1
|
Lohan S, Bhatia M. Characterization and Evaluation of Microwave-Synthesized Nanostructured Lipid Carriers for Enhanced Amphotericin B Efficacy Against Leishmania donovani: A Novel Therapeutic Paradigm. BIONANOSCIENCE 2024; 14:2782-2800. [DOI: 10.1007/s12668-024-01552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 01/03/2025]
|
2
|
Teh-Poot CF, Dzul-Huchim VM, Mercado JM, Villanueva-Lizama LE, Bottazzi ME, Jones KM, Tsai FTF, Cruz-Chan JV. A short-term method to evaluate anti-leishmania drugs by inhibition of stage differentiation in Leishmania mexicana using flow cytometry. Exp Parasitol 2023; 249:108519. [PMID: 37004860 PMCID: PMC10231665 DOI: 10.1016/j.exppara.2023.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Leishmaniasis is a vector-borne neglected tropical disease caused by the Leishmania spp. Parasite. The disease is transmitted to humans and animals by the bite of infected female sandflies during the ingestion of bloodmeal. Because current drug treatments induce toxicity and parasite resistance, there is an urgent need to evaluate new drugs. Most therapeutics target the differentiation of promastigotes to amastigotes, which is necessary to maintain Leishmania infection. However, in vitro assays are laborious, time-consuming, and depend on the experience of the technician. In this study, we aimed to establish a short-term method to assess the differentiation status of Leishmania mexicana (L. mexicana) using flow cytometry. Here, we showed that flow cytometry provides a rapid means to quantify parasite differentiation in cell culture as reliably as light microscopy. Interestingly, we found using flow cytometry that miltefosine reduced promastigote-to-amastigote differentiation of L. mexicana. We conclude that flow cytometry provides a means to rapidly assay the efficacy of small molecules or natural compounds as potential anti-leishmanials.
Collapse
Affiliation(s)
- Christian Florian Teh-Poot
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Victor Manuel Dzul-Huchim
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Jonathan M Mercado
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liliana Estefanía Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry and Molecular Biology, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Francis T F Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Biochemistry and Molecular Biology, and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
3
|
Gopu B, Kour P, Pandian R, Singh K. Insights into the drug screening approaches in leishmaniasis. Int Immunopharmacol 2023; 114:109591. [PMID: 36700771 DOI: 10.1016/j.intimp.2022.109591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis, a tropically neglected disease, is responsible for the high mortality and morbidity ratio in poverty-stricken areas. Currently, no vaccine is available for the complete cure of the disease. Current chemotherapeutic regimens face the limitations of drug resistance and toxicity concerns indicating a great need to develop better chemotherapeutic leads that are orally administrable, potent, non-toxic, and cost-effective. The anti-leishmanial drug discovery process accelerated the desire for large-scale drug screening assays and high-throughput screening (HTS) technology to identify new chemo-types that can be used as potential drug molecules to control infection. Using the HTS approach, about one million compounds can be screened daily within the shortest possible time for biological activity using automation tools, miniaturized assay formats, and large-scale data analysis. Classical and modern in vitro screening assays have led to the progression of active compounds further to ex vivo and in vivo studies. In the present review, we emphasized on the HTS approaches employed in the leishmanial drug discovery program. Recent in vitro screening assays are widely explored to discover new chemical scaffolds. Developing appropriate experimental animal models and their related techniques is necessary to understand the pathophysiological processes and disease host responses, paving the way for unraveling novel therapies against leishmaniasis.
