1
|
Zhao D, Suo J, Liang L, Liang R, Zhou R, Ding J, Liu X, Suo X, Zhang S, Tang X. Innovative prevention and control of coccidiosis: targeting sporogony for new control agent development. Poult Sci 2024; 103:104246. [PMID: 39260244 PMCID: PMC11416347 DOI: 10.1016/j.psj.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Coccidiosis is one of the most significant diseases affecting the poultry industry, with recent estimates indicating that it causes annual losses exceeding £10 billion globally. Increasing concerns over drug residues and resistance have elevated the importance of safe and effective vaccines as the primary method for controlling coccidiosis and other animal diseases. However, current commercial live vaccines for coccidiosis can negatively impact the feed conversion rates of young broilers and induce subclinical symptoms of coccidiosis, limiting their widespread adoption. Eimeria species, the causative agents of coccidiosis, exhibit unique biological characteristics. Their life cycle involves 2 or more generations of schizogony and 1 generation of gametogony within the host, followed by sporogony in a suitable external environment. Sporogony is crucial for Eimeria oocysts to become infectious and propagate within the host. Focusing on the sporogony process of Eimeria presents a promising approach to overcoming technical challenges in the efficient control of coccidiosis, addressing the urgent need for sustainable and healthy farming practices. This paper systematically reviews existing control strategies for coccidiosis, identifies current challenges, and emphasizes the research progress and future directions in developing control agents targeting sporogony. The goal is to provide guidance for the formulation of scientific prevention and control measures for coccidiosis.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rongqiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sixin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Abstract
The complexity of parasites and their life cycles makes vaccination against parasitic diseases challenging. This review highlights this by discussing vaccination against four relevant parasites of poultry. Coccidia, i.e., Eimeria spp., are the most important parasites in poultry production, causing multiple billions of dollars of damage worldwide. Due to the trend of antibiotic-free broiler production, use of anticoccidia vaccines in broilers is becoming much more important. As of now, only live vaccines are on the market, almost all of which must be produced in birds. In addition, these live vaccines require extra care in the management of flocks to provide adequate protection and prevent the vaccines from causing damage. Considerable efforts to develop recombinant vaccines and related work to understand the immune response against coccidia have not yet resulted in an alternative. Leucozytozoon caulleryi is a blood parasite that is prevalent in East and South Asia. It is the only poultry parasite for which a recombinant vaccine has been developed and brought to market. Histomonas meleagridis causes typhlohepatitis in chickens and turkeys. The systemic immune response after intramuscular vaccination with inactivated parasites is not protective. The parasite can be grown and attenuated in vitro, but only together with bacteria. This and the necessary intracloacal application make the use of live vaccines difficult. So far, there have been no attempts to develop a recombinant vaccine against H. meleagridis. Inactivated vaccines inducing antibodies against the poultry red mite Dermanyssus gallinae have the potential to control infestations with this parasite. Potential antigens for recombinant vaccines have been identified, but the use of whole-mite extracts yields superior results. In conclusion, while every parasite is unique, development of vaccines against them shares common problems, namely the difficulties of propagating them in vitro and the identification of protective antigens that might be used in recombinant vaccines.
Collapse
Affiliation(s)
- Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849,
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
3
|
Ramalingam V, Muthusamy R, Bohra K, Palavesam A, Gopal D. Cloning, expression and purification of Eimeria maxima gametocyte antigen-EmGam56 for control of poultry coccidiosis. J Parasit Dis 2023; 47:773-777. [PMID: 38009159 PMCID: PMC10667185 DOI: 10.1007/s12639-023-01610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/09/2023] [Indexed: 11/28/2023] Open
Abstract
Poultry coccidiosis is an important devitalizing enteric protozoan disease caused by a group of obligatory intracellular apicomplexan parasites of the Genus Eimeria contributing to major economic loss in commercial poultry worldwide. As the current method of chemotherapeutic control using ionophores in feed had led to development of drug resistant isolates, the need for development of prophylactic vaccines is the most viable alternate and eco-friendly control strategy as on date. Of the several candidate vaccines, the EmGam 56 is one of the most promising candidates which protect the birds against E. maxima, E. tenella and E. acervulina, the three most pathogenic coccidian species infecting commercial chicken. EmGam56 is a major wall forming component of macrogametocyte of E. maxima and a candidate with high immunogenicity and low virulence. The present study was planned and carried out for the generation of E.coli expressed recombinant gametocyte antigen-EmGam56 using pET 28(a+) as cloning vector and BL21 DE3 (pLysS) as prokaryotic expression system in a Bio-fermentor (New Brunswick™ Scientific BioFlo 310). The recombinant protein was purified by conventional (Ammonium sulphate precipitation) and by automatic purification system (AKTA prime) in Ni-NTA column for a planned immunization trial with experimental chickens.
