1
|
Mousavian P, Mashayekhi Goyonlo V, Javanbakht M, Reza Jafari M, Moosavian H, Afzal Aghaei M, Malekzadeh M. Diphencyprone reduces the CD8+ lymphocytes and IL-4 and enhences IgG2a/IgG1 ratio in pathogenicity of acute leishmania major infection in BALB/c mice. Cytokine 2024; 184:156792. [PMID: 39488893 DOI: 10.1016/j.cyto.2024.156792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The exact role of different immune cells and cytokines in control or promotion of intracellular growth of leishmania has still remained a controversial topic. The aim of the present study was to study effects of cellular changes and relevant cytokines in cell mediated immunity by diphencyprone (DCP) in pathogenicity of acute L.major infection in BALB/c mice. METHODS 45 healthy female BALB/c mice were injected with L. major promastigotes under the base of tail. The mice were randomly divided to three groups of 15 mice: (1) control group without any treatment. (2) acetone group: Acetone was applied topically on the cutaneous lesions weekly and (3) DCP group: DCP was applied topically on the cutaneous lesions with increasing concentrations to induce local allergy. The mice were followed by the end of eighth week, and then macroscopic changes, histopathology, immunology studies, and organ parasite burden were determined. RESULTS In DCP group, in comparison to other groups the ulcer size and parasite burden in ulcer site and spleen increased, significantly. There was a deep lymphohistiocytic infiltration in the ulcer site. Total IgG, IgG1, and IgG2a levels as well as IgG2a/IgG1 ratio and intracellular IFN-gamma in CD8+ lymphocytes were significantly higher. IL4 and T CD8+ lymphocytes were significantly lower in DCP group. The IgG2a/IgG1 ratio was more than 1 in all groups. CONCLUSION Our findings demonstrated that DCP reduced the CD8+ lymphocytes and IL-4 production. In spite of increased IgG2a/IgG1 ratio, the parasite burden and inflammation severity increased in infected mice. The results can show the pivotal role of CD8+ lymphocytes in conjunction with Th1 lymphocytes in the control of acute leishmania infection in mice.
Collapse
Affiliation(s)
| | - Vahid Mashayekhi Goyonlo
- Cutaneous Leishmaniasis Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jafari
- Biotechnology Research Center and Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Moosavian
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Monovar Afzal Aghaei
- Department of Biostatistics, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Immunological characterization of rLdTCP1γ for its prophylactic potential against visceral leishmaniasis in hamster model. Mol Immunol 2021; 141:33-42. [PMID: 34798496 DOI: 10.1016/j.molimm.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022]
Abstract
Visceral leishmaniasis (VL) is a chronic tropical disease responsible for devastating epidemics worldwide. Though current treatment relies on drugs, the emergence of resistance, toxic side-effects, and strenuous administration has led to an ineffective remedy. Hence, vaccination remains an alternative and desirable approach for VL control. Though extensive research on anti-leishmanial vaccine candidates has been carried out in past decades, presence of an effective molecule is still missing. In the present study, we have evaluated the immunogenicity and prophylactic potential of a recombinant T-complex protein-1 gamma subunit of L. donovani (rLdTCP1γ), against VL in hamster model. The antigen exhibited in vitro stimulation of lymphoproliferative and NO response in miltefosine and amphotericin B treated hamsters depicting its immunotherapeutic/immunogenic nature. Immunization with rLdTCP1γ revealed a strong protective response against experimental VL as indicated by reduced parasite load in the spleen of immunized group compared to infected control. The immunized animals gained body weight and exhibited significant reduction in the spleen and liver weight as compared to infected controls on days 60, 90, 120 post-challenge. A substantial augmentation of cell-mediated immune response as depicted by an increased lymphocyte proliferation, nitric oxide production, DTH responses and increased levels of IgG2 was observed in rLdTCP1γ immunized hamsters. The Th1 stimulatory potential, imparted by the antigen, was found to be intensified in the presence of adjuvant Bacillus Calmette-Guérin (BCG). The efficacy was further assisted by an upregulated mRNA transcript of Th1 induced cytokines (IL-12, IFN-γ and TNFα) and downregulation of IL-4 and IL-10. The results are thus suggestive of rLdTCP1γ having the potential of a strong vaccine candidate against VL.