Collapse
Affiliation(s)
- Boobalan Gopu
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parampreet Kour
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ramajayan Pandian
- Animal House Facility, Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Cohen A, Azas N. Challenges and Tools for In Vitro Leishmania Exploratory Screening in the Drug Development Process: An Updated Review. Pathogens 2021; 10:1608. [PMID: 34959563 PMCID: PMC8703296 DOI: 10.3390/pathogens10121608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are a group of vector-borne diseases caused by infection with the protozoan parasites Leishmania spp. Some of them, such as Mediterranean visceral leishmaniasis, are zoonotic diseases transmitted from vertebrate to vertebrate by a hematophagous insect, the sand fly. As there is an endemic in more than 90 countries worldwide, this complex and major health problem has different clinical forms depending on the parasite species involved, with the visceral form being the most worrying since it is fatal when left untreated. Nevertheless, currently available antileishmanial therapies are significantly limited (low efficacy, toxicity, adverse side effects, drug-resistance, length of treatment, and cost), so there is an urgent need to discover new compounds with antileishmanial activity, which are ideally inexpensive and orally administrable with few side effects and a novel mechanism of action. Therefore, various powerful approaches were recently applied in many interesting antileishmanial drug development programs. The objective of this review is to focus on the very first step in developing a potential drug and to identify the exploratory methods currently used to screen in vitro hit compounds and the challenges involved, particularly in terms of harmonizing the results of work carried out by different research teams. This review also aims to identify innovative screening tools and methods for more extensive use in the drug development process.
Collapse
Affiliation(s)
- Anita Cohen
- IHU Méditerranée Infection, Aix Marseille University, IRD (Institut de Recherche pour le Développement), AP-HM (Assistance Publique—Hôpitaux de Marseille), SSA (Service de Santé des Armées), VITROME (Vecteurs—Infections Tropicales et Méditerranéennes), 13005 Marseille, France;
| | | |
Collapse
|
5
|
Cortes S, Bruno de Sousa C, Morais T, Lago J, Campino L. Potential of the natural products against leishmaniasis in Old World - a review of in-vitro studies. Pathog Glob Health 2020; 114:170-182. [PMID: 32339079 DOI: 10.1080/20477724.2020.1754655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Leishmaniasis is a vector-borne disease among the 10 most Neglected Tropical Diseases with diverse clinical manifestations caused by protozoan parasites of the Leishmania genus. Around 80% of leishmaniasis cases are found in the Old World affecting populations mainly in low and middle-income countries. Its control relies mostly on chemotherapy which still presents many drawbacks. Natural products may offer an inexhaustible source of chemical diversity with therapeutic potential. Despite the lack of knowledge on traditional products with activity against Leishmania parasites, many reports describe the search for natural extracts and compounds with antileishmanial properties against promastigote and amastigote parasite forms. This review summarizes the research of 74 publications of the last decade (2008-2018) focused on the identification of endemic plant-derived products that are active against Old World Leishmania parasites responsible for cutaneous and visceral leishmaniasis. The present review combines data on antileishmanial activity of 423 plants species, belonging to 94 different families, including a large range of crude extracts which lead to the isolation of 86 active compounds. Most studied plants came from Asia and most promising plant families for antileishmanial activity were Asteraceae and Lamiaceae. From the chemical point of view, terpenoids were the most frequently isolated natural products. These studies suggest that natural products isolated from Old World flora are a rich source of new chemical scaffolds for future leishmaniasis treatment as well as for other Neglected Tropical Diseases warranting further investigation.
Collapse
Affiliation(s)
- Sofia Cortes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Carolina Bruno de Sousa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| | - Thiago Morais
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo , São Paulo, Brazil.,Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade de Guarulhos , São Paulo, Brazil
| | - João Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC , São Paulo, Brazil
| | - Lenea Campino
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Lisboa, Portugal
| |
Collapse
|
6
|
Tahmasebi M, Soleimanifard S, Sanei A, Karimy A, Abtahi SM. A Survey on Inhibitory Effect of Whole-Body Extraction and Secretions of Lucilia sericata's Larvae on Leishmania major In vitro. Adv Biomed Res 2020; 9:12. [PMID: 32318361 PMCID: PMC7147512 DOI: 10.4103/abr.abr_56_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/26/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Leishmaniasis is a skin disease caused by Leishmania parasite. Despite being self-limiting, must be treated. Available drugs have side effects and drug resistance has also been seen. Materials and Methods: Maggot debridement therapy (MDT) is using sterile fly larvae (maggots) of blow flies (Lucilia sericata) for the treatment of different types of tissue wounds. Larvae have excreted and secreted substances that have been proved to have antimicrobial effects, in addition to the some other specifications. Results: In this study, the anti-leishmanial effects of extracts and secretions of sterile second- and third-instar larvae of L. sericata on the growth of Leishmania major promastigotes and amastigotes in the J774 macrophages have been evaluated in vitro. Conclusion: The results showed that extracts and secretions had almost the same leishmaniocidal effect on promastigotes and intracellular amastigotes without cytotoxic effect on macrophages.