Collapse
Affiliation(s)
- Vijayashanthi Ramalingam
- Translational Research Platform for Veterinary Biologicals (TRPVB), Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, 600051 Chennai, India
| | - Raman Muthusamy
- Translational Research Platform for Veterinary Biologicals (TRPVB), Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, 600051 Chennai, India
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077 India
| | - Kasthuri Bohra
- Translational Research Platform for Veterinary Biologicals (TRPVB), Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, 600051 Chennai, India
| | - Azhahianambi Palavesam
- Translational Research Platform for Veterinary Biologicals (TRPVB), Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, 600051 Chennai, India
| | - Dhinakarraj Gopal
- Translational Research Platform for Veterinary Biologicals (TRPVB), Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, 600051 Chennai, India
| |
Collapse
|
4
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
5
|
Xiao J, Chen H, Zheng R, Pu J, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Yang G. Recombinant GMA56 and ROP17 of Eimeria magna conferred protection against infection by homologous species. Front Immunol 2023; 13:1037949. [PMID: 36713437 PMCID: PMC9879601 DOI: 10.3389/fimmu.2022.1037949] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
One of the most common rabbits coccidia species, Eimeria magna is mainly parasitic in the ileal and jejunal epithelial cells. E. magna infection can affect the growth performance of rabbits or cause other secondary diseases. Traditional methods of anticoccidial treatment typically result in drug resistance and drug residue. Therefore, vaccination is a promising alternative. Gametocyte antigen 56 (GAM56) and rhoptry kinase family proteins (ROPs) are involved in oocyst wall formation and parasite invasion, respectively. A virulence factor, ROP17 contains a serine/threonine kinase catalytic domain. In this study, recombinant E. magna GAM56 (rEmGAM56) and ROP17 (rEmROP17) proteins were obtained from a prokaryotic expression system and their reactogenicity was investigated with immunoblotting. To assess the potential of rEmGAM56 and rEmROP17 as coccidiosis vaccines, New Zealand White rabbits were subcutaneously immunized with 100 μg rEmGAM56 (rGC group) or rEmROP17 (rRC group) twice at 2-week intervals followed by homologous oocyst challenge. The rabbit serum was collected weekly to detect the specific antibody levels. The cytokine levels of pre-challenge serum were measured by enzyme-linked immunosorbent assay and the rabbits were observed and recorded post-challenge for the onset of clinical symptoms. The weight gain, oocyst output, and feed conversion ratio were calculated at the end of the experiment. The results showed that both rEmGAM56 and rEmROP17 had good reactogenicity. The rEmGAM56- or rEmROP17-immunized rabbits had milder clinical symptoms and feed conversion ratios of 3.27:1 and 3.37:1, respectively. The rEmGAM56-immunized rabbits had 81.35% body weight gain and 63.85% oocyst output reduction; the rEmROP17-immunized rabbits had 79.03% body weight gain and 80.10% oocyst output reduction. The ACI of rGC and rRC groups were 162.35 and 171.03, respectively. The specific antibody levels increased rapidly after immunization. Significantly increased interleukin (IL)-2, interferon (IFN)-γ, and IL-17 levels were evident in the rGC and rRC groups (p < 0.05). The rEmGAM56 and rEmROP17 elicited humoral and cellular responses, which protected against E. magna infection in rabbits. Thus, rEmGAM56 and rEmROP17 are potential vaccine candidates against E. magna, and rEmROP17 performed better than rEmGAM56.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruoyu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Guangyou Yang,
| |
Collapse
|
6
|