Collapse
|
3
|
Goyal DK, Keshav P, Kaur S. Adjuvant effects of TLR agonist gardiquimod admixed with Leishmania vaccine in mice model of visceral leishmaniasis. INFECTION GENETICS AND EVOLUTION 2021; 93:104947. [PMID: 34052416 DOI: 10.1016/j.meegid.2021.104947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
Tropical and subtropical areas of the world are affected by leishmaniasis, which is caused by Leishmania spp. It has been categorized as an NTD (neglected tropical disease) because of its negligence. The sand fly of genus Phlebotomus acts as the vector for the transmission of the promastigote form of this protozoan parasite to the mammalian host where it converts to amastigote form in the macrophages. Visceral form of leishmaniasis (VL) is a deadly infection in the endothelial system of the human and other mammals. Only a few chemotherapeutic agents are available for the treatment of this infectious disease whereas no vaccine is available for the control of leishmanial infection. Therefore in the current study, we have tested the effects of gardiquimod (a TLR agonist) as an adjuvant in combination with the formalin-killed antigen of L. donovani as a vaccine. The mice were vaccinated thrice at an interval of 2 weeks and challenged with L. donovani promastigotes after 2 weeks of the last vaccination. We assessed the parasite load, delayed-type hypersensitivity (DTH) responses, humoral and cell-mediated immune response in BALB/c mice before and after challenge infection with L. donovani. Immunized mice were found to have the least parasite load, high DTH response, elevated levels of Th1 cytokines, IgG2a, and nitric oxide than non-immunized and infected control mice. The efficacy of the vaccine was boosted with the use of adjuvant gardiquimod that depicts its potential as an adjuvant in this study. Our study is reporting the adjuvant effects of gardiquimod for the first time. Further studies using other Leishmania species can be performed to signify its role.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
4
|
Goyal DK, Keshav P, Kaur S. Immune induction by adjuvanted Leishmania donovani vaccines against the visceral leishmaniasis in BALB/c mice. Immunobiology 2021; 226:152057. [PMID: 33545508 DOI: 10.1016/j.imbio.2021.152057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/09/2020] [Accepted: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease caused by Leishmania donovani or Leishmania infantum. Currently, the patients are treated with chemotherapeutic drugs; however, their toxicity limits their use. It would be desirable to develop a vaccine against this infection. In this study, we assessed the efficacy of different vaccine formulations at variable time points. Heat-killed (HK) antigen of Leishmania donovani was adjuvanted with two adjuvants (AddaVax and Montanide ISA 201) and three immunizations at a gap of 2 weeks (wk) were given to BALB/c mice. After 2 weeks of the last booster, mice were given challenge infection and sacrificed before challenge and after 4wk, 8wk, and 12 wk post-challenge. Significant protective immunity was observed in all the immunized animals and it was indicated by the notable rise in delayed-type hypersensitivity (DTH) response, remarkably declined parasite burden, a significant increase in the levels of interferon-gamma (IFN-γ), interleukin-12, interleukin-17 (Th1 cytokines), and IgG2a in contrast to infected control mice. Montanide ISA 201 with HK antigen provided maximum protection followed by AddaVax with HK and then HK alone. These findings elaborate on the importance of the tested adjuvants in the vaccine formulations against murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Goyal DK, Keshav P, Kaur S. Adjuvanted vaccines driven protection against visceral infection in BALB/c mice by Leishmania donovani. Microb Pathog 2021; 151:104733. [PMID: 33484811 DOI: 10.1016/j.micpath.2021.104733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Kinteoplastid protozoan parasite of genus Leishmania is the pathogen that causes leishmaniasis. Its prevalence is highest