1
|
Zhang X, Gao A, Ma L, Yu N. Integrating intratumoral and peritumoral radiomics with clinical risk factors for prognostic prediction in pancreatic ductal adenocarcinoma patients undergoing combined chemotherapy and HIFU ablation. Int J Hyperthermia 2024; 41:2410342. [PMID: 39353582 DOI: 10.1080/02656736.2024.2410342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE A radiomics nomogram will be created utilizing MRI data from intratumoral and peritumoral areas to forecast survival outcomes in patients who have had treatment for pancreatic ductal adenocarcinoma (PDAC). METHODS A total of 87 individuals diagnosed with PDAC were included in the study, with 60 patients in the training cohort and 27 patients in the validation cohort. A grand total of 2395 radiomics characteristics were extracted from the tumor region and the peritumoral region. The least absolute shrinkage and selection operator (LASSO) method was used to select features and create a radiomics score, also known as the Rad-score. A multivariate regression analysis was then conducted to build the radiomics nomogram. The evaluation of the nomogram included discrimination, calibration, and clinical utility assessments. RESULTS Based on the conclusions derived from the multivariate Cox model, Rad-Score, jaundice, and tumor size were identified as independent risk factors for overall survival (OS). The inclusion of the Rad-score in the radiomics nomogram led to improved accuracy in predicting survival compared to the clinical model. Patients were categorized into high-risk and low-risk groups based on their Rad-Score. Kaplan-Meier analysis revealed a statistically significant difference between the two groups (p < 0.05). Furthermore, the radiomics nomogram demonstrated excellent ability to differentiate, calibrate, and provide clinical utility in both the training and validation groups. CONCLUSIONS The MRI-based intratumoral and peritumoral radiomics nomogram, integrating the Rad-score and clinical data, provided better prognostic prediction for PDAC patients after HIFU treatment, which may hold great potential for guiding personalized care for these patients.
Collapse
Affiliation(s)
- Xuehui Zhang
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aixin Gao
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Leiyuan Ma
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Yu
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Yu L, Liu Y, Li Z, Huang Y, Tu G, Shi Q, Chen L, Yu X. A retrospective comparative study on the treatment of non-metastatic pancreatic cancer using high-intensity focused ultrasound versus radical surgery. Int J Hyperthermia 2024; 41:2398557. [PMID: 39245446 DOI: 10.1080/02656736.2024.2398557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE To compare the efficacy and safety of high-intensity focused ultrasound (HIFU) and radical surgery for non-metastatic pancreatic cancer (PC). MATERIALS AND METHODS We retrospectively analyzed 89 stage I/II/III PC patients who underwent HIFU (n = 43) or surgery (n = 46) at the Third Xiangya Hospital from January 2020 to December 2021. Pain relief, Karnofsky Performance Scale (KPS), overall survival (OS), treatment-related complications and risk factors for OS were assessed. RESULTS There was no significant difference in the pain relief rate at 30 days post-treatment between the two groups. However, compared with the surgery group, the HIFU group showed significantly lower post-treatment VAS scores (p = 0.019). In the surgery group, the KPS at 30 days post-treatment was lower than pretreatment KPS (70 vs 80; p = 0.015). This relationship was reversed in the HIFU group (80 vs 70; p = 0.024). Median OS favored surgery over HIFU (23 vs 10 months; p < 0.001), with a higher 1-year OS rate (69.57% vs 32.6%; p < 0.001). However, there was no significant difference in OS between the two groups for stage III patients (p = 0.177). Complications rated ≥ grade III were 2.33% in the HIFU group and 32.6% in the surgery group. Multivariate analyses showed that age, KPS, and treatment methods were independent prognostic factors for OS. CONCLUSION HIFU demonstrates advantages over surgery in terms of early KPS, VAS improvements, and safety for pancreatic cancer; however, long-term outcomes favor surgery. For III-stage disease, HIFU was noninferior to surgery in overall survival.
Collapse
Affiliation(s)
- Li Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunfei Liu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanyan Huang
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiuling Shi
- School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Lang Chen
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Erdem S, Narayanan JS, Worni M, Bolli M, White RR. Local ablative therapies and the effect on antitumor immune responses in pancreatic cancer - A review. Heliyon 2024; 10:e23551. [PMID: 38187292 PMCID: PMC10767140 DOI: 10.1016/j.heliyon.2023.e23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, projected to rank as the second most prevalent cause of cancer-related mortality by 2030. Despite significant progress in advances in surgical techniques and chemotherapy protocols, the overall survival (OS) remains to be less than 10 % for all stages combined. In recent years, local ablative techniques have been introduced and utilized as additional therapeutic approaches for locally advanced pancreatic cancer (LAPC), with promising results with respect to local tumor control and OS. In addition to successful cytoreduction, there is emerging evidence that local ablation induces antitumor immune activity that could prevent or even treat distant metastatic tumors. The enhancement of antitumor immune responses could potentially make ablative therapy a therapeutic option for the treatment of metastatic PDAC. In this review, we summarize current ablative techniques used in the management of LAPC and their impact on systemic immune responses.