Yang X, Song X, Liu J, Chen Q, An T, Liu Q. Protection of hatchlings against coccidiosis by maternal antibodies to four recombinant proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima. Vet Parasitol 2022; 312:109813. [PMID: 36343529 DOI: 10.1016/j.vetpar.2022.109813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Maternally derived IgG antibodies to protective Eimeria antigens have great potential to control chicken coccidiosis and multivalent vaccines are more practical to resist against co-infection with several species of Eimeria under natural conditions. In this study, five good protective antigens of Eimeria species were combined into two combinations based on previous studies, namely C1(EtROPK-Eten5-A, EtGAM22, Ea3-1E and EmGAM56) and C2(EtM2AP and EtGAM22, Ea3-1E and EmGAM56). Then, five antigens were expressed in the Escherichia coli system and purified to inoculate breeding hens. After three times immunization, the specific antibodies could sustain for 11 and 10 weeks in hens' plasma and egg yolk, respectively. Moreover, maternally derived antibodies against recombinant proteins could retain for 14 days in hatchlings' serum. Then, protective efficacies of specific antibodies on hatchlings against mixed infection of E. tenella, E. acervulina and E. maxima were evaluated. The results showed that the hatchlings of the immunized hens had a higher survival rate on day 7 of hatching. Moreover, body weight gains within the hatchlings of immunized hens were higher than those of unvaccinated hens on 7 days (C1: p = 0.0744; C2: p = 0.4020) and 14 days (p < 0.0001). Moreover, hatchlings from vaccinated hens showed significantly alleviated lesion scores in the small intestine and duodenum at day 7 (p < 0.01) and day 14 (C1: p < 0.05). Particularly, the number of oocyst excretion from hatchlings of immunized hens was significantly reduced at day 7 (p < 0.0001) and day 14 (p < 0.0001). Our findings suggest that the maternal immunization with multivalent recombinant vaccines has the potential to be transmission blocking vaccines against mixed infection of Eimeria.
Collapse
Affiliation(s)
- Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Qingzhong Chen
- HLINTE Biological Technology Company, Tianjin 301702, PR China.
| | - Tongwei An
- HLINTE Biological Technology Company, Tianjin 301702, PR China.
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
7
|
In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2022:S0020-7519(22)00153-9. [DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
8
|
Zaheer T, Abbas RZ, Imran M, Abbas A, Butt A, Aslam S, Ahmad J. Vaccines against chicken coccidiosis with particular reference to previous decade: progress, challenges, and opportunities. Parasitol Res 2022; 121:2749-2763. [PMID: 35925452 PMCID: PMC9362588 DOI: 10.1007/s00436-022-07612-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Chicken coccidiosis is an economically significant disease of commercial chicken industry accounting for losses of more than £10.4 billion (according to 2016 prices). Additionally, the costs incurred in prophylaxis and therapeutics against chicken coccidiosis in developing countries (for instance Pakistan according to 2018 prices) reached US $45,000.00 while production losses for various categories of chicken ranges 104.74 to US $2,750,779.00. The infection has been reported from all types of commercial chickens (broiler, layer, breeder) having a range of reported prevalence of 7-90%. The concern of resistance towards major anticoccidials has provided a way forward to vaccine research and development. For prophylaxis of chicken coccidiosis, live virulent, attenuated, ionophore tolerant strains and recombinant vaccines have been extensively trialed and commercialized. Eimeria antigens and novel vaccine adjuvants have elicited the protective efficacy against coccidial challenge. The cost of production and achieving robust immune responses in birds are major challenges for commercial vaccine production. In the future, research should be focused on the development of multivalent anticoccidial vaccines for commercial poultry. Efforts should also be made on the discovery of novel antigens for incorporation into vaccine designs which might be more effective against multiple Eimeria species. This review presents a recap to the overall progress against chicken Eimeria with particular reference to previous decade. The article presents critical analysis of potential areas for future research in chicken Eimeria vaccine development.