after malaria and visceral leishmaniasis is the most dreaded form of infection. No vaccine is available for the disease management and it relies wholly on a few chemotherapeutic agents which are toxic and besides drug resistance their costs are the limitations. Therefore, development of an effective vaccine is urgently required. In this study, Montanide ISA 201 and AddaVax were assessed for their adjuvant potential along with formalin-inactivated or killed vaccine for the immune induction. Immunological and parasitological studies were conducted to evaluate the efficacy of different vaccine formulations in BALB/c mice before challenge infection as well as 4, 8, and 12 weeks after challenge. The efficacy of vaccines was evidenced with reduced parasite burden, the higher DTH response, Th1 cytokines, and IgG2a isotype antibody in immunized mice. All the vaccines showed their potential against Leishmania donovani infection and vaccine formulated with Montanide ISA 201 exhibited maximum efficacy. Our results suggest the potential of these vaccine formulations in controlling Leishmania infection.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R. The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Exp Parasitol 2020; 210:107849. [PMID: 32027892 DOI: 10.1016/j.exppara.2020.107849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous Leishmaniasis is a serious public health problem, typically affecting poor populations with limited access to health care. Control is largely dependent on chemotherapies that are inefficient, costly and challenging to deliver. Vaccination is an attractive and feasible alternative because long-term protection is typical in patients who recover from the disease. No human vaccine is yet approved for use, but several candidates are at various stages of testing. Live attenuated parasites, which stimulate long-term immune protection, have potential as effective vaccines, and their challenges relating to safety, formulation and delivery can be overcome. Here we review current data on the potential of live attenuated Leishmania vaccines and discuss possible routes to regulatory approval.
Collapse
Affiliation(s)
- A Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - D Todd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - H Daneshvar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - R Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
7
|
Ghasemi A, Mohammad N, Mautner J, Taghipour Karsabet M, Amani J, Ardjmand A, Vakili Z. Immunization with a recombinant fusion protein protects mice against Helicobacter pylori infection. Vaccine 2018; 36:5124-5132. [PMID: 30041879 DOI: 10.1016/j.vaccine.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
More than 50% of the world's population is infected with the bacterium Helicobacter pylori. If left untreated, infection with H. pylori can cause chronic gastritis and peptic ulcer disease, which may progress into gastric cancer. Owing to the limited efficacy of anti-H. pylori antibiotic therapy in clinical practice, the development of a protective vaccine to combat this pathogen has been a tempting goal for several years. In this study, a chimeric gene coding for the antigenic parts of H. pylori FliD, UreB, VacA, and CagL was generated and expressed in bacteria and the potential of the resulting fusion protein (rFUVL) to induce humoral and cellular immune responses and to provide protection against H. pylori infection was evaluated in mice. Three different immunization adjuvants were tested along with rFUVL: CpG oligodeoxynucleotides (CpG ODN), Addavax, and Cholera toxin subunit B. Compared to the control group that had received PBS, vaccinated mice showed significantly higher cellular recall responses and antigen-specific IgG2a, IgG1, and gastric IgA antibody titers. Importantly, rFUVL immunized mice exhibited a reduction of about three orders of magnitude in their stomach bacterial loads. Thus, adjuvanted rFUVL might be considered as a promising vaccine candidate for the control of H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, FL, USA.
