1
|
Mahdavi Poor B, Rashedi J, Asgharzadeh V, Mirmazhary A, Gheitarani N. Proteases of Acanthamoeba. Parasitol Res 2023; 123:19. [PMID: 38063887 DOI: 10.1007/s00436-023-08059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
The members of genus Acanthamoeba are the etiological agent of uncommon but severe or even fatal opportunistic infections in human beings. The presence of different classes of intracellular and extracellular proteases including serine proteases, cysteine proteases, and metalloproteases has been well documented in environmental and clinical isolates of Acanthamoeba spp. However, the role of the proteolytic enzymes in physiological, biological, and pathological mechanisms of the amoeba remains partially investigated. Some attempts have been conducted using various methods to determine the profile of proteases (number, class, optimal conditions, and activity of the enzymes), and possible pathogenicity mechanism of the proteolytic enzymes (various protein substrate degradation, cytopathic effect on different cell lines). In some cases, it was attempted to correlate intracellular and extracellular protease profile with pathogenicity potential of strains. This review revealed that the protease profile of different strains of Acanthamoeba was extremely complex, therefore, further comprehensive studies with application of a combination of various methods may help to elucidate the role of the enzymes.
Collapse
Affiliation(s)
- Behroz Mahdavi Poor
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran.
| | - Jalil Rashedi
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | - Vahid Asgharzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirali Mirmazhary
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Golgasht Ave, Azadi St, Tabriz, Iran
| | | |
Collapse
|
2
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. eLife 2023; 12:RP86721. [PMID: 37769127 PMCID: PMC10538959 DOI: 10.7554/elife.86721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Isabel E Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
3
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526367. [PMID: 36778482 PMCID: PMC9915587 DOI: 10.1101/2023.01.30.526367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065
| |
Collapse
|
4
|
Wang Y, Jiang L, Zhao Y, Ju X, Wang L, Jin L, Fine RD, Li M. Biological characteristics and pathogenicity of Acanthamoeba. Front Microbiol 2023; 14:1147077. [PMID: 37089530 PMCID: PMC10113681 DOI: 10.3389/fmicb.2023.1147077] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Acanthamoeba is an opportunistic protozoa, which exists widely in nature and is mainly distributed in soil and water. Acanthamoeba usually exists in two forms, trophozoites and cysts. The trophozoite stage is one of growth and reproduction while the cyst stage is characterized by cellular quiescence, commonly resulting in human infection, and the lack of effective monotherapy after initial infection leads to chronic disease. Acanthamoeba can infect several human body tissues such as the skin, cornea, conjunctiva, respiratory tract, and reproductive tract, especially when the tissue barriers are damaged. Furthermore, serious infections can cause Acanthamoeba keratitis, granulomatous amoebic encephalitis, skin, and lung infections. With an increasing number of Acanthamoeba infections in recent years, the pathogenicity of Acanthamoeba is becoming more relevant to mainstream clinical care. This review article will describe the etiological characteristics of Acanthamoeba infection in detail from the aspects of biological characteristic, classification, disease, and pathogenic mechanism in order to provide scientific basis for the diagnosis, treatment, and prevention of Acanthamoeba infection.