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ali Butt
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sarfraz Aslam
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| | - Jameel Ahmad
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Yu Z, Chen S, Huang J, Ding W, Chen Y, Su J, Yan R, Xu L, Song X, Li X. A multiepitope vaccine encoding four Eimeria epitopes with PLGA nanospheres: a novel vaccine candidate against coccidiosis in laying chickens. Vet Res 2022; 53:27. [PMID: 35365221 PMCID: PMC9350682 DOI: 10.1186/s13567-022-01045-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
With a worldwide distribution, Eimeria spp. could result in serious economic losses to the poultry industry. Due to drug resistance and residues, there are no ideal drugs and vaccines against Eimeria spp. in food animals. In the current study, a bioinformatics approach was employed to design a multiepitope antigen, named NSLC protein, encoding antigenic epitopes of E. necatrix NA4, E. tenella SAG1, E. acervulina LDH, and E. maxima CDPK. Thereafter, the protective immunity of NSLC protein along with five adjuvants and two nanospheres in laying chickens was evaluated. Based on the humoral immunity, cellular immunity, oocyst burden, and the coefficient of growth, the optimum adjuvant was evaluated. Furthermore, the optimum immune route and dosage were also investigated according to the oocyst burden and coefficient of growth. Accompanied by promoted secretion of antibodies and enhanced CD4+ and CD8+ T lymphocyte proportions, NSLC proteins entrapped in PLGA nanospheres were more effective in stimulating protective immunity than other adjuvants or nanospheres, indicating that PLGA nanospheres were the optimum adjuvant for NSLC protein. In addition, a significantly inhibited oocyst burden and growth coefficient promotion were also observed in animals vaccinated with NSLC proteins entrapped in PLGA nanospheres, indicating that the optimum adjuvant for NSLC proteins was PLGA nanospheres. The results also suggested that the intramucosal route with PLGA nanospheres containing 300 μg of NSLC protein was the most efficient approach to induce protective immunity against the four Eimeria species. Collectively, PLGA nanospheres loaded with NSLC antigens are potential vaccine candidates against avian coccidiosis.
Collapse
Affiliation(s)
- ZhengQing Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - SiYing Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - JianMei Huang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - WenXi Ding
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - YuFeng Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - JunZhi Su
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - RuoFeng Yan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - LiXin Xu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiaoKai Song
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - XiangRui Li
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Coccidiosis: Recent Progress in Host Immunity and Alternatives to Antibiotic Strategies. Vaccines (Basel) 2022; 10:vaccines10020215. [PMID: 35214673 PMCID: PMC8879868 DOI: 10.3390/vaccines10020215] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Coccidiosis is an avian intestinal disease caused by several distinct species of Eimeria parasites that damage the host’s intestinal system, resulting in poor nutrition absorption, reduced growth, and often death. Increasing evidence from recent studies indicates that immune-based strategies such as the use of recombinant vaccines and various dietary immunomodulating feed additives can improve host defense against intracellular parasitism and reduce intestinal damage due to inflammatory responses induced by parasites. Therefore, a comprehensive understanding of the complex interactions between the host immune system, gut microbiota, enteroendocrine system, and parasites that contribute to the outcome of coccidiosis is necessary to develop logical strategies to control coccidiosis in the post-antibiotic era. Most important for vaccine development is the need to understand the protective role of the local intestinal immune response and the identification of various effector molecules which mediate anti-coccidial activity against intracellular parasites. This review summarizes the current understanding of the host immune response to coccidiosis in poultry and discusses various non-antibiotic strategies which are being developed for coccidiosis control. A better understanding of the basic immunobiology of pertinent host–parasite interactions in avian coccidiosis will facilitate the development of effective anti-Eimeria strategies to mitigate the negative effects of coccidiosis.