| | - Nazanin Mohammad
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Josef Mautner
- Technische Universität München & Helmholtz Zentrum München, Munich, Germany
| | - Mehrnaz Taghipour Karsabet
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarichehr Vakili
- Department of Pathology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Evaluation of vaccinal effectiveness of preparations containing membrane antigens of Leishmania (L.) amazonensis in experimental cutaneous leishmaniasis model. Int Immunopharmacol 2017; 47:227-230. [DOI: 10.1016/j.intimp.2017.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
|
9
|
Sassi A, Kaak O, Ben Ammar Elgaied A. Identification of immunodominantLeishmania majorantigenic markers of the early C57BL/6 and BALB/c mice infection stages. Parasite Immunol 2015; 37:544-552. [DOI: 10.1111/pim.12223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- A. Sassi
- Laboratory of Immunopathology Vaccinology and Molecular Genetics; Institut Pasteur of Tunis; University Tunis-El Manar; Tunis-Belvedere Tunisia
| | - O. Kaak
- Laboratory of Immunopathology Vaccinology and Molecular Genetics; Institut Pasteur of Tunis; University Tunis-El Manar; Tunis-Belvedere Tunisia
| | - A. Ben Ammar Elgaied
- Laboratory of Genetics, Immunology and Human Pathologies; Faculty of Sciences; University Tunis-El Manar; Tunis-Belvedere Tunisia
| |
Collapse
|
10
|
Tuladhar R, Oghumu S, Dong R, Peterson A, Sharpe AH, Satoskar AR. Ox40L-Ox40 pathway plays distinct roles in regulating Th2 responses but does not determine outcome of cutaneous leishmaniasis caused by Leishmania mexicana and Leishmania major. Exp Parasitol 2014; 148:49-55. [PMID: 25447125 DOI: 10.1016/j.exppara.2014.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/29/2023]
Abstract
Ox40 ligand (Ox40L)-Ox40 pathway has been shown to enhance Th2 responses and play a role in pathogenesis of cutaneous leishmaniasis (CL) caused by Leishmania major. Using Ox40l(-/-) BALB/c mice we analyzed the role of this pathway in determining the outcome to CL caused by L. mexicana and compared to L. major. Contrary to our expectations, Ox40l(-/-) mice were highly susceptible to both L. major (LV39) and L. mexicana (M379) and developed large non-healing lesions containing parasites comparable to Ox40l(+/+) BALB/c mice. Interestingly, upon in vitro stimulation with Leishmania antigen (LmAg), the lymph node cells from L. major infected Ox40l(-/-) mice produced significantly less IL-4 and IL-10 compared to Ox40l(+/+) mice. L. mexicana infected Ox40l(-/-) and Ox40l(+/+) mice did not show any difference in the production of IL-4 and IL-10. No difference was noted in the amount of Th1 cytokines IFN-ү and IL-12 produced by Ox40l(-/-) and Ox40l(+/+) mice infected with either parasite. These results indicate that the Ox40L-Ox40 pathway promotes Th2 bias only in L. major infection but not L. mexicana infection and this pathway is not critical for susceptibility to CL.
Collapse
Affiliation(s)
- Rashmi Tuladhar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States
| | - Steve Oghumu
- Department of Oral Biology, The Ohio State University, Columbus, Ohio, United States; Department of Pathology, The Ohio State University, Columbus, Ohio, United States
| | - Ran Dong
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States
| | - Allison Peterson
- Brigham and Woman's Hospital, Harvard Medical Centre, Boston, Massachusetts, United States
| | - Arlene H Sharpe
- Brigham and Woman's Hospital, Harvard Medical Centre, Boston, Massachusetts, United States
| | - Abhay R Satoskar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States; Department of Oral Biology, The Ohio State University, Columbus, Ohio, United States; Department of Pathology, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
11
|
Thakur A, Kaur H, Kaur S. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis. Parasitol Int 2014; 64:70-8. [PMID: 25316605 DOI: 10.1016/j.parint.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023]
Abstract
Despite a large number of field trials, till date no prophylactic antileishmanial vaccine exists for human use. Killed antigen formulations offer the advantage of being safe but they have limited immunogenicity. Recent research has documented that efforts to develop effective Leishmania vaccine have been limited due to the lack of an appropriate adjuvant. Addition of adjuvants to vaccines boosts and directs the immunogenicity of antigens. So, the present study was done to evaluate the effectiveness of four adjuvants i.e. alum, saponin, cationic liposomes and monophosphoryl lipid-A in combination with Autoclaved Leishmania donovani (ALD) antigen against murine visceral leishmaniasis (VL). BALB/c mice were immunized thrice with respective vaccine formulation. Two weeks after last booster, challenge infection was given. Mice were sacrificed 15 days after last immunization and on 30, 60 and 90 post infection/challenge days. A considerable protective efficacy was shown by all vaccine formulations. It was evident from significant reduction in parasite load, profound delayed type hypersensitivity responses (DTH), increased IgG2a titres and high levels of Th1 cytokines (IFN-γ, IL-12) as compared to the infected controls. However, level of protection varied with the type of adjuvant used. Maximum protection was achieved with the use of liposome encapsulated ALD antigen and it was closely followed by group immunized with ALD+MPL-A. Significant results were also obtained with ALD+saponin, ALD+alum and ALD antigen (alone) but the protective efficacy was reduced as compared to other immunized groups. The present study reveals greater efficacy of two vaccine formulations i.e. ALD+liposome and ALD+MPL-A against murine VL.