Collapse
Affiliation(s)
- Suna Erdem
- Moores Cancer Center, University of California San Diego, CA, USA
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | | | - Mathias Worni
- Department of Surgery, Hirslanden Clinic Beau Site, Bern, Switzerland
- Department of Surgery, Duke University Switzerland
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
- Medical Center, Duke University, Durham, NC, USA
- Swiss Institute for Translational and Entrepreneurial Medicine, Stiftung Lindenhof, Campus SLB, Bern, Switzerland
| | - Martin Bolli
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Rebekah R. White
- Moores Cancer Center, University of California San Diego, CA, USA
| |
Collapse
|
4
|
Spiers L, Gray M, Lyon P, Sivakumar S, Bekkali N, Scott S, Collins L, Carlisle R, Wu F, Middleton M, Coussios C. Clinical trial protocol for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox®) and focused ultrasound. BMC Cancer 2023; 23:896. [PMID: 37741968 PMCID: PMC10517508 DOI: 10.1186/s12885-023-11228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/24/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND The dense stroma of pancreatic ductal adenocarcinomas is a major barrier to drug delivery. To increase the local drug diffusion gradient, high doses of chemotherapeutic agent doxorubicin can be released from thermally-sensitive liposomes (ThermoDox®) using ultrasound-mediated hyperthermia at the tumour target. PanDox is designed as a Phase 1 single centre study to investigate enhancing drug delivery to adult patients with non-operable pancreatic ductal adenocarcinomas. The study compares a single cycle of either conventional doxorubicin alone or ThermoDox® with focused ultrasound-induced hyperthermia for targeted drug release. METHODS Adults with non-resectable pancreatic ductal adenocarcinoma are allocated to receive a single cycle of either doxorubicin alone (Arm A) or ThermoDox® with focused ultrasound-induced hyperthermia (Arm B), based on patient- and tumour-specific safety conditions. Participants in Arm B will undergo a general anaesthetic and pre-heating of the tumour by extra-corporal focused ultrasound (FUS). Rather than employing invasive thermometry, ultrasound parameters are derived from a patient-specific treatment planning model to reach the 41 °C target temperature for drug release. ThermoDox® is then concurrently infused with further ultrasound exposure. Tumour biopsies at the targeted site from all patients are analysed post-treatment using high performance liquid chromatography to quantify doxorubicin delivered to the tumour. The primary endpoint is defined as a statistically significant enhancement in concentration of total intra-tumoural doxorubicin, comparing samples from patients receiving liposomal drug with FUS to free drug alone. Participants are followed for 21 days post-treatment to assess secondary endpoints, including radiological assessment to measure changes in tumour activity by Positron Emission Tomography Response Criteria in Solid Tumours (PERCIST) criteria, adverse events and patient-reported symptoms. DISCUSSION This early phase study builds on previous work targeting tumours in the liver to investigate whether enhancement of chemotherapy delivery using ultrasound-mediated hyperthermia can be translated to the stroma-dense environment of pancreatic ductal adenocarcinoma. If successful, it could herald a new approach towards managing these difficult-to-treat tumours. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04852367 . Registered 21st April 2022. EudraCT number: 2019-003950-10 (Registered 2019) Iras Project ID: 272253 (Registered 2019) Ethics Number: 20/EE/0284.
Collapse
Affiliation(s)
- Laura Spiers
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Michael Gray
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Institute of Biomedical Engineering, University of Oxford, Marcella Wing, Botnar Research Centre, Old Rd, Headington, Oxford, OX3 7LD, UK
| | - Paul Lyon
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Noor Bekkali
- Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Shaun Scott
- Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford, OX3 7LE, UK
| | - Linda Collins
- Department of Oncology, Oncology Clinical Trials Office (OCTO), University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Marcella Wing, Botnar Research Centre, Old Rd, Headington, Oxford, OX3 7LD, UK
| | - Feng Wu
- Nuffield Department of Surgery, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Mark Middleton
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Marcella Wing, Botnar Research Centre, Old Rd, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
5
|
Zhang T, Zhou Y, Wang Z. In Situ Measurement of Acoustic Attenuation for Focused Ultrasound Ablation Surgery Using a Boiling Bubble at the Focus. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1672-1678. [PMID: 37005115 DOI: 10.1016/j.ultrasmedbio.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 02/19/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Acoustic attenuation in the propagation path of focused ultrasound ablation surgery determines the energy loss toward the focal region and is critical to the consequent treatment outcomes. In situ non-invasive, reliable, and accurate measurement is challenging for multi-layered heterogeneous tissues within the focusing angle. METHODS A novel measurement approach is proposed and its performance is evaluated using ex vivo porcine tenderloin and bovine heart. A big boiling bubble (i.e., larger than a few millimeters in size) was produced at the focus as a strong reflector inside the tissue, and the echo amplitudes were used to determine the acoustic attenuation. Two models, acoustic ray and energy loss, were developed to derive the equivalent acoustic attenuation coefficient for a focused beam. RESULTS The measured acoustic attenuation coefficients of ex vivo porcine tenderloin and bovine heart at 0.97 MHz and a thickness of 3 cm are 0.159 ± 0.002 and 0.250 ± 0.005 Np/cm, respectively, which are all within the scope of measured values in the literature. In addition, the echo amplitude is sensitive to the conditions of the propagation path, and the inverse acoustic attenuation coefficient of the silicone gel pad placed in front of the tissue sample was 0.807 ± 0.002 Np/cm, which is comparable to the measurement using the insertion substitution method, 0.766 ± 0.003 Np/cm. CONCLUSION Our proposed approach could determine the tissue acoustic attenuation for focused ultrasound ablation surgery reliably and accurately in situ. The easy operating protocol may allow clinical translation and adoption for improved safety and efficacy.
Collapse
Affiliation(s)
- Tianfeng Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
High Intensity Focused Ultrasound (HIFU) in Digestive Diseases: An Overview of Clinical Applications for Liver and Pancreatic Tumors. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Sofuni A, Asai Y, Mukai S, Yamamoto K, Itoi T. High-intensity focused ultrasound therapy for pancreatic cancer. J Med Ultrason (2001) 2022:10.1007/s10396-022-01208-4. [PMID: 35551555 DOI: 10.1007/s10396-022-01208-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer (PC) has one of the poorest prognoses among solid cancers, and its incidence has increased recently. Satisfactory outcomes are not achieved with current therapies; thus, novel treatments are urgently needed. High-intensity focused ultrasound (HIFU) is a novel therapy for ablating tissue from the outside of the body by focusing ultrasonic waves from multiple sources on the tumor. In this therapy, only the focal area is heated to 80-100 ºC, which causes coagulative necrosis of the tissue, with hardly any impact on the tissue outside the focal area. Although HIFU is a minimally invasive treatment and is expected to be useful, it is not yet generally known. Here, we discuss the usefulness of HIFU treatment for un-resectable advanced PC using the results of previous research, meta-analyses, and systematic reviews on its efficacy and safety. HIFU therapy for un-resectable PC is useful for its anti-tumor effect and pain relief, and is expected to prolong survival time and improve quality of life. Although HIFU for PC has several limitations and further study is needed, this technique can be safely performed on un-resectable advanced PC. In future, HIFU could be utilized as a minimally invasive treatment strategy for PC patients with a poor prognosis.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
8
|
Mouratidis PXE, ter Haar G. Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:638. [PMID: 35158903 PMCID: PMC8833696 DOI: 10.3390/cancers14030638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Traditional oncological interventions have failed to improve survival for pancreatic cancer patients significantly. Novel treatment modalities able to release cancer-specific antigens, render immunologically "cold" pancreatic tumours "hot" and disrupt or reprogram the pancreatic tumour microenvironment are thus urgently needed. Therapeutic focused ultrasound exerts thermal and mechanical effects on tissue, killing cancer cells and inducing an anti-cancer immune response. The most important advances in therapeutic focused ultrasound use for initiation and augmentation of the cancer immunity cycle against pancreatic cancer are described. We provide a comprehensive review of the use of therapeutic focused ultrasound for the treatment of pancreatic cancer patients and describe recent studies that have shown an ultrasound-induced anti-cancer immune response in several tumour models. Published studies that have investigated the immunological effects of therapeutic focused ultrasound in pancreatic cancer are described. This article shows that therapeutic focused ultrasound has been deemed to be a safe technique for treating pancreatic cancer patients, providing pain relief and improving survival rates in pancreatic cancer patients. Promotion of an immune response in the clinic and sensitisation of tumours to the effects of immunotherapy in preclinical models of pancreatic cancer is shown, making it a promising candidate for use in the clinic.