Collapse
Affiliation(s)
- Yuehua Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Linzhe Jiang
- General Surgery, Jilin People’s Hospital, Jilin City, China
| | - Yitong Zhao
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Xiaohong Ju
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Le Wang
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Liang Jin
- Department of Laboratory Medicine, Jilin Hospital of Integrated Chinese and Western Medicine, Jilin City, China
| | - Ryan D. Fine
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mingguang Li
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
- *Correspondence: Mingguang Li,
| |
Collapse
|
5
|
Fechtali-Moute Z, Loiseau PM, Pomel S. Stimulation of Acanthamoeba castellanii excystment by enzyme treatment and consequences on trophozoite growth. Front Cell Dev Biol 2022; 10:982897. [PMID: 36172275 PMCID: PMC9511172 DOI: 10.3389/fcell.2022.982897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthamoeba castellanii is a widespread Free-Living Amoeba (FLA) that can cause severe ocular or cerebral infections in immunocompetent and immunocompromised patients, respectively, besides its capacity to transport diverse pathogens. During their life cycle, FLA can alternate between a vegetative form, called a trophozoite, and a latent and resistant form, called a cyst. This resistant form is characterized by the presence of a cell wall containing two layers, namely the ectocyst and the endocyst, mainly composed of cellulose and proteins. In the present work, we aimed to stimulate Acanthamoeba castellanii excystment by treating their cysts with a cellulolytic enzyme, i.e., cellulase, or two proteolytic enzymes, i.e., collagenase and pepsin. While 11 days were necessary to obtain total excystment in the control at 27°C, only 48 h were sufficient at the same temperature to obtain 100% trophozoites in the presence of 25 U/mL cellulase, 50 U/mL collagenase or 100 U/mL pepsin. Additionally, more than 96% amoebae have excysted after only 24 h with 7.5 U/mL cellulase at 30°C. Nevertheless, no effect of the three enzymes was observed on the excystment of Balamuthia mandrillaris and Vermamoeba vermiformis. Surprisingly, A. castellanii trophozoites excysted in the presence of cellulase displayed a markedly shorter doubling time at 7 h, in comparison to the control at 23 h. Likewise, trophozoites doubled their population in 9 h when both cellulose and cellulase were added to the medium, indicating that Acanthamoeba cyst wall degradation products promote their trophozoite proliferation. The analysis of cysts in epifluorescent microscopy using FITC-lectins and in electron microscopy revealed a disorganized endocyst and a reduction of the intercystic space area after cellulase treatment, implying that these cellular events are preliminary to trophozoite release during excystment. Further studies would be necessary to determine the signaling pathways involved during this amoebal differentiation process to identify new therapeutic targets for the development of anti-acanthamoebal drugs.
Collapse
|
6
|
Chu KB, Lee HA, Pflieger M, Fischer F, Asfaha Y, Alves Avelar LA, Skerhut A, Kassack MU, Hansen FK, Schöler A, Kurz T, Kim MJ, Moon EK, Quan FS. Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii. ACS Infect Dis 2022; 8:271-279. [PMID: 34994538 DOI: 10.1021/acsinfecdis.1c00390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acanthamoeba is a ubiquitous and free-living protozoan pathogen responsible for causing Acanthamoeba keratitis (AK), a severe corneal infection inflicting immense pain that can result in permanent blindness. A drug-based treatment of AK has remained arduous because Acanthamoeba trophozoites undergo encystment to become highly drug-resistant cysts upon exposure to harsh environmental conditions such as amoebicidal agents (e.g., polyhexanide, chloroquine, and chlorohexidine). As such, drugs that block the Acanthamoeba encystation process could result in a successful AK treatment. Histone deacetylase inhibitors (HDACi) have recently emerged as novel therapeutic options for treating various protozoan and parasitic diseases. Here, we investigated whether novel HDACi suppress the proliferation and encystation of Acanthamoeba. Synthetic class II HDACi FFK29 (IIa selective) and MPK576 (IIb selective) dose-dependently decreased the viability of Acanthamoeba trophozoites. While these HDACi demonstrated a negligible effect on the viability of mature cysts, Acanthamoeba encystation was significantly inhibited by these HDACi. Apoptosis was slightly increased in trophozoites after a treatment with these HDACi, whereas cysts were unaffected by the HDACi exposure. The viability of human corneal cells was not affected by HDACi concentrations up to 10 μmol/L. In conclusion, these synthetic HDACi demonstrated potent amoebicidal effects and inhibited the growth and encystation of Acanthamoeba, thus highlighting their enormous potential for further development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, 02447 Seoul, South Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
