1
|
Borewicz K, Brück WM. Supplemented Infant Formula and Human Breast Milk Show Similar Patterns in Modulating Infant Microbiota Composition and Function In Vitro. Int J Mol Sci 2024; 25:1806. [PMID: 38339084 PMCID: PMC10855883 DOI: 10.3390/ijms25031806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.
Collapse
Affiliation(s)
- Klaudyna Borewicz
- Mead Johnson B.V., Middenkampweg 2, 6545 CJ Nijmegen, The Netherlands;
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| |
Collapse
|
2
|
Alashkar Alhamwe B, López JF, Zhernov Y, von Strandmann EP, Karaulov A, Kolahian S, Geßner R, Renz H. Impact of local human microbiota on the allergic diseases: Organ-organ interaction. Pediatr Allergy Immunol 2023; 34:e13976. [PMID: 37366206 DOI: 10.1111/pai.13976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
The homogeneous impact of local dysbiosis on the development of allergic diseases in the same organ has been thoroughly studied. However, much less is known about the heterogeneous influence of dysbiosis within one organ on allergic diseases in other organs. A comprehensive analysis of the current scientific literature revealed that most of the relevant publications focus on only three organs: gut, airways, and skin. Moreover, the interactions appear to be mainly unidirectional, that is, dysbiotic conditions of the gut being associated with allergic diseases of the airways and the skin. Similar to homogeneous interactions, early life appears to be not only a crucial period for the formation of the microbiota in one organ but also for the later development of allergic diseases in other organs. In particular, we were able to identify a number of specific bacterial and fungal species/genera in the intestine that were repeatedly associated in the literature with either increased or decreased allergic diseases of the skin, like atopic dermatitis, or the airways, like allergic rhinitis and asthma. The reported studies indicate that in addition to the composition of the microbiome, also the relative abundance of certain microbial species and the overall diversity are associated with allergic diseases of the corresponding organs. As anticipated for human association studies, the underlying mechanisms of the organ-organ crosstalk could not be clearly resolved yet. Thus, further work, in particular experimental animal studies are required to elucidate the mechanisms linking dysbiotic conditions of one organ to allergic diseases in other organs.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria
| | - Juan-Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Yury Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Saeed Kolahian
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Reinhard Geßner
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Obiakor CV, Parks J, Takaro TK, Tun HM, Morales-Lizcano N, Azad MB, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Subbarao P, Scott JA, Kozyrskyj AL. Early Life Antimicrobial Exposure: Impact on Clostridioides difficile Colonization in Infants. Antibiotics (Basel) 2022; 11:antibiotics11070981. [PMID: 35884235 PMCID: PMC9311587 DOI: 10.3390/antibiotics11070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The relationship between antibiotic use and Clostridioides difficile (C. difficile) has been well established in adults and older children but remains unclear and is yet to be fully examined in infant populations. This study aimed to determine the separate and cumulative impact from antibiotics and household cleaning products on C. difficile colonization in infants. This study included 1429 infants at 3–4 months of age and 1728 infants at 12 months of age from the Canadian Healthy Infant Longitudinal Development (CHILD) birth cohort. The levels of infant antimicrobial exposure were obtained from hospital birth charts and standardized questionnaires. Infant gut microbiota was characterized by Illumina 16S ribosomal ribonucleic acid (rRNA) gene sequencing. Analysis of C. difficile was performed using a quantitative polymerase chain reaction (qPCR). Overall, C. difficile colonized 31% and 46% of infants at 3–4 months and 12 months, respectively. At 3–4 months, C. difficile colonization was significantly higher in infants exposed to both antibiotics and higher (above average) usage of household cleaning products (adjusted odds ratio (aOR) 1.50, 95% CI 1.03–2.17; p = 0.032) than in infants who had the least antimicrobial exposure. This higher colonization persisted up to 12 months of age. Our study suggests that cumulative exposure to systemic antibiotics and higher usage of household cleaning products facilitates C. difficile colonization in infants. Further research is needed to understand the future health impacts.
Collapse
Affiliation(s)
| | - Jaclyn Parks
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (J.P.); (T.K.T.)