Collapse
Affiliation(s)
- Petros X. E. Mouratidis
- Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London SM25NG, UK;
| | | |
Collapse
|
9
|
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021; 11:2394-2413. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration. A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.
Collapse
Affiliation(s)
| | - Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Sofuni A, Asai Y, Tsuchiya T, Ishii K, Tanaka R, Tonozuka R, Honjo M, Mukai S, Nagai K, Yamamoto K, Matsunami Y, Kurosawa T, Kojima H, Homma T, Minami H, Nakatsubo R, Hirakawa N, Miyazawa H, Nagakawa Y, Tsuchida A, Itoi T. Novel Therapeutic Method for Unresectable Pancreatic Cancer-The Impact of the Long-Term Research in Therapeutic Effect of High-Intensity Focused Ultrasound (HIFU) Therapy. Curr Oncol 2021; 28:4845-4861. [PMID: 34898585 PMCID: PMC8628685 DOI: 10.3390/curroncol28060409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/18/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a novel advanced therapy for unresectable pancreatic cancer (PC). HIFU therapy with chemotherapy is being promoted as a novel method to control local advancement by tumor ablation. We evaluated the therapeutic effects of HIFU therapy in locally advanced and metastatic PC. PC patients were treated with HIFU as an optional local therapy and systemic chemotherapy. The FEP-BY02 (Yuande Bio-Medical Engineering) HIFU device was used under ultrasound guidance. Of 176 PC patients, 89 cases were Stage III and 87 were Stage IV. The rate of complete tumor ablation was 90.3%, while that of symptom relief was 66.7%. The effectiveness on the primary lesions were as follows: complete response (CR): n = 0, partial response (PR): n = 21, stable disease (SD): n = 106, and progressive disease (PD): n = 49; the primary disease control rate was 72.2%. Eight patients underwent surgery. The median survival time (MST) after diagnosis for HIFU with chemotherapy compared to chemotherapy alone (100 patients in our hospital) was 648 vs. 288 days (p < 0.001). Compared with chemotherapy alone, the combination of HIFU therapy and chemotherapy demonstrated significant prolongation of prognosis. This study suggests that HIFU therapy has the potential to be a novel combination therapy for unresectable PC.
Collapse
Affiliation(s)
- Atsushi Sofuni
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yasutsugu Asai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takayoshi Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kentaro Ishii
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Reina Tanaka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Tonozuka
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Mitsuyoshi Honjo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Shuntaro Mukai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kazumasa Nagai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Kenjiro Yamamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yukitoshi Matsunami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Takashi Kurosawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hiroyuki Kojima
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Toshihiro Homma
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hirohito Minami
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Ryosuke Nakatsubo
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Noriyuki Hirakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Hideaki Miyazawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku Shinjuku-ku, Tokyo 160-0023, Japan; (Y.A.); (T.T.); (K.I.); (R.T.); (R.T.); (M.H.); (S.M.); (K.N.); (K.Y.); (Y.M.); (T.K.); (H.K.); (T.H.); (H.M.); (R.N.); (N.H.); (H.M.); (T.I.)
| |
Collapse
|
11
|
di Biase L, Falato E, Caminiti ML, Pecoraro PM, Narducci F, Di Lazzaro V. Focused Ultrasound (FUS) for Chronic Pain Management: Approved and Potential Applications. Neurol Res Int 2021; 2021:8438498. [PMID: 34258062 PMCID: PMC8261174 DOI: 10.1155/2021/8438498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
- Brain Innovations Lab, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Emma Falato
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Maria Letizia Caminiti
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Pasquale Maria Pecoraro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Flavia Narducci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy
| |
Collapse
|
12
|
Antoniou A, Giannakou M, Evripidou N, Evripidou G, Spanoudes K, Menikou G, Damianou C. Robotic system for magnetic resonance guided focused ultrasound ablation of abdominal cancer. Int J Med Robot 2021; 17:e2299. [PMID: 34105234 DOI: 10.1002/rcs.2299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A prototype robotic system that uses magnetic resonance guided focused ultrasound (MRgFUS) technology is presented. It features three degrees of freedom (DOF) and is intended for thermal ablation of abdominal cancer. METHODS The device is equipped with three identical transducers being offset between them, thus focussing at different depths in tissue. The efficacy and safety of the system in ablating rabbit liver and kidney was assessed, both in laboratory and magnetic resonance imaging (MRI) conditions. RESULTS Despite these organs' challenging location, in situ coagulative necrosis of a tissue area was achieved. Heating of abdominal organs in rabbit was successfully monitored with MR thermometry. CONCLUSIONS The MRgFUS system was proven successful in creating lesions in the abdominal area of rabbits. The outcomes of the study are promising for future translation of the technology to the clinic.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Georgios Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Kyriakos Spanoudes
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Georgios Menikou
- Medical Physics Sector, State Health Services Organization, Nicosia General Hospital, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
13
|
Marinova M, Feradova H, Gonzalez-Carmona MA, Conrad R, Tonguc T, Thudium M, Becher MU, Kun Z, Gorchev G, Tomov S, Strassburg CP, Attenberger U, Schild HH, Dimitrov D, Strunk HM. Improving quality of life in pancreatic cancer patients following high-intensity focused ultrasound (HIFU) in two European centers. Eur Radiol 2021; 31:5818-5829. [PMID: 33486605 DOI: 10.1007/s00330-020-07682-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Pancreatic cancer patients often have a high symptom burden, significantly impairing patients' quality of life (QOL). Nevertheless, there are hardly any reports on the impact of high-intensity focused ultrasound (HIFU) on the QOL of treated patients. For the first time, this study evaluated the effect of HIFU on QOL and compared these results in two European centers. METHODS Eighty patients with advanced pancreatic cancer underwent HIFU (50 in Germany, 30 in Bulgaria). Clinical assessment included evaluation of QOL and symptoms using the EORTC QLQ-C30 questionnaire at baseline and 1, 3, and 6 months after HIFU. Pain intensity was additionally evaluated with the numerical rating score (NRS). RESULTS Compared to baseline, global health significantly improved 3 and 6 months after HIFU treatment (p = 0.02). Functional subscales including physical, emotional, and social functioning were considerably improved at 6 months (p = 0.02, p = 0.01, and p = 0.01, respectively) as were leading symptom pain (p = 0.04 at 6 months), fatigue (p = 0.03 at 3 and p = 0.01 at 6 months), and appetite loss (p = 0.01 at 6 months). Moreover, pain intensity measured by NRS revealed effective and strong pain relief at all time points (p < 0.001). Reported effects were independent of tumor stage, metastatic status, and country of treatment. CONCLUSIONS This study showed that HIFU represents an effective treatment option of advanced pancreatic cancer improving QOL by increasing global health and mitigation of physical complaints with a low rate of side effects, independent of the examiner. Therefore, HIFU is a worthwhile additional treatment besides systemic palliative chemotherapy or best supportive care in management of this aggressive disease. KEY POINTS • In a prospective two-center study, it was shown that HIFU represents an effective treatment option of advanced pancreatic cancer improving QOL. • HIFU in pancreatic cancer patients is associated with a low rate of side effects, independent of the performer. • HIFU is a worthwhile additional treatment besides systemic palliative chemotherapy or best supportive care in management of this aggressive disease.
