1
|
di Tommaso A, Juste MO, Lakhrif Z, Mévélec MN, Borowczyk C, Hammeni P, Désoubeaux G, Van Langendonck N, Debierre-Grockiego F, Aubrey N, Dimier-Poisson I. Engineering and Functional Evaluation of Neutralizing Antibody Fragments Against Congenital Toxoplasmosis. J Infect Dis 2021; 224:705-714. [PMID: 33728452 DOI: 10.1093/infdis/jiab141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 01/26/2023] Open
Abstract
Maternal-fetal transmission of Toxoplasma gondii tachyzoites acquired during pregnancy has potentially dramatic consequences for the fetus. Current reference-standard treatments are not specific to the parasite and can induce severe side effects. In order to provide treatments with a higher specificity against toxoplasmosis, we developed antibody fragments-single-chain fragment variable (scFv) and scFv fused with mouse immunoglobulin G2a crystallizable fragment (scFv-Fc)-directed against the major surface protein SAG1. After validating their capacity to inhibit T. gondii proliferation in vitro, the antibody fragments' biological activity was assessed in vivo using a congenital toxoplasmosis mouse model. Dams were treated by systemic administration of antibody fragments and with prevention of maternal-fetal transmission being used as the parameter of efficacy. We observed that both antibody fragments prevented T. gondii dissemination and protected neonates, with the scFv-Fc format having better efficacy. These data provide a proof of concept for the use of antibody fragments as effective and specific treatment against congenital toxoplasmosis and provide promising leads.
Collapse
Affiliation(s)
- Anne di Tommaso
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Matthieu O Juste
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Zineb Lakhrif
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Marie-Noëlle Mévélec
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Coraline Borowczyk
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Pierre Hammeni
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Guillaume Désoubeaux
- Service de Parasitologie - Mycologie - Médecine tropicale, CHU de Tours, Tours, France.,Centre d'Étude des Pathologies Respiratoires INSERM U1100, Université de Tours, Tours, France
| | | | - Françoise Debierre-Grockiego
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Nicolas Aubrey
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
2
|
Molecular cloning and characterization of NcROP2Fam-1, a member of the ROP2 family of rhoptry proteins in Neospora caninum that is targeted by antibodies neutralizing host cell invasion in vitro. Parasitology 2014; 140:1033-50. [PMID: 23743240 DOI: 10.1017/s0031182013000383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.
Collapse
|
3
|
Neospora caninum: comparative gene expression profiling of Neospora caninum wild type and a temperature sensitive clone. Exp Parasitol 2011; 129:346-54. [PMID: 21963790 DOI: 10.1016/j.exppara.2011.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
To understand the genetic basis of virulence, gene expression profiles of a temperature-sensitive clone (NCts-8, relatively avirulent) and its wild type (NC-1) of Neospora caninum were characterized and compared using a high-density microarray with approximately 63,000 distinct oligonucleotides. This microarray consists of 5692 unique N. caninum sequences, including 1980 Tentative Consensus sequences and 3712 singleton ESTs from the TIGR N. caninum Gene Index (NCGI, release 5.0). Each sequence was represented by 11 distinct 60mer oligonucleotides synthesized in situ on the microarray. The results showed that 111 genes were significantly repressed and no up-regulated genes were identified in the NCts-8 clone. The level of 10 randomly selected genes from the repressed genes was confirmed using real-time RT-PCR. Of the 111 repressed genes, 58 were hypothetical protein products and 53 were annotated genes. Over 70% of the repressed genes identified in this study are clustered on five chromosomes (I, VII, VIII, X and XII). These results suggest that the down-regulated genes may be in part responsible for the reduced pathogenesis of NCts-8; further characterization of the regulated genes may aid in understanding of molecular basis of virulence and development of countermeasures against neosporosis.
