1
|
Matula Z, Bekő G, Király V, Gönczi M, Zóka A, Baráth A, Uher F, Vályi-Nagy I. Long-Term SARS-CoV-2-Specific Humoral and T Cell Responses after the BNT162b2 or BBIBP-CorV Booster and the Incidence of Breakthrough Infections among Healthcare Workers. Vaccines (Basel) 2023; 12:3. [PMID: 38276662 PMCID: PMC10819931 DOI: 10.3390/vaccines12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The effectiveness of COVID-19 vaccines developed against the original virus strain deteriorated noticeably in efficacy against the Omicron variant (B.1.1.529). Moreover, the immunity developed after vaccination or due to natural infection rapidly waned. In the present study, covering this period, we summarize the incidence of breakthrough infections among healthcare workers (HCWs) with respect to administration of the three vaccine doses. Additionally, we evaluate the long-term SARS-CoV-2-specific humoral and T cell responses at two different time points: six and twelve months after receipt of the third (booster) dose. The spike-protein-specific antibody levels and the quantity of structural-protein-specific T cells were evaluated at these time points and compared with the values measured earlier, 14 days after the booster vaccination. The study participants were categorized into two cohorts: Members of the first cohort received a two-dose BNT162b2 mRNA-based vaccine regimen, followed by an additional BNT162b2 booster six months later. Individuals in the second cohort received an inactivated-virus-based BBIBP-CorV booster six months after the initial two-dose BNT162b2 vaccination. Overall, 64.3% of participants were infected with SARS-CoV-2 confirmed by PCR or antigen test; however, additional subjects from the first cohort (23%) who did not know about their previous infection but had an anti-nucleocapsid T cell response were also considered virus-experienced. According to our results, no statistically significant difference was found between the two cohorts regarding the SARS-CoV-2-specific T cell response, neutralizing anti-RBD IgG, and anti-S IgA serum antibody levels either six or twelve months after receiving the booster, despite the overall higher median values of the first cohort. The only significant difference was the higher anti-S1/S2 IgG antibody level in the first cohort one year after the BNT162b2 booster (p = 0.039). In summary, the BNT162b2 and BBIBP-CorV boosters maintain durable humoral and T cell-mediated immune memory even one year after application. Although the booster provided limited protection against Omicron breakthrough infections, as 73.6% of these infections occurred after the booster vaccination, which means 53.5% cumulative incidence, it still offered excellent protection against severe disease and hospitalization in both cohorts.
Collapse
Affiliation(s)
- Zsolt Matula
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - Gabriella Bekő
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - Viktória Király
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - Márton Gönczi
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - András Zóka
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - András Baráth
- Central Laboratory of Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary; (G.B.); (V.K.); (M.G.); (A.Z.); (A.B.)
| | - Ferenc Uher
- Laboratory for Experimental Cell Therapy, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| |
Collapse
|
2
|
Lee B, Ko JH, Kim YC, Baek JY, Park YS, Song KH, Kim ES, Lee KH, Song YG, Ahn JY, Choi JY, Choi WS, Bae S, Kim SH, Jeong HW, Lee YJ, Kim HJ, Choi JY, Kim B, Kim SW, Kwon KT, Peck KR, Kang ES. Clinical utility of quantitative immunoassays and surrogate virus neutralization tests for predicting neutralizing activity against the SARS-CoV-2 Omicron BA.1 and BA.5 variants. J Med Virol 2023; 95:e29329. [PMID: 38140877 DOI: 10.1002/jmv.29329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Developing new antibody assays for emerging SARS-CoV-2 variants is challenging. SARS-CoV-2 surrogate virus neutralization tests (sVNT) targeting Omicron BA.1 and BA.5 have been devised, but their performance needs to be validated in comparison with quantitative immunoassays. First, using 1749 PRNT-positive sera, we noticed that log-transformed optical density (OD) ratio of wild-type (WT) sVNT exhibited better titer-correlation with plaque reduction neutralization test (PRNT) than % inhibition value. Second, we tried 798 dilutional titration tests with 103 sera, but nonlinear correlation between OD ratio and antibody concentration limited titration of sVNT. Third, the titer-correlations of two sVNT kits for BA.1 and two quantitative immunoassays for WT were evaluated with BA.1 and BA.5 PRNT. All tested kits exhibited a linear correlation with PRNT titers, but the sVNT kits exhibited high false-negative rates (cPass-BA.1 kit, 45.4% for BA.1 and 44.2% for BA.5; STANDARD F-BA.1 kit, 1.9% for BA.1 and 2.2% for BA.5), while quantitative immunoassays showed 100% sensitivity. Linear mixed-effects model suggested superior titer-correlation with PRNT for quantitative immunoassays compared to sVNT kits. Taken together, the use of quantitative immunoassays for WT, rather than rapid development of new kits, would be practical for predicting neutralizing activities against emerging new variants.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Chan Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jin Yang Baek
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
| | - Yoon Soo Park
- Division of Infectious Diseases, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Kyoung Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Young Jae Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, South Korea
| | - Hye-Jin Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, South Korea
| | - Ju-Yeon Choi
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, South Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, South Korea
| | - Shin-Woo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|