Collapse
Affiliation(s)
- Maryam Tahmasebi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simindokht Soleimanifard
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Sanei
- Department of Medical Entomology, School of Health, Hormozgan University of Medical Sciences, Bandar-Abbas, Iran
| | - Azadeh Karimy
- Department of Entomology, Zist Eltiam Sepanta Company, Azad University of Khorasgan, Technology Incubator, Center of Medicinal Plant and Traditional Medicine, Isfahan, Iran
| | - Seyed Mohammad Abtahi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Hendrickx S, Van Bockstal L, Caljon G, Maes L. In-depth comparison of cell-based methodological approaches to determine drug susceptibility of visceral Leishmania isolates. PLoS Negl Trop Dis 2019; 13:e0007885. [PMID: 31790397 PMCID: PMC6907865 DOI: 10.1371/journal.pntd.0007885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 12/12/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023] Open
Abstract
Monitoring the drug susceptibility of Leishmania isolates still largely relies on standard in vitro cell-based susceptibility assays using (patient-isolated) promastigotes for infection. Although this assay is widely used, no fully standardized/harmonized protocol is yet available hence resulting in the application of a wide variety of host cells (primary cells and cell lines), different drug exposure times, detection methods and endpoint criteria. Advocacy for standardization to decrease inter-laboratory variation and improve interpretation of results has already repeatedly been made, unfortunately still with unsatisfactory progress. As a logical next step, it would be useful to reach at least some agreement on the type of host cell and basic experimental design for routine amastigote susceptibility determination. The present laboratory study using different L. infantum strains as a model for visceral leishmaniasis species compared primary cells (mouse peritoneal exudate (PEC), mouse bone marrow derived macrophages and human peripheral blood monocyte derived macrophages) and commercially available cell lines (THP-1, J774, RAW) for either their susceptibility to infection, their role in supporting intracellular amastigote multiplication and overall feasibility/accessibility of experimental assay protocol. The major findings were that primary cells are better than cell lines in supporting infection and intracellular parasite multiplication, with PECs to be preferred for technical reasons. Cell lines require drug exposure of >96h with THP-1 to be preferred but subject to a variable response to PMA stimulation. The fast dividing J774 and RAW cells out-compete parasite-infected cells precluding proper assay read-out. Some findings could possibly also be applicable to cutaneous Leishmania strains, but this still needs cross-checking. Besides inherent limitations in a clinical setting, susceptibility testing of clinical isolates may remain problematic because of the reliance on patient-derived promastigotes which may exhibit variable degrees of metacyclogenesis and infectivity. Leishmaniasis is a neglected tropical disease caused by parasites belonging to the genus of Leishmania and transmitted by the bite of infected female sand flies. Concerns about the effective control of the disease are rising in view of the increasing number of treatment failures that may be related to drug resistance. Monitoring of drug susceptibility in the field should become an essential asset, however, there is still insufficient harmonization in the laboratory assays. This study focused on the standard intracellular amastigote susceptibility assay and compared protocol variables, such as type of macrophage host cell (primary versus cell lines), multiplicity of infection and duration of drug exposure. Primary cells perform best with little difference between cells derived from Swiss mice or BALB/c mice. From a practical point of view, mouse peritoneal exudate cells can be recommended. If mice would not be available, THP-1 cells are the best alternative. For field strains, metacyclic promastigotes should be used at a multiplicity of infection of 10–15 parasites per cell with drug exposure starting at 24h post-infection and continued for 120h. Unfortunately, susceptibility testing of clinical isolates will remain problematic because of the reliance on promastigotes which may exhibit variable degrees of metacyclogenesis and infectivity. Opting for cell-based assays may be complicated by the fact that dedicated laboratory infrastructure may sometimes be lacking in disease-endemic countries.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