Collapse
Affiliation(s)
- Ankita Thakur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
12
|
Tabatabaie F, Mahdavi M, Faezi S, Dalimi A, Sharifi Z, Akhlaghi L, Ghaffarifar F. Th1 Platform Immune Responses Against Leishmania major Induced by Thiol-Specific Antioxidant-Based DNA Vaccines. Jundishapur J Microbiol 2014; 7:e8974. [PMID: 25147675 PMCID: PMC4138682 DOI: 10.5812/jjm.8974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Thiol-specific antioxidant (TSA) is an antigen of Leishmania major which is believed to be the most promising molecule as a vaccine candidate against leishmaniasis. OBJECTIVES In this study, we investigated the protective efficacy of TSA-based DNA vaccine against L. major infection. MATERIALS AND METHODS Recombinant plasmid construction TSA (pcTSA) was prepared and transfected into eukaryotic cells and expression was confirmed with western blot and RT-PCR. The mice were assigned to six different groups and DNA immunization was performed with 100 µg intramuscular recombinant plasmid with a two-week interval. Cytokines and lymphocyte proliferation assay, antibody responses and determination of parasite burden were performed following immunization and the challenging infection with L. major. RESULTS The antibody and IFN-γ titers were higher in pcTSA + AlPO4 group the immunized mice with pcTSA alone, but there was no statistically significant difference between the two groups. Additionally the IL-4 titer was not statistically different between the groups following immunization and challenge. After infection with L. major promastigotes, the immunized mice with pcTSA and the one immunized with both pcTSA + AlPO4 presented a considerable reduction in diameter of lesion but there was no statistical difference between the two groups. The immunized mice had significantly lower parasite loads. No significant differences were observed between the two vaccinated groups. However the highest reduction in parasite burden was observed in the group immunized with pcDNA + AlPO4. No significant differences were observed in survival rate of the immunized mice after the challenge with L. major. CONCLUSIONS In conclusion, TSA-based DNA vaccine induced Th1 platform immune response and aluminum phosphate could improve the efficacy of these vaccines with induction of humoral and cellular immune responses against L. major infection. There were no significant differences observed between pcTSA and pcTSA + AlPO4 groups.
Collapse
Affiliation(s)
- Fatemeh Tabatabaie
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, IR Iran
| | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Sobhan Faezi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Zohreh Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR Iran
| | - Lame Akhlaghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, IR Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Fatemeh Ghaffarifar, Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-331, Tehran, IR Iran, E-mail:
| |
Collapse
|
13
|
Kaur J, Kaur T, Kaur S. Studies on the protective efficacy and immunogenicity of Hsp70 and Hsp83 based vaccine formulations in Leishmania donovani infected BALB/c mice. Acta Trop 2011; 119:50-6. [PMID: 21530477 DOI: 10.1016/j.actatropica.2011.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 11/28/2022]
Abstract
Visceral leishmaniasis, a chronic systemic infection, is the major cause of morbidity and mortality in many parts of world. The current drugs for the treatment of leishmaniasis are toxic, expensive, difficult to administer and becoming ineffective due to the emergence of drug resistance. In the absence of effective treatment, vaccination remains the only hope for control of the disease. We have evaluated the protective efficacy of two heat shock proteins (Hsp70 and Hsp83) in combination with two different adjuvants (MPLA and ALD) in Leishmania donovani infected inbred BALB/c mice. The proteins were isolated by SDS-PAGE and the mice were immunized subcutaneously with Hsp70+Hsp83, Hsp70+Hsp83+ALD and Hsp70+Hsp83+MPLA. These were challenged with 10(7) promastigotes of L. donovani. The animals were sacrificed on 30, 60 and 90 days post challenge for the assessment of parasite load and generation of cellular and humoral immune responses. The vaccines induced a strong protective response against experimental visceral leishmaniasis as shown by reduced parasite load in liver of all immunized groups as compared to the infected controls. The vaccines also led to the augmentation of DTH responses, increased levels of IgG2a, IFN-γ and IL-2. Both the adjuvants raised significantly the level of protection imparted by the proteins but MPLA was more effective in comparison to ALD.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Cytokines/blood
- Disease Models, Animal
- HSP70 Heat-Shock Proteins/immunology
- HSP70 Heat-Shock Proteins/therapeutic use
- Hypersensitivity, Delayed/chemically induced
- Hypersensitivity, Delayed/immunology
- Immunity, Humoral
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/administration & dosage
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Lipid A/analogs & derivatives
- Lipid A/pharmacology
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India.