Collapse
|
11
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
12
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. Characterization of Cystoisospora suis sexual stages in vitro. Parasit Vectors 2020; 13:143. [PMID: 32188507 PMCID: PMC7079422 DOI: 10.1186/s13071-020-04014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The porcine coccidium Cystoisospora suis is characterized by a complex life-cycle during which asexual multiplication is followed by sexual development with two morphologically distinct cell types, the micro- and macrogametes. Genes related to the sexual stages and cell cycle progression were previously identified in related Apicomplexa. Dynein light chain type 1 and male gamete fusion factor HAP2 are restricted to microgametes. Tyrosine-rich proteins and oocyst wall proteins are a part of the oocyst wall. The Rad51/Dmc1-like protein and Nima-related protein kinases are associated with the cell cycle and fertilization process. Here, the sexual stages of C. suis were characterized in vitro morphologically and for temporal expression changes of the mentioned genes to gain insight into this poorly known phase of coccidian development. METHODS Sexual stages of C. suis developing in vitro in porcine intestinal epithelial cells were examined by light and electron microscopy. The transcriptional levels of genes related to merozoite multiplication and sexual development were evaluated by quantitative real-time PCR at different time points of cultivation. Transcription levels were compared for parasites in culture supernatants at 6-9 days of cultivation (doc) and intracellular parasites at 6-15 doc. RESULTS Sexual stage of C. suis was detected during 8-11 doc in vitro. Microgamonts (16.8 ± 0.9 µm) and macrogamonts (16.6 ± 1.1 µm) are very similar in shape and size. Microgametes had a round body (3.5 ± 0.5 µm) and two flagella (11.2 ± 0.5 µm). Macrogametes were spherical with a diameter of 12.1 ± 0.5 µm. Merozoite gene transcription peaked on 10 doc and then declined. Genes related to the sexual stages and cell cycle showed an upregulation with a peak on 13 doc, after which they declined. CONCLUSIONS The present study linked gene expression changes to the detailed morphological description of C. suis sexual development in vitro, including fertilization, meiosis and oocyst formation in this unique model for coccidian parasites. Following this process at the cellular and molecular level will elucidate details on potential bottlenecks of C. suis development (applicable for coccidian parasites in general) which could be exploited as a novel target for control.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Teresa Cruz-Bustos
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Bärbel Ruttkowski
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| | - Anja Joachim
- Institute for Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, 1210 Austria
| |
Collapse
|
13
|
Optimization of Immunization Procedure for Eimeria tenella DNA Vaccine pVAX1-pEtK2-IL-2 and Its Stability. Acta Parasitol 2019; 64:745-752. [PMID: 31165990 DOI: 10.2478/s11686-019-00090-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE To seek for the optimal immunization procedure of DNA vaccine pVAX1-pEtK2-IL-2 which was produced via cloning pEtK2 antigen gene of Eimeria tenella (E. tenella) and chicken IL-2 (chIL-2) gene into expression vector pVAX1. METHODS The doses, routes, times of inoculation and ages of the first inoculation of chickens were optimized. The stability of the vaccine, including store temperature and time, was also explored. The effects of the protective immunity against challenge infection were assessed according to average body weight gain, survival rate, oocyst output, lesion score and the anti-coccidial index (ACI). RESULTS The results suggested that intramuscular inoculation was the most efficient route to elicit immune response and 80 μg was the optimal immune dose. Two time injections induced more effective protection compared to single injection, the effect of the first injection at 14 days old was optimal. The immune efficacy of the vaccine stored at different time and temperature was very stable. CONCLUSIONS The optimal immunization procedure for Eimeria tenella DNA vaccine pVAX1-pEtK2-IL-2 is 80 μg DNA, two time injections at 14 and 21 days old, respectively, by intramuscular inoculation.
Collapse
|
14
|
Jazayeri SD, Poh CL. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res 2019; 50:78. [PMID: 31601266 PMCID: PMC6785882 DOI: 10.1186/s13567-019-0698-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
15
|
Venkatas J, Adeleke MA. A review of Eimeria antigen identification for the development of novel anticoccidial vaccines. Parasitol Res 2019; 118:1701-1710. [PMID: 31065831 DOI: 10.1007/s00436-019-06338-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
Coccidiosis is a major poultry disease which compromises animal welfare and costs the global chicken industry a huge economic loss. As a result, research entailing coccidial control measures is crucial. Coccidiosis is caused by Eimeria parasites that are highly immunogenic. Consequently, a low dosage of the Eimeria parasite supplied by a vaccine will enable the host organism to develop an innate immune response towards the pathogen. The production of traditional live anticoccidial vaccines is limited by their low reproductive index and high production costs, among other factors. Recombinant vaccines overcome these limitations by eliciting undesired contaminants and prevent the reversal of toxoids back to their original toxigenic form. Recombinant vaccines are produced using defined Eimeria antigens and harmless adjuvants. Thus, studies regarding the identification of potent novel Eimeria antigens which stimulate both cell-mediated and humoral immune responses in chickens are essential. Although the prevalence and risk posed by Eimeria have been well established, there is a dearth of information on genetic and antigenic diversity within the field. Therefore, this paper discusses the potential and efficiency of recombinant vaccines as an anticoccidial control measure. Novel protective Eimeria antigens and their antigenic diversity for the production of cheap, easily accessible recombinant vaccines are also reviewed.