8
|
da Silva Santos AC, Moura DMN, Dos Santos TAR, de Melo Neto OP, Pereira VRA. Assessment of Leishmania cell lines expressing high levels of beta-galactosidase as alternative tools for the evaluation of anti-leishmanial drug activity. J Microbiol Methods 2019; 166:105732. [PMID: 31629910 DOI: 10.1016/j.mimet.2019.105732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 11/28/2022]
Abstract
Leishmaniasis, caused by protozoa belonging to the genus Leishmania, is an important public health problem found in >90 countries and with still limited options for treatment. Development of new anti-leishmanial drugs is an urgent need and the identification of new active compounds is a limiting factor that can be accelerated through large scale drug screening. This requires multiple steps and can be expensive and time consuming. Here, we propose an alternative approach for the colorimetric assessment of anti-Leishmania drug activity that can be easily scaled up. L. amazonensis and L. infantum cell lines were generated having the β-galactosidase (β-gal) gene integrated into their chromosomal 18S rRNA (ssu) locus. Both cell lines expressed high levels of β-gal and had their growth easily monitored and quantified colorimetrically. These two cell lines were then evaluated as tools to assess drug susceptibility and their use was validated through in vitro assays with Amphotericin B, which is routinely used against leishmaniasis. β-gal expression was also confirmed through flow-cytometry, another method of phenotypic detection. With these recombinant parasites, an alternative in vitro model of drug screening against cutaneous and visceral leishmaniasis is now available.
Collapse
Affiliation(s)
| | - Danielle M N Moura
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Thiago A R Dos Santos
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Osvaldo P de Melo Neto
- Departamento de Microbiologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| | - Valéria R A Pereira
- Departamento de Imunologia, Instituto Aggeu Magalhães- FIOCRUZ, Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
Heidari-Kharaji M, Fallah-Omrani V, Badirzadeh A, Mohammadi-Ghalehbin B, Nilforoushzadeh MA, Masoori L, Montakhab-Yeganeh H, Zare M. Sambucus ebulus
extract stimulates cellular responses in cutaneous leishmaniasis. Parasite Immunol 2018; 41:e12605. [DOI: 10.1111/pim.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Vahid Fallah-Omrani
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Behnam Mohammadi-Ghalehbin
- Department of Microbiology and Medical Parasitology; School of Medicine; Ardabil University of Medical Sciences; Ardabil Iran
| | | | - Leila Masoori
- Department of Parasitology and Mycology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Hossein Montakhab-Yeganeh
- Department of Clinical Biochemistry; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| | - Mehrak Zare
- Skin and Stem Cell Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
10
|
Berry SL, Hameed H, Thomason A, Maciej-Hulme ML, Saif Abou-Akkada S, Horrocks P, Price HP. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl Trop Dis 2018; 12:e0006639. [PMID: 30001317 PMCID: PMC6057649 DOI: 10.1371/journal.pntd.0006639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/24/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis; a spectrum of diseases of which there are an estimated 1 million new cases each year. Current treatments are toxic, expensive, difficult to administer, and resistance to them is emerging. New therapeutics are urgently needed, however, screening the infective amastigote form of the parasite is challenging. Only certain species can be differentiated into axenic amastigotes, and compound activity against these does not always correlate with efficacy against the parasite in its intracellular niche. Methods used to assess compound efficacy on intracellular amastigotes often rely on microscopy-based assays. These are laborious, require specialist equipment and can only determine parasite burden, not parasite viability. We have addressed this clear need in the anti-leishmanial drug discovery process by producing a transgenic L. mexicana cell line that expresses the luciferase NanoLuc-PEST. We tested the sensitivity and versatility of this transgenic strain, in comparison with strains