Collapse
|
4
|
Toulah FH, Sayed Al-Ahl SA, Amin DM, Hamouda MH. Toxoplasma gondii: Ultrastructure study of the entry of tachyzoites into mammalian cells. Saudi J Biol Sci 2010; 18:151-6. [PMID: 23961118 DOI: 10.1016/j.sjbs.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/24/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022] Open
Abstract
Toxoplama gondii (Apicomplexa: Coccidia), an obligatory intracellular parasite with a unique capacity to invade virtually all nucleated cell type from warm-blooded vertebrate hosts. Despite the efficiency with which Toxoplasma enters its host cell, it remains unresolved if invasion occurs by direct penetration of the parasite or through phagocytosis. In the present work, electron microscopic study was designed to examine the entry process of Toxoplasma (RH strain) into macrophages and non phagocytic-host cells (Hela cells) and to observe the ultrastructure changes associated with intracellular parasitism. The results showed that both active invasion and phagocytosis were occurred and revealed that invasion is an ordered process that initiates with binding of the parasite at its apical end followed by tight-fitting invagination of the host cell membrane and a prominent constriction in the parasite at the site of penetration. The process ended by the professional parasitophorous vacuole that is distinct at the outset from those formed by phagocytosis in which once Toxoplasma triggered, phagocytic uptake can proceed by capture of the parasite within a loose fitting vacuole formed by localized membrane ruffling. The cytopathic effects of the parasite on macrophages and Hela cells were demonstrated within 5-15 h post-inoculation in the form of degenerative mitochondria, swelling Golgi apparatus and widening of endoplasmic reticulum indicating intracellular oedema. These changes were exaggerated and several cells were found dead after 48-72 h.
Collapse
Affiliation(s)
- Fawzia H Toulah
- Department of Zoology, Girls' College of Education, King Abdel Aziz University, Departments of Parasitology and Histology, Faculty of Medicine for Girls, Al-Azhar University and Department of Pathology, Animal Health Research Institute, Cairo, Egypt
| | | | | | | |
Collapse
|
5
|
Generation of a neutralizing human monoclonal antibody Fab fragment to surface antigen 1 of Toxoplasma gondii tachyzoites. Infect Immun 2010; 79:512-7. [PMID: 20956568 DOI: 10.1128/iai.00969-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combinatorial immunoglobulin gene library was constructed from lymphocytes in peripheral blood of a patient with toxoplasmosis and screened for production of human monoclonal antibody Fab fragments to recombinant surface antigen 1 (SAG1) of Toxoplasma gondii. Two Fab clones, Tox203 and Tox1403, which consisted of a common heavy chain and different light chains, showed positive staining on the entire surface of tachyzoites in confocal microscopy. Sequence analysis of the heavy-chain gene revealed that the closest germ line V segments were VH3-23. The germ line D segment was D1-7, and the closest germ line J segment was JH4. In the light-chain genes, the closest germ line V segment was Vκ1-17 with the Jκ1 or Jκ4 segments. The dissociation constants of these Fab fragments with recombinant SAG1 were 3.09 × 10(-9) M for Tox203 and 2.01 × 10(-8) M for Tox1403, indicating that the affinity of Tox203 was 7 times higher than that of Tox1403. Preincubation of T. gondii tachyzoites with Tox203 significantly inhibited their attachment to cultured MDBK cells. Passive immunization of mice with Tox203 also significantly reduced mortality after challenge with T. gondii tachyzoites. This is the first report of bacterial expression of human monoclonal antibody Fab fragments to SAG1 of T. gondii. These results also demonstrate that human Fab fragments to SAG1 might be applicable for immunoprophylaxis of toxoplasmosis.