Collapse
Affiliation(s)
- J Venkatas
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - M A Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
16
|
Immunoprophylactic evaluation of recombinant gametocyte 22 antigen of Eimeria tenella in broiler chickens. Parasitol Res 2019; 118:945-953. [PMID: 30637470 DOI: 10.1007/s00436-018-06198-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
Abstract
Gametocyte proteins are being explored as potential vaccine candidates against Eimeria sp. in chicken since they are the components of the resilient oocyst wall. The aim of this study was to investigate the immunoprophylactic efficacy of recombinant Eimeria tenella gametocyte antigen 22 (EtGam22) in chickens against homologous oocyst challenge. Broiler chicks were subcutaneously immunized individually with 100 μg of recombinant EtGam22 adjuvanted with Montanide ISA 71 VG at 7 days of age and boosted 2 weeks later. The immunized chickens were challenged individually with 1 × 104 sporulated oocysts of E. tenella 1 week post-booster immunization. The anti-EtGam22 IgY and serum cytokine response was measured post-immunization. The results showed that the anti-EtGam22 IgY antibody, serum IFN-γ, IL-2, TGF-β, and IL-4 levels in chickens vaccinated with recombinant protein were significantly increased post-immunization as compared to unimmunized challenged controls (P < 0.05). The peripheral blood lymphocyte proliferation activity was also found significantly higher in EtGam22-immunized group on day 28, i.e., pre-challenge (P < 0.05). Upon homologous oocyst challenge, chickens immunized with rEtGam22 exhibited a significant drop in the total oocyst output per bird (246.78 ± 36.9 × 106, 45.23% reduction) and a significantly higher weight gain (497.7 ± 19.2 g) as compared to unimmunized challenged controls. Taken together, these data indicate that EtGam22 is a potent immunogen for use as a subunit vaccine against cecal coccidiosis in chickens as it induces a diverse and robust immune response involving multiple cytokines and strong antibody titers.
Collapse
|
17
|
Recombinant anticoccidial vaccines - a cup half full? INFECTION GENETICS AND EVOLUTION 2017; 55:358-365. [DOI: 10.1016/j.meegid.2017.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/27/2022]
|
18
|
Passive immunization with Eimeria tenella gametocyte antigen 56 (EtGAM56) specific antibodies and active immunization trial with the epitope containing peptide. Vet Parasitol 2017; 247:100-107. [DOI: 10.1016/j.vetpar.2017.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 11/19/2022]
|
19
|
|
20
|
Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: The current status in 2015. Vaccine 2015; 34:202-211. [PMID: 26620840 PMCID: PMC7115526 DOI: 10.1016/j.vaccine.2015.11.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023]
Abstract
Poultry DNA vaccination studies are regularly being published since 1993. These studies are mainly, but not only, concerned with vaccination against viruses. The different strategies of improving DNA vaccine efficacies are presented. The fate of the vaccine plasmid, immune properties and other applications are described. Despite the compiling preclinical reports, a poultry DNA vaccine is yet unavailable in the market.