- Cancer Control Research, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Tim K. Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (J.P.); (T.K.T.)
| | - Hein M. Tun
- School of Public Health, University of Hong Kong, Hong Kong;
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong
| | - Nadia Morales-Lizcano
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (N.M.-L.); (J.A.S.)
| | - Meghan B. Azad
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada; (M.B.A.); (E.S.)
| | | | - Theo J. Moraes
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; (T.J.M.); (P.S.)
| | - Elinor Simons
- Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada; (M.B.A.); (E.S.)
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada;
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada; (T.J.M.); (P.S.)
| | - James A. Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (N.M.-L.); (J.A.S.)
| | - Anita L. Kozyrskyj
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada;
- Correspondence:
| |
Collapse
|
4
|
Treatment with Distinct Antibiotic Classes Causes Different Pulmonary Outcomes on Allergic Airway Inflammation Associated with Modulation of Symbiotic Microbiota. J Immunol Res 2022; 2022:1466011. [PMID: 35785028 PMCID: PMC9242750 DOI: 10.1155/2022/1466011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Asthma is a chronic pulmonary disease that affects about 300 million people worldwide. Previous studies have associated antimicrobial use with allergies, but the real impact of antibiotics on asthma is still elusive. We investigated the potential impact of amoxicillin (Amox), trimethoprim/sulfamethoxazole (TMP/SMX), and metronidazole (Metro) in a murine model of OVA-induced allergic airway inflammation. Methods BALB/c mice received three cycles of 7 days of antibiotics in drinking water followed by 7 days washout and were sensitized i.p. with OVA/Alum at days 0 and 14. After the end of the last antibiotic washout, the mice were challenged with aerosolized OVA. Pulmonary parameters were evaluated, and serum, BAL, and feces were collected for analysis. Results Amox- and TMP/SMX-treated animals displayed more severe allergic airway inflammation parameters with increased airway hyperresponsiveness, reduced lung alveolar volume, and increased levels in BAL of IL-4 and IL-6. In contrast, Metro-treated mice showed preserved FEV-50, decreased lung inflammation, and higher levels of butyrate and propionate in their feces. Metro treatment was associated with increased OVA-specific IgA in serum. BAL microbiota was abundant in allergic groups but not in nonallergic controls with the Amox-treated group displaying the increased frequency of Proteobacteria, while Metro and TMP/SMX showed increased levels of Firmicutes. In the gut, we observed the enrichment of Akkermansia muciniphila associated with reduced airway inflammation phenotype in the Metro group, even after the recovery period. Conclusion Our data suggest that different antibiotic treatments may impact the course of experimental allergic airway inflammation in diverse ways by several mechanisms, including modulation of short-chain fat acids production by intestinal microbiota.
Collapse
|
5
|
Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol 2022; 10:880544. [PMID: 35493075 PMCID: PMC9048050 DOI: 10.3389/fcell.2022.880544] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yasir Ahmed Syed
- School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff, United Kingdom
| | - Mojibur R. Khan
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
- *Correspondence: Mojibur R. Khan,
| |
Collapse
|
6
|
Tun HM, Peng Y, Chen B, Konya TB, Morales-Lizcano NP, Chari R, Field CJ, Guttman DS, Becker AB, Mandhane PJ, Moraes TJ, Sears MR, Turvey SE, Subbarao P, Simons E, Scott JA, Kozyrskyj AL. Ethnicity Associations With Food Sensitization Are Mediated by Gut Microbiota Development in the First Year of Life. Gastroenterology 2021; 161:94-106. [PMID: 33741316 DOI: 10.1053/j.gastro.2021.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Increasing evidence supports the role of early-life gut microbiota in developing atopic diseases, but ecological changes to gut microbiota during infancy in relation to food sensitization remain unclear. We aimed to characterize and associate these changes with the development of food sensitization in children. METHODS In this observational study, using 16S rRNA amplicon sequencing, we characterized the composition of 2844 fecal microbiota in 1422 Canadian full-term infants. Atopic sensitization outcomes were measured by skin prick tests at age 1 year and 3 years. The association between gut microbiota trajectories, based on longitudinal shifts in community clusters, and atopic sensitization outcomes at age 1 and 3 years were determined. Ethnicity and early-life exposures influencing microbiota trajectories were initially examined, and post-hoc analyses were conducted. RESULTS Four identified developmental trajectories of gut microbiota were shaped by birth mode and varied by ethnicity. The trajectory with persistently low Bacteroides abundance and high Enterobacteriaceae/Bacteroidaceae ratio throughout infancy increased the risk of sensitization to food allergens, particularly to peanuts at age 3 years by 3-fold (adjusted odds ratio [OR] 2.82, 95% confidence interval [CI] 1.13-7.01). A much higher likelihood for peanut sensitization was found if infants with this trajectory were born to Asian mothers (adjusted OR 7.87, 95% CI 2.75-22.55). It was characterized by a deficiency in sphingolipid metabolism and persistent Clostridioides difficile colonization. Importantly, this trajectory of depleted Bacteroides abundance mediated the association between Asian ethnicity and food sensitization. CONCLUSIONS This study documented an association between persistently low gut Bacteroides abundance throughout infancy and sensitization to peanuts in childhood. It is the first to show a mediation role for infant gut microbiota in ethnicity-associated development of food sensitization.