expressing NanoLuc and the red-shifted firefly luciferase. We then compared the NanoLuc-PEST luciferase to the current methods in both axenic and intramacrophage amastigotes following treatment with a supralethal dose of Amphotericin B. NanoLuc-PEST was a more dynamic indicator of cell viability due to its high turnover rate and high signal:background ratio. This, coupled with its sensitivity in the intramacrophage assay, led us to validate the NanoLuc-PEST expressing cell line using the MMV Pathogen Box in a two-step process: i) identify hits against axenic amastigotes, ii) screen these hits using our bioluminescence-based intramacrophage assay. The data obtained from this highlights the potential of compounds active against M. tuberculosis to be re-purposed for use against Leishmania. Our transgenic L. mexicana cell line is therefore a highly sensitive and dynamic system suitable for Leishmania drug discovery in axenic and intramacrophage amastigote models. The protozoan parasite Leishmania causes a spectrum of diseases collectively known as leishmaniasis. The parasite is transmitted to humans by the bite of its vector, the sand fly, following which the parasite invades host white blood cells, particularly macrophages. Leishmaniasis is classified as a neglected tropical disease, and is endemic in 97 countries. Symptoms of the disease depend on the species of Leishmania. These include skin lesions, destruction of the mucosal membranes, and the visceral form which is usually fatal if untreated. Current therapeutic options for leishmaniasis have a number of associated problems that include toxicity, the development of drug resistance and poor patient compliance due to lengthy and painful treatment regimens. New therapeutics are therefore urgently needed. The ability to screen potential drug candidates requires robust screening assays. Currently, screening the intracellular parasite relies on microscopy-based techniques that require expensive equipment, are time consuming and only detect parasite burden, not viability. By using a transgenic cell line that expresses the NanoLuc-PEST luciferase, we show that we have a parasite-specific viability marker that can be used to measure the efficacy of compounds against the intracellular parasite. We validate the potential of this cell line by screening the MMV Pathogen Box.
Collapse
Affiliation(s)
- Sarah L. Berry
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamza Hameed
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Anna Thomason
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Current address: School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Marissa L. Maciej-Hulme
- Radboud University Medical Center, Department of Nephrology, Geert Grooteplein 10, GA Nijmegan, The Netherlands
| | - Somaia Saif Abou-Akkada
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Paul Horrocks
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Helen P. Price
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Abdossamadi Z, Seyed N, Zahedifard F, Taheri T, Taslimi Y, Montakhab-Yeganeh H, Badirzadeh A, Vasei M, Gharibzadeh S, Rafati S. Human Neutrophil Peptide 1 as immunotherapeutic agent against Leishmania infected BALB/c mice. PLoS Negl Trop Dis 2017; 11:e0006123. [PMID: 29253854 PMCID: PMC5749894 DOI: 10.1371/journal.pntd.0006123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/02/2018] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Human Neutrophil Peptide 1 (HNP1) produced by neutrophils, is a well-known antimicrobial peptide which plays a role both in innate as well as in adaptive immunity and is under intensive investigation as a potential therapeutic agent. Previous in vitro experiments have indicated the leishmaniacidal effect of recombinant HNP1 on Leishmania major (L. major) promastigotes and amastigotes. In the current study, we further extended the idea to explore the remedial effect of HNP1 in the two modalities of peptide therapy (folded HNP1) and gene therapy in L. major infected BALB/c mice. To this end, mice in five different groups received synthetic folded HNP1 (G1), pcDNA-HNP1-EGFP (G2), pcDNA-EGFP (G3), Amphotericin B (G4) and PBS (G5), which was started three weeks after infection for three consecutive weeks. Footpad swelling was monitored weekly and a day after the therapy ended, IFN-γ, IL-4, IL-10, IL-6 and nitric oxide produced by splenocytes were analyzed together with the parasite load in draining lymph nodes. Arginase