Collapse
Affiliation(s)
- Milka Marinova
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Hyuliya Feradova
- HIFU Center, University St. Marina Hospital, Medical University-Pleven, Pleven, Bulgaria
| | | | - Rupert Conrad
- Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Tolga Tonguc
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Marcus Thudium
- Department of Anaesthesiology, University Hospital Bonn, Bonn, Germany
| | - Marc U Becher
- Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Zhou Kun
- Clinical Center for Tumor Therapy, 2nd Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Grigor Gorchev
- HIFU Center, University St. Marina Hospital, Medical University-Pleven, Pleven, Bulgaria
| | - Slavcho Tomov
- HIFU Center, University St. Marina Hospital, Medical University-Pleven, Pleven, Bulgaria
| | | | - Ulrike Attenberger
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Hans H Schild
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Dobromir Dimitrov
- HIFU Center, University St. Marina Hospital, Medical University-Pleven, Pleven, Bulgaria
| | - Holger M Strunk
- Clinic for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany.
| |
Collapse
|
14
|
Kang HJ, Lee JY, Park EJ, Lee HJ, Ha SW, Ahn YD, Cheon Y, Han JK. Synergistic Effects of Pulsed Focused Ultrasound and a Doxorubicin-Loaded Microparticle-Microbubble Complex in a Pancreatic Cancer Xenograft Mouse Model. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3046-3058. [PMID: 32829983 DOI: 10.1016/j.ultrasmedbio.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The synergistic effects of a doxorubicin (Dox)-loaded microparticle-microbubble complex (DMMC) and focused ultrasound (FUS) with a short duty cycle (5%) were evaluated in a pancreatic cancer xenograft model established by inoculating immunodeficient mice with CFPAC-1 cells. The efficacy of the DMMC with FUS (study 1), the effect of conjugating the particles as opposed to mixing them (study 2) and the levels of tumor apoptosis and intracellular Dox (study 3) were evaluated. The DMMC with FUS exhibited the lowest tumor growth rate (30.8 mm3/wk) and the highest intracellular Dox uptake (8.8%) and tumor cell apoptosis rate (58.7%) among all treatments. DMMC had a significantly lower growth rate than the mixture of Dox-loaded microparticles and microbubbles (44.2 mm3/wk, p < 0.01) when they were combined with FUS. In conclusion, DMMC with short-duty-cycle FUS holds promise for tumor growth suppression, which may be attributed to high intracellular Dox uptake.
Collapse
Affiliation(s)
- Hyo-Jin Kang
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Young Lee
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Eun-Joo Park
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea; Department of Nanoconvergence, Seoul National University Graduate School of Convergence Science and Technology, Suwon, Korea; Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea; IMGT Company, Ltd., Seongnam, Korea
| | - Shin-Woo Ha
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea; IMGT Company, Ltd., Seongnam, Korea
| | - Yun Deok Ahn
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yuri Cheon
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Li J, Chen X, Hu X. High-intensity focused ultrasound for treatment of recurrent uterine leiomyosarcoma: a case report and literature review. J Int Med Res 2020; 48:300060520942107. [PMID: 33100084 PMCID: PMC7604949 DOI: 10.1177/0300060520942107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uterine leiomyosarcoma has the characteristics of high malignancy, a poor prognosis, and a high recurrence rate. Surgery is the main treatment option, supplemented by chemotherapy and radiotherapy. We report on a patient with recurrent uterine leiomyosarcoma who was treated with high-intensity focused ultrasound combined with chemotherapy. Tumor growth was controlled and the patient's survival time was prolonged. High-intensity focused ultrasound combined with chemotherapy may thus provide a new treatment strategy for patients with recurrent and surgically difficult uterine leiomyosarcoma.
Collapse
Affiliation(s)
- Junyan Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuejun Chen
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoye Hu
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Ning Z, Zhu Z, Wang H, Zhang C, Xu L, Zhuang L, Yan X, Wang D, Wang P, Meng Z. High-intensity focused ultrasound enhances the effect of bufalin by inducing apoptosis in pancreatic cancer cells. Onco Targets Ther 2019; 12:1161-1170. [PMID: 30863083 PMCID: PMC6388946 DOI: 10.2147/ott.s185953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose High-intensity focused ultrasound (HIFU) has the potential to be an effective therapeutic strategy for pancreatic cancer (PC). However, owing to the high malignancy and poor prognosis of PC, the use of HIFU therapy alone is not sufficient to impair the progression of PC. Bufalin, a compound extracted from traditional medicine, is known to inhibit the growth and progression of PC cells. However, the effect of the combination therapy of HIFU plus bufalin (HIFU+bufalin) is still uncertain. Materials and methods A colony formation assay and flow cytometry were performed to measure the growth and induction of apoptosis in PC cells. Western blotting was used to explore the potential mechanism of HIFU and bufalin therapy. The in vivo efficacy of HIFU+bufalin was tested in a MiaPaCa2 xenograft model. Results Bufalin inhibited the growth of PC cells more obviously compared to HIFU. Combining bufalin with HIFU further decreased the growth of MiaPaCa2 cells compared with single therapy in vitro. Flow cytometry results showed that the percentage of surviving MiaPaCa2 cells in the bufalin-treated group and the HIFU-treated group was approximately three-fold and two-fold higher than in the HIFU+bufalin-treated group. Contrasting results were found in Panc-1 cells. Biochemical analysis revealed that HIFU+bufalin treatment elevated PARP expression and increased caspase-8 activation in MiaPaCa2 and Panc-1 cells. HIFU+bufalin significantly reduced the growth of MiaPaCa2 tumors compared with HIFU or bufalin treatment alone. HIFU+bufalin treatment decreased Ki67 staining and increased activated caspase-3 and caspase 8 staining, when compared with HIFU or bufalin treatment alone in mouse tumors. Conclusion HIFU enhanced the effect of bufailn by inducing apoptosis in PC cells. A combination of HIFU and bufalin may be employed as an alternative therapeutic strategy for PC.