| | - Marc Pflieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Fabian Fischer
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Yodita Asfaha
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Leandro A. Alves Avelar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Alexander Skerhut
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Min-Jeong Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University, School of Medicine, 02447 Seoul, South Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, 02447 Seoul, South Korea
- Department of Medical Zoology, Kyung Hee University, School of Medicine, 02447 Seoul, South Korea
| |
Collapse
|
7
|
Verma S, Singh A, Varshney A, Chandru RA, Acharya M, Rajput J, Sangwan VS, Tiwari AK, Bhowmick T, Tiwari A. Infectious Keratitis: An Update on Role of Epigenetics. Front Immunol 2021; 12:765890. [PMID: 34917084 PMCID: PMC8669721 DOI: 10.3389/fimmu.2021.765890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms modulate gene expression and function without altering the base sequence of DNA. These reversible, heritable, and environment-influenced mechanisms generate various cell types during development and orchestrate the cellular responses to external stimuli by regulating the expression of genome. Also, the epigenetic modifications influence common pathological and physiological responses including inflammation, ischemia, neoplasia, aging and neurodegeneration etc. In recent past, the field of epigenetics has gained momentum and become an increasingly important area of biomedical research As far as eye is concerned, epigenetic mechanisms may play an important role in many complex diseases such as corneal dystrophy, cataract, glaucoma, diabetic retinopathy, ocular neoplasia, uveitis, and age-related macular degeneration. Focusing on the epigenetic mechanisms in ocular diseases may provide new understanding and insights into the pathogenesis of complex eye diseases and thus can aid in the development of novel treatments for these diseases. In the present review, we summarize the clinical perspective of infectious keratitis, role of epigenetics in infectious keratitis, therapeutic potential of epigenetic modifiers and the future perspective.
Collapse
Affiliation(s)
- Sudhir Verma
- Department of Zoology, Deen Dayal Upadhyaya College (University of Delhi), New Delhi, India
| | - Aastha Singh
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Akhil Varshney
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - R Arun Chandru
- Pandorum Technologies Ltd., Bangalore Bioinnovation Centre, Bangalore, India
| | - Manisha Acharya
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| | - Jyoti Rajput
- Pandorum Technologies Ltd., Bangalore Bioinnovation Centre, Bangalore, India
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, United States
| | - Tuhin Bhowmick
- Pandorum Technologies Ltd., Bangalore Bioinnovation Centre, Bangalore, India
| | - Anil Tiwari
- Department of Cornea and Uveitis, Dr. Shroff's Charity Eye Hospital, New Delhi, India
| |
Collapse
|
8
|
Fatimah H, Siti Aisyah R, Ma NL, Rased NM, Mohamad NFAC, Nur Syakinah Nafisa F, Azila A, Zakeri HA. Aspergillus niger trehalase enzyme induced morphological and protein alterations on Acanthamoeba cyst and molecular docking studies. J Parasit Dis 2021; 45:459-473. [PMID: 34295046 PMCID: PMC8254846 DOI: 10.1007/s12639-020-01332-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
The cytotoxicity of Acanthamoeba is yet to fully illustrate due to recalcitrant of Acanthamoeba during cyst stage. The formation of the trehalose layer at the cyst stage protects the inner components of this opportunist protozoan parasite. Trehalase from the Aspergillus niger (AnTre) activity on the cyst of Acanthamoeba was determined based on AnTre dose-response, morphological and protein changes. The interaction of the AnTre and trehalose was also visualized through docking simulation. Vacuolation of the cyst can be seen when observed under light microscopy. Membrane integrity assessment suggested possible hydrolization of the AnTre enzyme to trehalose membranes which based on acridine orange and propidium iodide staining. Surface morphology based on scanning electron microscopy revealed the formation of bulging structure that was also proved through cross sectioning observed by transmission electron microscopy. Loss of internal structure of the cysts was clearly observed. Other morphological distinction where loss of rigid shape due to the destruction of the endo- and ecto cyst layers. However, the protein profile exhibits change of trehalose layer as responses to AnTre treatment. The observed biological results were also supported by interaction simulation based on molecular docking between trehalose and AnTre enzyme. In conclusion, this enzymatic approach could be developed into selective and effective mechanism to control Acanthamoeba without affecting the host especially mammals due to the absence of trehalose elements in the tissues of mammals.