DNA vaccination is a promising alternative strategy for developing new human and animal vaccines. The massive efforts made these past 25 years to increase the immunizing potential of this kind of vaccine are still ongoing. A relatively small number of studies concerning poultry have been published. Even though there is a need for new poultry vaccines, five parameters must nevertheless be taken into account for their development: the vaccine has to be very effective, safe, inexpensive, suitable for mass vaccination and able to induce immune responses in the presence of maternal antibodies (when appropriate). DNA vaccination should meet these requirements. This review describes studies in this field performed exclusively on birds (chickens, ducks and turkeys). No evaluations of avian DNA vaccine efficacy performed on mice as preliminary tests have been taken into consideration. The review first describes the state of the art for DNA vaccination in poultry: pathogens targeted, plasmids used and different routes of vaccine administration. Second, it presents strategies designed to improve DNA vaccine efficacy: influence of the route of administration, plasmid dose and age of birds on their first inoculation; increasing plasmid uptake by host cells; addition of immunomodulators; optimization of plasmid backbones and codon usage; association of vaccine antigens and finally, heterologous prime-boost regimens. The final part will indicate additional properties of DNA vaccines in poultry: fate of the plasmids upon inoculation, immunological considerations and the use of DNA vaccines for purposes other than preventing infectious diseases.
Collapse
Affiliation(s)
- Marine Meunier
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France; French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Unit of Hygiene and Quality of Poultry and Pork Products, Ploufragan, France
| | - Daniel Dory
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan/Plouzané Laboratory, Viral Genetics and Biosafety Unit, Ploufragan, France.
| |
Collapse
|
21
|
Song X, Xu L, Yan R, Huang X, Li X. Construction of Eimeria tenella multi-epitope DNA vaccines and their protective efficacies against experimental infection. Vet Immunol Immunopathol 2015; 166:79-87. [DOI: 10.1016/j.vetimm.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
|
22
|
Immunization with recombinant 3-1E protein in AbISCO®-300 adjuvant induced protective immunity against Eimeria acervulina infection in chickens. Exp Parasitol 2014; 141:75-81. [PMID: 24675417 DOI: 10.1016/j.exppara.2014.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
Immunostimulating complexes (ISCOMs), a kind of novel antigen presenting system, could enhance immune protection by antigen presentation. AbISCO®-300 comprising purified saponin, cholesterol and phosphatidyl choline is an effective ISCOM adjuvant. To evaluate the immune protection of recombinant 3-1E protein against Eimeria acervulina infection, chickens were immunized with recombinant 3-1E protein in combination with AbISCO®-300 or recombinant 3-1E protein alone in this study. The protective immunity was assessed with body weight gain, fecal oocyst output, detection of intestinal IgA positive cells and percentages of CD3(+), CD4(+) or CD8(+) intestinal intraepithelial lymphocytes (IELs). Chickens vaccinated with different doses of recombinant 3-1E protein plus AbISCO®-300 showed higher percentages of CD3(+), CD4(+), and CD8(+) intestinal IELs, increased positive expression rate of intestinal IgA, increased body weight gains and decreased oocyst shedding compared with recombinant 3-1E protein-only vaccinated groups. The results showed that immunization with various doses of the recombinant 3-1E protein in AbISCO®-300 adjuvant enhanced immune protection against avian coccidiosis.
Collapse
|
23
|
Abstract
SUMMARYCoccidiosis, a serious disease resulting from infection with parasitic protozoa of the genusEimeria, causes significant economic losses to the poultry industry, where intensive rearing facilitates transmission of infectious oocysts via the fecal/oral route. Current control relies primarily on prophylactic drugs in feed but, whilst cost effective, the rise of drug resistance and public demands for residue-free meat has encouraged development of alternative control strategies. Chickens that recover from infection withEimeriadevelop solid immunity that is directed against the early asexual stages of the parasite life cycle. This has allowed development of a number of vaccines that utilize deliberate infection with controlled doses of virulent oocysts or reproductively attenuated lines ofEimeria.The latter are immunogenic but non-pathogenic. The realization that both prophylactic drugs and attenuated vaccines control but do not eradicate infection withEimeriaencouraged development of a vaccine based upon maternal immunity. Laying hens exposed toEimeriaare able to transfer protective antibodies to hatchlings via egg yolks and these antibodies have been used to identify parasite proteins that are conserved across the genus. When delivered maternally, these provide an economical means of preventing coccidiosis, offering immediate protection to newly hatched chicks.
Collapse
|
24
|
Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol 2014; 30:12-9. [DOI: 10.1016/j.pt.2013.10.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
|