Collapse
Affiliation(s)
- Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Zhenfeng Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Haiyong Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Radiotherapy, Shandong Cancer Hospital, Shandong, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Liping Zhuang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Xia Yan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Dan Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| |
Collapse
|
17
|
Ning Z, Xie J, Chen Q, Zhang C, Xu L, Song L, Meng Z. HIFU is safe, effective, and feasible in pancreatic cancer patients: a monocentric retrospective study among 523 patients. Onco Targets Ther 2019; 12:1021-1029. [PMID: 30774386 PMCID: PMC6362964 DOI: 10.2147/ott.s185424] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to evaluate the clinical value of high-intensity focused ultrasound (HIFU) combined with gemcitabine (GEM) in treating unresectable pancreatic ductal adenocarcinoma (PDAC). Patients and methods A total of 523 unresectable PDAC patients were recruited from December 30, 2007 to January 30, 2015 at Fudan University Shanghai Cancer Center. Among them, 347 received HIFU combined with GEM (with regional intra-arterial chemotherapy [RIAC] or with systemic chemotherapy) and the remaining patients received GEM only. Postoperative complications were observed, and overall survival was recorded. Results The median overall survival of patients who received HIFU combined with GEM vs GEM alone was 7.4 vs 6.0 months (P=0.002); the 6-month, 10-month, 1-year, and 2-year survival rates for patients in these two groups were 66.3% vs 47.5% (P<0.0001), 31.12% vs 15.9% (P<0.0001), 21.32% vs 13.64% (P=0.033), and 2.89% vs 2.27% (P=0.78), respectively. In the combined therapy group, the most obvious survival benefits were obtained among patients who received HIFU plus RIAC and systemic chemotherapy (used in the intervals between RIAC treatments). There were no severe complications in patients undergoing HIFU treatment. Conclusion We demonstrated the survival benefit of HIFU among PDAC patients treated with GEM. The benefit was most obvious in PDAC patients treated with HIFU plus RIAC and systemic chemotherapy.
Collapse
Affiliation(s)
- Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| | - Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| | - Qiwen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| | - Libin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China,
| |
Collapse
|
18
|
Saccomandi P, Lapergola A, Longo F, Schena E, Quero G. Thermal ablation of pancreatic cancer: A systematic literature review of clinical practice and pre-clinical studies. Int J Hyperthermia 2018; 35:398-418. [PMID: 30428728 DOI: 10.1080/02656736.2018.1506165] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Pancreatic cancer is a challenging malignancy with low treatment option and poor life expectancy. Thermal ablation techniques were proposed as alternative treatment options, especially in advanced stages and for unfit-for-surgery patients. This systematic review describes the thermal ablative techniques -i.e., Laser (LA), Radiofrequency (RFA), Microwave (MWA) Ablation, High-Intensity Focused Ultrasound (HIFU) and cryoablation- available for pancreatic cancer treatment. Additionally, an analysis of the efficacy, complication rate and overall survival for each technique is conducted. MATERIAL AND METHODS This review collects the ex vivo, preclinical and clinical studies presenting the use of thermal techniques in the pancreatic cancer treatment, searched up to March 2018 in PubMed and Medline. Abstracts, letters-to-the-editor, expert opinions, reviews and non-English language manuscripts were excluded. RESULTS Sixty-five papers were included. For the ex vivo and preclinical studies, there are: 12 records for LA, 8 for RFA, 0 for MWA, 6 for HIFU, 1 for cryoablation and 3 for hybrid techniques. For clinical studies, 1 paper for LA, 14 for RFA, 1 for MWA, 17 for HIFU, 1 for cryoablation and 1 for hybrid techniques. CONCLUSIONS Important technological advances are presented in ex vivo and preclinical studies, as the real-time thermometry, nanotechnology and hybrid techniques to enhance the thermal outcome. Conversely, a lack of standardization in the clinical employment of the procedures emerged, leading to contrasting results on the safety and feasibility of some analyzed techniques. Uniform conclusions on the safety and feasibility of these techniques for pancreatic cancer will require further structured investigation.
Collapse
Affiliation(s)
- Paola Saccomandi
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,b Departement of Mechanical Engineering, Politecnico di Milano , Milan , Italy
| | - Alfonso Lapergola
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,c Università G. D'Annunzio , Chieti , Italy
| | - Fabio Longo
- a IHU-Strasbourg Institute of Image-Guided Surgery , Strasbourg , France.,d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| | | | - Giuseppe Quero
- d Fondazione Policlinico Universitario Agostino Gemelli IRCCS , Rome , Italy
| |
Collapse
|
19
|
Chang W, Lee JY, Lee JH, Bae JS, Cho YJ, Kang KJ, Son K, Chung YR, Lee KB, Han JK. A portable high-intensity focused ultrasound system for the pancreas with 3D electronic steering: a preclinical study in a swine model. Ultrasonography 2018; 37:298-306. [PMID: 29166762 PMCID: PMC6177688 DOI: 10.14366/usg.17048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The aim of this animal study was to evaluate the safety and feasibility of a portable, ultrasonography-guided, high-intensity focused ultrasound (USg-HIFU) system to treat the pancreas. METHODS Eight swine were included. Using a portable HIFU device (ALPIUS 900, Alpinion Medical Systems), ablations were performed on the pancreas in vivo. Different acoustic intensities were applied (1.7 kW/cm2 or 1.5 kW/cm2 , n=2 [group A for a pilot study]; 1.5 kW/ cm2 , n=3 [group B]; and 1.2 kW/cm2 , n=3 [group C]). Magnetic resonance imaging (MRI) was performed immediately (group A) or 7 days (groups B and C) after HIFU treatment. In groups B and C, serum amylase and lipase levels were measured on days 0 and 7, and performance status was observed every day. Necropsy was performed on days 0 (group A) or 7 (groups B and C) to assess the presence of unintended injuries and to obtain pancreatic and peripancreatic tissue for histological analysis. RESULTS Ablation was noted in the pancreas in all swine on MRI, and all pathologic specimens showed coagulation necrosis in the treated area. The mean ablation areas on MRI were 85.3±38.1 mm2, 90.7±21.2 mm2, and 54.4±30.6 mm2 in groups A, B, and C, respectively (P>0.05). No animals showed evidence of complications, except for one case of a pseudocyst in group B. CONCLUSION This study showed that pancreas ablation using a portable USg-HIFU system may be safe and feasible, and that coagulation necrosis of the pancreas was successfully achieved with a range of acoustic intensities.