Collapse
Affiliation(s)
- H. Fatimah
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - R. Siti Aisyah
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - N. L. Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - Nurhidayana M. Rased
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - Nor F. A. C. Mohamad
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - F. Nur Syakinah Nafisa
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - A. Azila
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| | - Hazlina A. Zakeri
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu Malaysia
| |
Collapse
|
9
|
Weiner AKM, Katz LA. Epigenetics as Driver of Adaptation and Diversification in Microbial Eukaryotes. Front Genet 2021; 12:642220. [PMID: 33796133 PMCID: PMC8007921 DOI: 10.3389/fgene.2021.642220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA, United States.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
10
|
Niculescu VF. aCLS cancers: Genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene 2020; 726:144174. [DOI: 10.1016/j.gene.2019.144174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
|
11
|
Sohn HJ, Seo GE, Lee JH, Ham AJ, Oh YH, Kang H, Shin HJ. Cytopathic Change and Inflammatory Response of Human Corneal Epithelial Cells Induced by Acanthamoeba castellanii Trophozoites and Cysts. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:217-223. [PMID: 31284343 PMCID: PMC6616168 DOI: 10.3347/kjp.2019.57.3.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 12/03/2022]
Abstract
Acanthamoeba castellanii has ubiquitous distribution and causes primary acanthamoebic keratitis (AK). AK is a common disease in contact lens wearers and results in permanent visual impairment or blindness. In this study, we observed the cytopathic effect, in vitro cytotoxicity, and secretion pattern of cytokines in human corneal epithelial cells (HCECs) induced by A. castellanii trophozoites and/or cysts. Morphological observation revealed that panked dendritic HCECs co-cultured with amoeba cysts had changed into round shape and gradually died. Such changes were more severe in co-culture with cyst than those of co-cultivation with trophozoites. In vitro cytotoxicity assay revealed the highest cytotoxicity to HCECs in the co-culture system with amoeba cysts. A. castellanii induced the expression of IL-1α, IL-6, IL-8, and CXCL1 in HCECs. Secreted levels of IL-1α, IL-6, and IL-8 in HCECs co-cultured with both trophozoites and cysts were increased at an early incubation time (3 and 6 hr). These results suggested that cytopathic changes and pro-inflammatory cytokines release of HCECs in response to A. castellanii, especially amoebic cysts, are an important mechanism for AK development.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Ga-Eun Seo
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Jae-Ho Lee
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - A-Jeong Ham
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Young-Hwan Oh
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Heekyoung Kang
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of medicine, and Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
12
|
Pérez-Cota F, Smith RJ, Elsheikha HM, Clark M. New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2399-2408. [PMID: 31143495 PMCID: PMC6524581 DOI: 10.1364/boe.10.002399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 05/23/2023]
Abstract
The single cell eukaryotic protozoan Acanthamoeba castellanii exhibits a remarkable ability to switch from a vegetative trophozoite stage to a cystic form, in response to stressors. This phenotypic switch involves changes in gene expression and synthesis of the cell wall, which affects the ability of the organism to resist biocides and chemotherapeutic medicines. Given that encystation is a fundamental survival mechanism in the life cycle of A. castellanii, understanding of this process should have significant environmental and medical implications. In the present study, we investigated the mechanism of A. castellanii encystation using a novel phonon microscopy technique at the single cell level. Phonon microscopy is an emerging technique to image cells using laser-generated sub-optical wavelength phonons. This imaging modality can image with contrast underpinned by mechanical properties of cells at an optical or higher resolution. Our results show that the Brillouin frequency, a shift of the colour of light induced by phonons, evolves in three well defined frequency bands instead of a simple shift in frequency. These observations confirm previous results from literature and provide new insights into the capacity of A. castellanii cyst to react quickly in harsh environments.
Collapse
Affiliation(s)
- Fernando Pérez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD,
United Kingdom
| | - Richard J. Smith
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD,
United Kingdom
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD,
United Kingdom
| | - Matt Clark
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD,
United Kingdom
| |
Collapse
|