Collapse
|
6
|
Agop-Nersesian C, Naissant B, Rached FB, Rauch M, Kretzschmar A, Thiberge S, Menard R, Ferguson DJP, Meissner M, Langsley G. Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis. PLoS Pathog 2009; 5:e1000270. [PMID: 19165333 PMCID: PMC2622761 DOI: 10.1371/journal.ppat.1000270] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
The final step during cell division is the separation of daughter cells, a process that requires the coordinated delivery and assembly of new membrane to the cleavage furrow. While most eukaryotic cells replicate by binary fission, replication of apicomplexan parasites involves the assembly of daughters (merozoites/tachyzoites) within the mother cell, using the so-called Inner Membrane Complex (IMC) as a scaffold. After de novo synthesis of the IMC and biogenesis or segregation of new organelles, daughters bud out of the mother cell to invade new host cells. Here, we demonstrate that the final step in parasite cell division involves delivery of new plasma membrane to the daughter cells, in a process requiring functional Rab11A. Importantly, Rab11A can be found in association with Myosin-Tail-Interacting-Protein (MTIP), also known as Myosin Light Chain 1 (MLC1), a member of a 4-protein motor complex called the glideosome that is known to be crucial for parasite invasion of host cells. Ablation of Rab11A function results in daughter parasites having an incompletely formed IMC that leads to a block at a late stage of cell division. A similar defect is observed upon inducible expression of a myosin A tail-only mutant. We propose a model where Rab11A-mediated vesicular traffic driven by an MTIP-Myosin motor is necessary for IMC maturation and to deliver new plasma membrane to daughter cells in order to complete cell division. Apicomplexan parasites are unusual in that they replicate by assembling daughter parasites within the mother cell. This involves the ordered assembly of an Inner Membrane Complex (IMC), a scaffold consisting of flattened membrane cisternae and a subpellicular network made up of microtubules and scaffold proteins. The IMC begins to form at the onset of replication, but its maturation occurs at the final stage of cytokinesis (the last step during cell division) upon the addition of motor (glideosome) components such as GAP45 (Glideosome Associated Protein), Myosin A (MyoA), and Myosin-Tail-Interacting-Protein (MTIP, also known as Myosin Light Chain 1) that are necessary to drive the gliding motility required for parasite invasion. We demonstrate that Rab11A regulates not only delivery of new plasmamembrane to daughter cells, but, importantly, also correct IMC formation. We show that Rab11A physically interacts with MTIP/MLC1, implicating unconventional myosin(s) in both cytokinesis and IMC maturation, and, consistently, overexpression of a MyoA tail-only mutant generates a default similar to that which we observe upon Rab11A ablation. We propose a model where Rab11A-mediated vesicular traffic is required for the delivery of new plasma membrane to daughter cells and for the maturation of the IMC in order to complete cell division.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernina Naissant
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Fathia Ben Rached
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Manuel Rauch
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Kretzschmar
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Thiberge
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - Robert Menard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris, France
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Hygieneinstitut, Department of Parasitology, University Hospital Heidelberg, Heidelberg, Germany
- * E-mail: (MM); (GL)
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Department of Infectious Diseases, Institut Cochin, Inserm U567, CNRS UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
- * E-mail: (MM); (GL)
| |
Collapse
|
7
|
Cha DY, Song IK, Lee GS, Hwang OS, Noh HJ, Yeo SD, Shin DW, Lee YH. Effects of specific monoclonal antibodies to dense granular proteins on the invasion of Toxoplasma gondii in vitro and in vivo. THE KOREAN JOURNAL OF PARASITOLOGY 2001; 39:233-40. [PMID: 11590913 PMCID: PMC2721072 DOI: 10.3347/kjp.2001.39.3.233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although some reports have been published on the protective effect of antibodies to Toxoplasma gondii surface membrane proteins, few address the inhibitory activity of antibodies to dense granular proteins (GRA proteins). Therefore, we performed a series of experiments to evaluate the inhibitory effects of monoclonal antibodies (mAbs) to GRA proteins (GRA2, 28 kDa; GRA6, 32 kDa) and surface membrane protein (SAG1, 30 kDa) on the invasion of T. gondii tachyzoites. Passive immunization of mice with one of three mAbs following challenge with a lethal dose of tachyzoites significantly increased survival compared with results for mice treated with control ascites. The survival times of mice challenged with tachyzoites pretreated with anti-GRA6 or anti-SAG1 mAb were significantly increased. Mice that received tachyzoites pretreated with both mAb and complement had longer survival times than those that received tachyzoites pretreated with mAb alone. Invasion of tachyzoites into fibroblasts and macrophages was significantly inhibited in the anti-GRA2, anti-GRA6 or anti-SAG1 mAb pretreated group. Pretreatment with mAb and complement inhibited invasion of tachyzoites in both fibroblasts and macrophages. These results suggest that specific antibodies to dense-granule molecules may be useful for controlling infection with T. gondii.
Collapse
Affiliation(s)
- D Y Cha
- Department of Internal Medicine, Sun General Hospital, Daejeon 301-070, Korea
| | | | | | | | | | | | | | | |
Collapse
|