Collapse
Affiliation(s)
- Won Chang
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Lee
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jae Hwan Lee
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Kook Jin Kang
- Therapeutic Ultrasound Division, Alpinion Medical Systems Co., Ltd., Seoul, Korea
| | - Keonho Son
- Therapeutic Ultrasound Division, Alpinion Medical Systems Co., Ltd., Seoul, Korea
| | - Yul Ri Chung
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoung Bun Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
20
|
Mariglia J, Momin S, Coe IR, Karshafian R. Analysis of the cytotoxic effects of combined ultrasound, microbubble and nucleoside analog combinations on pancreatic cells in vitro. ULTRASONICS 2018; 89:110-117. [PMID: 29775835 DOI: 10.1016/j.ultras.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Ultrasonically-stimulated microbubbles enhance the therapeutic effects of various chemotherapy drugs. However, the application of ultrasound and microbubbles (USMB) for enhancing the therapeutic effect of nucleoside analogs, which are used as front-line treatments in a range of cancers, and its underlying mechanism is not well understood. This study investigated the effect of gemcitabine, a nucleoside analog drug, in combination with USMB in increasing cell cytotoxicity relative to either treatment alone in BxPC3 pancreatic cancer cells. Cells were sonicated using low frequency (0.5 MHz) ultrasound in combination with Definity® microbubbles (1.7% v/v) in the presence of 1 µM of gemcitabine for a total of 2 h. USMB in combination with gemcitabine decreased cell viability (48 h) to 44.7 ± 5.2%, 27.7 ± 4.3%, and 12.5 ± 3.4% with increasing ultrasound peak negative pressures (220, 360, 530 kPa) from 84.7 ± 3.6%, 54.2 ± 3.8%, and 26.8 ± 3.0%, respectively, when USMB was applied in the absence of drug. We further confirmed that USMB did not enhance the internalization of 1 µM of a radiolabeled nucleoside analog (2-chloroadenosine) at each of the three chosen ultrasound PNPs, determined by radiolabeled scintillation counting. These data suggest that USMB in combination with nucleoside analog drugs leads to an additive effect on cell toxicity and that USMB does not impair transporter-mediated uptake of nucleoside analogs.
Collapse
Affiliation(s)
- Julia Mariglia
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Shadab Momin
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada; St. Michael's Hospital, Keenan Research Centre of LKSKI, 209 Victoria Street, Toronto, ON M5B 1W8, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada; St. Michael's Hospital, Keenan Research Centre of LKSKI, 209 Victoria Street, Toronto, ON M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Abstract
The vast majority of patients who present with pancreatic adenocarcinoma have locally advanced or metastatic disease at the time of presentation without possibility of cure. Although in recent years there have been some new promising chemotherapy regimens that improve overall survival by a few months, the prognosis remains dismal. There is, however, a subset of patients who experience durable stable disease or partial responses after initial courses of chemotherapy with locally advanced disease. In these select patients, there remains interest in local ablative therapy with or without resection as a means for local control, palliation of symptoms, and possible improved survival. This review describes the techniques, complications, and expected benefits of several ablative techniques as a treatment modality for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Rupen Shah
- From the Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY
| | | | | | | |
Collapse
|
22
|
Zhang T, Chen L, Zhang S, Xu Y, Fan Y, Zhang L. Effects of high-intensity focused ultrasound on cisplatin-resistant human lung adenocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1092-1098. [PMID: 29077784 DOI: 10.1093/abbs/gmx107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 01/26/2023] Open
Abstract
It is widely accepted that high-intensity focused ultrasound (HIFU) is a minimally invasive treatment option for different tumors, but its roles and the corresponding mechanism in cisplatin (DDP) chemoresistance in lung adenocarcinoma (LA) remain unclear. In this study, we investigated the response of DDP-resistant LA cells to HIFU and its underlying molecular mechanisms using molecular biology techniques. It was found that HIFU exposure inhibited the proliferation of DDP-resistant A549 (A549/DDP) cells through arresting cell cycle at the G1/G0 phase via the Cyclin-dependent pathway and promoting apoptosis in a Bcl-2-dependent manner. Furthermore, the results also showed that HIFU exposure could down-regulate the expressions of MDR1, MRP1, and LRP mRNAs, as well as P-gp, MRP1, and LRP proteins related to drug resistance in A549/DDP cells. In vivo experiments also demonstrated that HIFU could reduce the size and mass of subcutaneously transplanted tumors produced by A549/DDP cells through mediating Cyclin-dependent and Bcl-2-dependent pathways. These results suggested that HIFU treatment could inhibit the proliferation of DDP-resistant lung cancer cells and might be a novel therapeutic method for patients with DDP resistance.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Ultrasound, Ningbo No. 9 Hospital, Ningbo, China
| | - Libin Chen
- Department of Ultrasound, Ningbo First Hospital, Ningbo, China
| | - Shengmin Zhang
- Department of Ultrasound, Ningbo First Hospital, Ningbo, China
| | - Youfeng Xu
- Department of Ultrasound, Ningbo First Hospital, Ningbo, China
| | - Yabo Fan
- Department of Ultrasound, Ningbo No. 9 Hospital, Ningbo, China
| | - Lizhong Zhang
- Department of Ultrasound, Ningbo No. 9 Hospital, Ningbo, China
| |
Collapse
|
23
|
Maloney E, Khokhlova T, Pillarisetty VG, Schade GR, Repasky EA, Wang YN, Giuliani L, Primavera M, Hwang JH. Focused ultrasound for immuno-adjuvant treatment of pancreatic cancer: An emerging clinical paradigm in the era of personalized oncotherapy. Int Rev Immunol 2017; 36:338-351. [PMID: 28961038 PMCID: PMC6224292 DOI: 10.1080/08830185.2017.1363199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current clinical treatment regimens, including many emergent immune strategies (e.g., checkpoint inhibitors) have done little to affect the devastating course of pancreatic ductal adenocarcinoma (PDA). Clinical trials for PDA often employ multi-modal treatment, and have started to incorporate stromal-targeted therapies, which have shown promising results in early reports. Focused ultrasound (FUS) is one such therapy that is uniquely equipped to address local and systemic limitations of conventional cancer therapies as well as emergent immune therapies for PDA. FUS methods can non-invasively generate mechanical and/or thermal effects that capitalize on the unique oncogenomic/proteomic signature of a tumor. Potential benefits of FUS therapy for PDA include: (1) emulsification of targeted tumor into undenatured antigens in situ, increasing dendritic cell maturation, and increasing intra-tumoral CD8+/ T regulatory cell ratio and CD8+ T cell activity; (2) reduction in intra-tumoral hypoxic stress; (3) modulation of tumor cell membrane protein localization to enhance immunogenicity; (4) modulation of the local cytokine milieu toward a Th1-type inflammatory profile; (5) up-regulation of local chemoattractants; (6) remodeling the tumor stroma; (7) localized delivery of exogenously packaged immune-stimulating antigens, genes and therapeutic drugs. While not all of these results have been studied in experimental PDA models to date, the principles garnered from other solid tumor and disease models have direct relevance to the design of optimal FUS protocols for PDA. In this review, we address the pertinent limitations in current and emergent immune therapies that can be improved with FUS therapy for PDA.