activity and dermal histopathological changes were also analyzed in the infected footpads. We demonstrated that both therapeutic approaches effectively induced Th1 polarization and restricted parasite burden. It can control disease progression in contrast to non-treated groups. However, pcDNA-HNP1-EGFP is more promising in respect to parasite control than folded HNP1, but less effective than AmB treatment. We concluded with the call for a future approach, that is, a DNA-based expression of HNP1 combined with AmB as it can improve the leishmaniacidal efficacy. The outbreak level of cutaneous leishmaniasis is approximated between one and 1.5 million individuals per year. Owning to several disadvantages of current therapies, special attention to expand novel and efficient therapies has been demanded. Among Anti-Microbial Peptides (AMPs), Human Neutrophil Peptide 1 (HNP1) is one of the most potential defensins. Our promising in vitro experiments have shown the leishmaniacidal effect of recombinant HNP1. Here, we displayed the remedial effect of HNP1 in two approaches including peptide therapy and gene therapy in susceptible mice infected with L. major. Our investigation showed that although both approaches could decrease the parasite load and induce Th1 immune response compared to the control group, pcDNA-HNP1-EGFP has a better effect compared to the folded HNP1. Hence, immunotherapy by HNP1 can help elicit proper immunity despite the direct effect on promastigotes and amastigotes forms of parasite.
Collapse
Affiliation(s)
- Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Hossein Montakhab-Yeganeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
| | - Mohammad Vasei
- Cell-Based Therapies Research Center, Digestive Disease Research Institute and Department of Pathology, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
12
|
Badirzadeh A, Taheri T, Taslimi Y, Abdossamadi Z, Heidari-Kharaji M, Gholami E, Sedaghat B, Niyyati M, Rafati S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl Trop Dis 2017; 11:e0005774. [PMID: 28708893 PMCID: PMC5529023 DOI: 10.1371/journal.pntd.0005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.
Collapse
Affiliation(s)
- Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Heidari-Kharaji
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Baharehsadat Sedaghat
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
EGFP reporter protein: its immunogenicity in Leishmania-infected BALB/c mice. Appl Microbiol Biotechnol 2015; 100:3923-34. [PMID: 26685673 DOI: 10.1007/s00253-015-7201-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023]
Abstract
Optical reporter genes such as green fluorescent protein (GFP) and luciferase are efficiently and widely used in monitoring and studying the protective/therapeutic potential of candidate agents in leishmaniasis. But several observations and controversial reports have generated a main concern, whether enhanced GFP (EGFP) affects immune response. To address this issue, we studied the immunogenicity of EGFP in vivo by two lines of stably transfected parasites (Leishmania major (EGFP) or L. major (EGFP-LUC)) in BALB/c model and/or as a recombinant protein (rEGFP) produced in vitro by bacteria in parallel. Disease progression was followed by footpad swelling measurements and parasite burden in draining lymph nodes using microtitration assay and real-time PCR, and immune responses were also evaluated in spleen. EGFP-expressing parasites generated larger swellings in comparison with wild-type (L. major) while mice immunized with rEGFP and challenged with wild-type parasite were quite comparable in footpad swelling with control group without significant difference. However, both conventional and molecular approaches revealed no significant difference in parasite load between different groups. More importantly, no significant inflammatory responses were detected in groups with higher swelling size measured by interferon-γ (IFN-γ), interleukin (IL)-10, IL-5, and nitric oxide against frozen and thawed lysate of parasite as stimulator. Altogether, these results clearly revealed that EGFP protein expressed in prokaryotic and eukaryotic hosts is not an immunological reactive molecule and acts as a neutral protein without any side effects in mice. So, EGFP expressing Leishmania could be a safe and reliable substitution for wild-types that simplifies in situ follow-up and eliminates the animal scarification wherever needed during the study.
Collapse
|