Collapse
Affiliation(s)
- Hein M Tun
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong, China; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Ye Peng
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong, China
| | - Bolin Chen
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theodore B Konya
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Radha Chari
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Malcolm R Sears
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, Child and Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Sweeney A, Sampath V, Nadeau KC. Early intervention of atopic dermatitis as a preventive strategy for progression of food allergy. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:30. [PMID: 33726824 PMCID: PMC7962338 DOI: 10.1186/s13223-021-00531-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/20/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Atopic diseases, such as atopic dermatitis (AD) and food allergy (FA), have increased in prevalence in industrialized countries during the past few decades and pose a significant health burden. They appear to have a common underlying mechanism and a natural disease progression. AD is generally the first atopic disease to manifest followed by other atopic diseases, such as FA, allergic rhinitis, or allergic asthma suggesting that they are likely different manifestations of the same disease. BODY: Evidence suggests that allergic sensitization occurs through an impaired skin barrier, while consumption of these foods at an early age may actually result in tolerance. This has been termed the Dual-Allergen-Exposure hypothesis. Loss of barrier integrity has been hypothesized to enable penetration of allergens, pollutants, and microbes and initiation of an inflammatory immune cascade of events leading to sensitization. The immune dysfunction is thought to further exacerbate the impaired skin barrier to form a vicious cycle. There is much interest in preventing or protecting the skin barrier from developing a proinflammatory atopic state, which may potentially lead to the development of AD and subsequently, FA. CONCLUSION Research on preventing or treating skin barrier dysfunction is ongoing. A number of studies have evaluated the efficacy of emollients in preventing AD and FA with mixed results. Studies have differed in the study design, population characteristics, emollients type, and frequency, duration, and area of application. Emollient type has varied widely from oils, creams, petrolatum-based lotions, and trilipid creams. Current research is directed towards the use of trilipid emollients that are similar to the skin's natural lipid composition with a 3:1:1 ratio of ceramides, cholesterol and free fatty acids and a pH that is similar to that of skin to determine their effectiveness for skin barrier repair and prevention of AD and FA.