Collapse
Affiliation(s)
- Ezekiel Maloney
- a Department of Radiology , University of Washington , Seattle WA , USA
| | - Tanya Khokhlova
- b Department of Medicine Division of Gastroenterology , University of Washington , Seattle WA , USA
| | | | - George R Schade
- d Department of Urology , University of Washington , Seattle WA , USA
| | - Elizabeth A Repasky
- e Department of Immunology , Roswell Park Cancer Institute , Buffalo NY , USA
| | - Yak-Nam Wang
- f Applied Physics Laboratory , University of Washington , Seattle WA , USA
| | - Lorenzo Giuliani
- g School of Medicine , The Sapienza University of Rome , Rome , Italy
| | - Matteo Primavera
- h School of Medicine , The Sapienza University of Rome , Rome , Italy
| | - Joo Ha Hwang
- i Department of Medicine Division of Gastroenterology , University of Washington , Seattle WA , USA
| |
Collapse
|
24
|
Contrast-enhanced ultrasound evaluation of pancreatic cancer xenografts in nude mice after irradiation with sub-threshold focused ultrasound for tumor ablation. Oncotarget 2017; 8:37584-37593. [PMID: 28402267 PMCID: PMC5514932 DOI: 10.18632/oncotarget.16621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS.
Collapse
|
25
|
Yu MH, Lee JY, Kim HR, Kim BR, Park EJ, Kim HS, Han JK, Choi BI. Therapeutic Effects of Microbubbles Added to Combined High-Intensity Focused Ultrasound and Chemotherapy in a Pancreatic Cancer Xenograft Model. Korean J Radiol 2016; 17:779-88. [PMID: 27587968 PMCID: PMC5007406 DOI: 10.3348/kjr.2016.17.5.779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Objective To investigate whether high-intensity focused ultrasound (HIFU) combined with microbubbles enhances the therapeutic effects of chemotherapy. Materials and Methods A pancreatic cancer xenograft model was established using BALB/c nude mice and luciferase-expressing human pancreatic cancer cells. Mice were randomly assigned to five groups according to treatment: control (n = 10), gemcitabine alone (GEM; n = 12), HIFU with microbubbles (HIFU + MB, n = 11), combined HIFU and gemcitabine (HIGEM; n = 12), and HIGEM + MB (n = 13). After three weekly treatments, apoptosis rates were evaluated using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay in two mice per group. Tumor volume and bioluminescence were monitored using high-resolution 3D ultrasound imaging and in vivo bioluminescence imaging for eight weeks in the remaining mice. Results The HIGEM + MB group showed significantly higher apoptosis rates than the other groups (p < 0.05) and exhibited the slowest tumor growth. From week 5, the tumor-volume-ratio relative to the baseline tumor volume was significantly lower in the HIGEM + MB group than in the control, GEM, and HIFU + MB groups (p < 0.05). Despite visible distinction, the HIGEM and HIGEM + MB groups showed no significant differences. Conclusion High-intensity focused ultrasound combined with microbubbles enhances the therapeutic effects of gemcitabine chemotherapy in a pancreatic cancer xenograft model.
Collapse
Affiliation(s)
- Mi Hye Yu
- Department of Radiology, Konkuk University Medical Center, Seoul 05030, Korea
| | - Jae Young Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Hae Ri Kim
- Department of Pre-Dentistry, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, Korea
| | - Bo Ram Kim
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Eun-Joo Park
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Byung Ihn Choi
- Department of Radiology, Chung-Ang University Hospital, Seoul 06973, Korea
| |
Collapse
|
26
|
Diana M, Schiraldi L, Liu YY, Memeo R, Mutter D, Pessaux P, Marescaux J. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system-current state of the art and future perspectives. Hepatobiliary Surg Nutr 2016; 5:329-44. [PMID: 27500145 DOI: 10.21037/hbsn.2015.11.03] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND High intensity focused ultrasound (HIFU) is emerging as a valid minimally-invasive image-guided treatment of malignancies. We aimed to review to current state of the art of HIFU therapy applied to the digestive system and discuss some promising avenues of the technology. METHODS Pertinent studies were identified through PubMed and Embase search engines using the following keywords, combined in different ways: HIFU, esophagus, stomach, liver, pancreas, gallbladder, colon, rectum, and cancer. Experimental proof of the concept of endoluminal HIFU mucosa/submucosa ablation using a custom-made transducer has been obtained in vivo in the porcine model. RESULTS Forty-four studies reported on the clinical use of HIFU to treat liver lesions, while 19 series were found on HIFU treatment of pancreatic cancers and four studies included patients suffering from both liver and pancreatic cancers, reporting on a total of 1,682 and 823 cases for liver and pancreas, respectively. Only very limited comparative prospective studies have been reported. CONCLUSIONS Digestive system clinical applications of HIFU are limited to pancreatic and liver cancer. It is safe and well tolerated. The exact place in the hepatocellular carcinoma (HCC) management algorithm remains to be defined. HIFU seems to add clear survival advantages over trans arterial chemo embolization (TACE) alone and similar results when compared to radio frequency (RF). For pancreatic cancer, HIFU achieves consistent cancer-related pain relief. Further research is warranted to improve targeting accuracy and efficacy monitoring. Furthermore, additional work is required to transfer this technology on appealing treatments such as endoscopic HIFU-based therapies.