| | | | | |
Collapse
|
14
|
Afonso-Cardoso SR, Rodrigues FH, Gomes MAB, Silva AG, Rocha A, Guimaraes AHB, Candeloro I, Favoreto S, Ferreira MS, de Souza MA. Protective effect of lectin from Synadenium carinatum on Leishmania amazonensis infection in BALB/c mice. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 45:255-66. [PMID: 18165707 DOI: 10.3347/kjp.2007.45.4.255] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The protective effect of the Synadenium carinatum latex lectin (ScLL), and the possibility of using it as an adjuvant in murine model of vaccination against American cutaneous leishmaniasis, were evaluated. BALB/c mice were immunized with the lectin ScLL (10, 50, 100 microgram/animal) separately or in association with the soluble Leishmania amazonensis antigen (SLA). After a challenge infection with 10(6) promastigotes, the injury progression was monitored weekly by measuring the footpad swelling for 10 weeks. ScLL appeared to be capable of conferring partial protection to the animals, being most evident when ScLL was used in concentrations of 50 and 100 microgram/animal. Also the parasite load in the interior of macrophages showed significant reduction (61.7%) when compared to the control group. With regard to the cellular response, ScLL 50 and 100 microgram/animal stimulated the delayed-type hypersensitivity (DTH) reaction significantly (P < 0.05) higher than SLA or SLA plus ScLL 10 weeks after the challenge infection. The detection of high levels of IgG2a and the expression of mRNA cytokines, such as IFN-gamma, IL-12, and TNF-alpha (Th1 profiles), corroborated the protective role of this lectin against cutaneous leishmaniasis. This is the first report of the ScLL effect on leishmaniasis and shows a promising role for ScLL to be explored in other experimental models for treatment of leishmaniasis.
Collapse
Affiliation(s)
- Sandra R Afonso-Cardoso
- Laboratorio de Biologia Molecular, Instituto de Ciencias Biomedicas, Universidade Federal de Uberlandia, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zeinali M, Ardestani SK, Kariminia A. Purification and biochemical characterization of two novel antigens from Leishmania major promastigotes. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 45:287-93. [PMID: 18165711 DOI: 10.3347/kjp.2007.45.4.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The identification and characterization of antigens that elicit human T cell responses is an important step toward understanding of Leishmania major infection and ultimately in the development of a vaccine. Micropreparative SDS-PAGE followed by electrotransfer to a PVDF membrane and elution of proteins from the PVDF, was used to separate 2 novel proteins from L. major promastigotes, which can induce antibodies of the IgG2a isotype in mice and also are recognized by antisera of recovered human cutaneous leishmaniasis subjects. Fractionation of the crude extract of L. major revealed that all detectable proteins of interest were present within the soluble Leishmania antigens (SLA). Quantitation of these proteins showed that their expression in promastigotes is relatively very low. Considering the molecular weight, immunoreactivity, chromatographic and electrophoretic behavior in reducing and non-reducing conditions, these proteins are probably 2 isoforms of a single protein. A digest of these proteins was resolved on Tricine-SDS-PAGE and immunoreactive fragments were identified by human sera. Two immunoreactive fragments (36.4 and 34.8 kDa) were only generated by endoproteinase Glu-C treatment. These immunoreactive fragments or their parent molecules may be ideal candidates for incorporation in a cocktail vaccine against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Majid Zeinali
- Immunology Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | | | | |
Collapse
|