Collapse
Affiliation(s)
- Alyssa Sweeney
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, 240 Pasteur Dr. BMI Rm.1755, Palo Alto, CA, 94304, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, 240 Pasteur Dr. BMI Rm.1755, Palo Alto, CA, 94304, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, 240 Pasteur Dr. BMI Rm.1755, Palo Alto, CA, 94304, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Phavichitr N, Wang S, Chomto S, Tantibhaedhyangkul R, Kakourou A, Intarakhao S, Jongpiputvanich S, Roeselers G, Knol J. Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study. Sci Rep 2021; 11:3534. [PMID: 33574421 PMCID: PMC7878856 DOI: 10.1038/s41598-021-83009-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Human milk is considered the optimal nutrition for infants and found to contain significant numbers of viable bacteria. The aim of the study was to assess the effects of a specific synbiotic combination at doses closer to the bacterial cells present in human milk, on intestinal bifidobacteria proportions (relative abundance), reduction of potential pathogens and gut physiological conditions. A clinical study was conducted in 290 healthy infants aged from 6 to 19 weeks. Infants received either a control infant formula or one of the two investigational infant formulas (control formula with 0.8 g/100 ml scGOS/lcFOS and Bifidobacterium breve M-16V at either 1 × 104 cfu/ml or 1 × 106 cfu/ml). Exclusively breastfed infants were included as a reference. Analyses were performed on intention-to-treat groups and all-subjects-treated groups. After 6 weeks of intervention, the synbiotics at two different doses significantly increased the bifidobacteria proportions in healthy infants. The synbiotic supplementation also decreased the prevalence (infants with detectable levels) and the abundance of C. difficile. Closer to the levels in the breastfed reference group, fecal pH was significantly lower while l-lactate concentrations and acetate proportions were significantly higher in the synbiotic groups. All formulas were well tolerated and all groups showed a comparable safety profile based on the number and severity of adverse events and growth. In healthy infants, supplementation of infant-type bifidobacterial strain B. breve M-16V, at a dose close to bacterial numbers found in human milk, with scGOS/lcFOS (9:1) created a gut environment closer to the breastfed reference group. This specific synbiotic mixture may also support gut microbiota resilience during early life. Clinical Trial Registration This clinical study named Color Synbiotics Study, was registered in ClinicalTrials.gov on 18 March 2013. Registration number is NCT01813175. https://clinicaltrials.gov/ct2/show/NCT01813175.
Collapse
Affiliation(s)
| | - Shugui Wang
- Danone Nutricia Research, Singapore, Singapore
| | - Sirinuch Chomto
- Nutritional Unit, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Sukkrawan Intarakhao
- Department of Pediatrics, Thammasat Hospital, Faculty of Medicine, Thammasat University, Bangkok, Thailand
| | - Sungkom Jongpiputvanich
- Department of Pediatrics, Thammasat Hospital, Faculty of Medicine, Thammasat University, Bangkok, Thailand
| | | | | | - Jan Knol
- Danone Nutricia Research, Utrecht, The Netherlands.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
9
|
Alkotob SS, Cannedy C, Harter K, Movassagh H, Paudel B, Prunicki M, Sampath V, Schikowski T, Smith E, Zhao Q, Traidl‐Hoffmann C, Nadeau KC. Advances and novel developments in environmental influences on the development of atopic diseases. Allergy 2020; 75:3077-3086. [PMID: 33037680 DOI: 10.1111/all.14624] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Although genetic factors play a role in the etiology of atopic disease, the rapid increases in the prevalence of these diseases over the last few decades suggest that environmental, rather than genetic factors are the driving force behind the increasing prevalence. In modern societies, there is increased time spent indoors, use of antibiotics, and consumption of processed foods and decreased contact with farm animals and pets, which limit exposure to environmental allergens, infectious parasitic worms, and microbes. The lack of exposure to these factors is thought to prevent proper education and training of the immune system. Increased industrialization and urbanization have brought about increases in organic and inorganic pollutants. In addition, Caesarian birth, birth order, increased use of soaps and detergents, tobacco smoke exposure and psychosomatic factors are other factors that have been associated with increased rate of allergic diseases. Here, we review current knowledge on the environmental factors that have been shown to affect the development of allergic diseases and the recent developments in the field.
Collapse
Affiliation(s)
- Shifaa Suhayl Alkotob
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Cade Cannedy
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Katharina Harter
- Chair and Institute of Environmental Medicine UNIKA‐TTechnical University of Munich and Helmholtz Zentrum München Augsburg Germany
| | - Hesam Movassagh
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Bibek Paudel
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Tamara Schikowski
- IUF‐Leibniz Institute for Environmental Medicine Duesseldorf Germany
| | - Eric Smith
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| | - Qi Zhao
- IUF‐Leibniz Institute for Environmental Medicine Duesseldorf Germany
| | - Claudia Traidl‐Hoffmann
- Chair and Institute of Environmental Medicine UNIKA‐TTechnical University of Munich and Helmholtz Zentrum München Augsburg Germany
- CK‐CARE Christine Kühne Center for Allergy Research and Education Davos Switzerland
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary and Critical Care Medicine Department of Medicine Stanford University Stanford CA USA
| |
Collapse
|