over 60 distinct types of syndromic camptodactyly have been described, only one disease locus (3q11.2-q13.12) for nonsyndromic camptodactyly has been identified. To identify the genetic defect for camptodactyly in a four-generation Chinese Han family, exome and Sanger sequencings were conducted and a missense variant, c.1016C>T (p.S339L), in the talin 2 gene (TLN2) was identified. The variant co-segregated with disease in the family and was not observed in 12 unaffected family members or 1,000 normal controls, suggesting that p.S339L is a pathogenic mutation. Two asymptomatic carriers in the family indicated incomplete penetrance or more complicated compensated mechanism. Most of p.S339L carriers also have relatively benign cardiac phenotypes. Expression of wild and mutant TLN2 in HEK293 cells suggested the predominant localization in cytoplasm. Our data suggest a potential molecular link between TLN2 and camptodactyly pathogenesis.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Han-Xiang Deng
- Division of Neuromuscular Medicine, Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| | - Yulan Chen
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Lamei Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Liping Guan
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Jianguo Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Hong Yuan
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Center for Experimental Medicine and Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.,Information Security and Big Data Research Institute, Central South University, Changsha, China
| |
Collapse
|
6
|
Leffler M, Puusepp S, Žilina O, Zhu Y, Kuuse K, Bain N, Burgess T, Õunap K, Field M. Two familial microduplications of 15q26.3 causing overgrowth and variable intellectual disability with normal copy number of IGF1R. Eur J Med Genet 2015; 59:257-62. [PMID: 26689622 DOI: 10.1016/j.ejmg.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/13/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Terminal duplications of 15q26.3 are associated with an overgrowth phenotype, distinct facial features and intellectual disability, with the smallest reported microduplication to date being 3.16 Mb in size. We report two familial 15q26.3 microduplication cases that are less than half this size, re-defining the minimal critical region for this duplication syndrome. In both families the duplication (albeit a complex copy number gain in one family) is associated with tall stature, early speech delay and variable cognitive problems. Neither familial copy number gains encompass the gene encoding for the insulin-like growth factor 1 receptor (IGF1R), the most-cited candidate for the overgrowth phenotype. In one family, whole genome sequence data and break point mapping excludes disruption of known IGF1R regulatory elements due to potential insertion within these elements. These cases highlight the possibility that the distal region of 15q contains another gene regulating human growth, with LRRK1 being a potential candidate.
Collapse
Affiliation(s)
- Melanie Leffler
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, Australia
| | - Sanna Puusepp
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Olga Žilina
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ying Zhu
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, Australia
| | - Kati Kuuse
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Nicole Bain
- Department of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, NSW, Australia
| | - Trent Burgess
- Victorian Clinical Genetics Service, MCRI, Royal Children's Hospital, Parkville, Australia; Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, Australia
| | - Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Paediatrics, University of Tartu, Tartu, Estonia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, Australia.
| |
Collapse
|
7
|
Luo M, Mulchandani S, Dubbs HA, Swarr D, Pyle L, Zackai EH, Spinner NB, Conlin LK. Detection of mutually exclusive mosaicism in a girl with genotype-phenotype discrepancies. Am J Med Genet A 2015. [PMID: 26198585 DOI: 10.1002/ajmg.a.37261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Discordance between clinical phenotype and genotype has multiple causes, including mosaicism. Phenotypes can be modified due to tissue distribution, or the presence of multiple abnormal cell lines with different genomic contributions. We have studied a 20-month-old female whose main phenotypes were failure to thrive, developmental delay, and patchy skin pigmentation. Initial chromosome and SNP microarray analysis of her blood revealed a non-mosaic ∼24 Mb duplication of 15q25.1q26.3 resulting from the unbalanced translocation of terminal 15q to the short arm of chromosome 15. The most common feature associated with distal trisomy 15q is prenatal and postnatal overgrowth, which was not consistent with this patient's phenotype. The phenotypic discordance, in combination with the patchy skin pigmentation, suggested the presence of mosaicism. Further analysis of skin biopsies from both hyper- and hypopigmented regions confirmed the presence of an additional cell line with the short arm of chromosome X deleted and replaced by the entire long arm of chromosome 15. The Xp deletion, consistent with a variant Turner Syndrome diagnosis, better explained the patient's phenotype. Parental studies revealed that the alterations in both cell lines were de novo and the duplicated distal 15q and the deleted Xp were from different parental origins, suggesting a mitotic event. The possible mechanism for the occurrence of two mutually exclusive structural rearrangements with both involving the long arm of chromosome 15 is discussed.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Surabhi Mulchandani
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Holly A Dubbs
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel Swarr
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Louise Pyle
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nancy B Spinner
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Laura K Conlin
- Department of Pathology & Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Sheth F, Andrieux J, Tewari S, Sheth H, Desai M, Kumari P, Nanavaty N, Sheth J. Chromosomal imbalance letter: Phenotypic consequences of combined deletion 8pter and duplication 15qter. Mol Cytogenet 2013; 6:24. [PMID: 23815819 PMCID: PMC3750467 DOI: 10.1186/1755-8166-6-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022] Open
Abstract
Exact breakpoint determination by oligonucleotide array-CGH has improved the analysis of genotype-phenotype correlations in cases with chromosome aberrations allowing a more accurate definition of relevant genes, particularly their isolated or combined impact on the phenotype in an unbalanced state. Chromosomal imbalances have been identified as one of the major causes of mental retardation and/or malformation syndromes and they are observed in ~2-5% of the cases. Here we report a female child born to non-consanguineous parents and having multiple congenital anomalies such as atrial septal defect and multiple ventricular septal defects, convergent strabismus, micropthalmia, seizures and mental retardation, with her head circumference and stature normal for her age. Cytogenetic study suggested 46,XX,add(8)(p23). Further analysis by array-CGH using 44K oligonucleotide probe confirmed deletion on 8p23.3p23.1 of 7.1 Mb and duplication involving 15q23q26.3 of 30 Mb size leading to 46,XX,der(8)t(8;15)(p23.3;q23)pat.arr 8p23.3p23.1(191,530-7,303,237)x1,15q23q26.3(72,338,961-102,35,195)x3. The unique phenotypic presentation in our case may have resulted from either loss or gain of a series of contiguous genes which may have resulted in a direct phenotypic effect and/or caused a genetic regulatory disturbance. Double segmental aberrations may have conferred phenotypic variability, as in our case, making it difficult to predict the characteristics that evolved as a result of the global gene imbalance, caused by the concomitant deletion and duplication.
Collapse
Affiliation(s)
- Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Joris Andrieux
- Laboratory of Medical Genetics, Jeanne de Flandre Hospital CHRU de Lille, Lille Cedex, France
| | - Stuti Tewari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Harsh Sheth
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 4EP, UK
| | - Manisha Desai
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Pritti Kumari
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Nidhish Nanavaty
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| | - Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, 380 015, India
| |
Collapse
|