Collapse
Affiliation(s)
- Michele Diana
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France
| | - Luigi Schiraldi
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France
| | - Yu-Yin Liu
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Riccardo Memeo
- IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France;; Department of Digestive Surgery, University Hospital of Strasbourg, France
| | - Didier Mutter
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; Department of Digestive Surgery, University Hospital of Strasbourg, France
| | - Patrick Pessaux
- IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France;; Department of Digestive Surgery, University Hospital of Strasbourg, France
| | - Jacques Marescaux
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France
| |
Collapse
|
27
|
Zhou Y, Wang YN, Farr N, Zia J, Chen H, Ko BM, Khokhlova T, Li T, Hwang JH. Enhancement of Small Molecule Delivery by Pulsed High-Intensity Focused Ultrasound: A Parameter Exploration. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:956-63. [PMID: 26803389 PMCID: PMC4775378 DOI: 10.1016/j.ultrasmedbio.2015.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 05/05/2023]
Abstract
Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drugs in vivo and translation to clinical trials. In this study, the effects of pulsed HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor and pulse repetition frequency) on the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in more than 40 times greater Evans blue content and 3.5 times the penetration depth compared with untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-min exposure to pHIFU. Pulsed HIFU has been found to be an effective modality to enhance both the concentration and penetration depth of small molecules in tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
| | - Navid Farr
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jasmine Zia
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bong Min Ko
- Digestive Disease Center and Research Institute, Department of Internal Medicine, Soonchunhyang University College of Medicine, Asan, Korea
| | - Tatiana Khokhlova
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Tong Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joo Ha Hwang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Eskander MF, Bliss LA, Tseng JF. Pancreatic adenocarcinoma. Curr Probl Surg 2016; 53:107-54. [DOI: 10.1067/j.cpsurg.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
|
29
|
Khokhlova TD, Hwang JH. HIFU for Palliative Treatment of Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:83-95. [PMID: 26486333 DOI: 10.1007/978-3-319-22536-4_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is one of the deadliest malignancies, with only a 6 % 5-year survival rate and over 50 % of patients being diagnosed at the advanced stage. Current therapies are ineffective, and the treatment of patients with advanced disease is palliative. In the past decade, HIFU ablation has emerged as a modality for palliative treatment of pancreatic tumors. Multiple preclinical and non-randomized clinical trials have been performed to evaluate the safety and efficacy of this procedure. Substantial tumor-related pain reduction was achieved in most cases after HIFU treatment and few significant side effects were observed. In addition, some studies indicate that combination of HIFU ablation with chemotherapy may provide a survival benefit. This chapter summarizes the pre-clinical and clinical experience obtained to date in HIFU treatment of pancreatic tumors and discusses the challenges, limitations and new approaches in this modality.
Collapse
Affiliation(s)
- Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
30
|
Al-Hawary MM, Francis IR, Anderson MA. Pancreatic Solid and Cystic Neoplasms: Diagnostic Evaluation and Intervention. Radiol Clin North Am 2015; 53:1037-48. [PMID: 26321452 DOI: 10.1016/j.rcl.2015.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-resolution imaging modalities, such as multi-detector computed tomography, MR imaging, and endoscopic ultrasound, are frequently used alone or in combination to characterize focal solid and cystic pancreatic neoplasms. Imaging in solid pancreatic neoplasms, typically adenocarcinoma and neuroendocrine tumors, is primarily used to detect and stage the extent of the tumor and to determine if complete surgical resection for cure is feasible. In cystic pancreatic masses, imaging aims to differentiate benign nonmucinous cystic lesions from potentially or frankly malignant mucin-producing cysts. Several noninvasive and invasive treatment options can be performed if surgical resection is not possible or contraindicated.
Collapse
Affiliation(s)
- Mahmoud M Al-Hawary
- Division of Abdominal Imaging, Department of Radiology, University of Michigan Hospitals, 1500 East Medical Center Drive, Room B1 D502, Ann Arbor, MI 48109, USA.
| | - Isaac R Francis
- Division of Abdominal Imaging, Department of Radiology, University of Michigan Hospitals, 1500 East Medical Center Drive, Room B1 D540, Ann Arbor, MI 48109, USA
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Hospitals, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Vidal-Jove J, Perich E, Del Castillo MA. Ultrasound Guided High Intensity Focused Ultrasound for malignant tumors: The Spanish experience of survival advantage in stage III and IV pancreatic cancer. ULTRASONICS SONOCHEMISTRY 2015; 27:703-706. [PMID: 26044461 DOI: 10.1016/j.ultsonch.2015.05.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED We described the experience of the HIFU Onco Unit of Hospital University Mutua Terrassa (Barcelona, Spain) treating malignant tumors, focusing on results of unresectable pancreatic tumors treated with Ultrasound Guided High Intensity Focused Ultrasound (USgHIFU) hyperthermia ablation in combination with adjuvant chemotherapy. MATERIALS AND METHODS From February 2008 to December 2013, we treated 140 malignant cases. Of those, 48 cases of unresectable pancreatic tumors were treated from March 2010 to December 2013, and the first 43 were included in the analysis. All the 43 cases (29 cases of stage III and 14 cases of stage IV) were treated with systemic chemotherapy. Clinical responses (thermical ablation achieved) were measured by image techniques, and complications were also recorded and analyzed. RESULTS The majority of the 140 cases treated at our HIFU center were pancreatic and liver tumors, among which 43 cases of pancreatic tumors were analyzed. Clinical responses (ablation obtained) were observed in 82% of the cases, and the responses lasted at 8 weeks post-procedure. We obtained 11 complete responses (25%) at the end of the combined treatment, nine from stage III patients and two from stage IV patients. Major complications included severe pancreatitis with GI bleeding (1), and skin burning of grade III that required plastic surgery (2). The median survival was 13 months (6 months-2.7 years). No deaths were registered during the course of the treatment. CONCLUSIONS HIFU is a potentially effective and safe modality for the treatment of malignant tumors. HIFU proves to have a survival advantage in treating unresectable pancreatic cancer.
Collapse
Affiliation(s)
- Joan Vidal-Jove
- Surgical Oncology HIFU Unit, Hospital Universitari Mutua Terrassa (HUMT), Pl. Dr. Robert, 5, 08221 Terrassa, Barcelona, Spain. http://www.mutuaterrassa.cat
| | - Eloi Perich
- Surgical Oncology HIFU Unit, Hospital Universitari Mutua Terrassa (HUMT), Pl. Dr. Robert, 5, 08221 Terrassa, Barcelona, Spain
| | - Manuel Alvarez Del Castillo
- Medical Direction Departments, Hospital Universitari Mutua Terrassa (HUMT), Pl. Dr. Robert, 5, 08221 Terrassa, Barcelona, Spain
| |
Collapse
|
32
|
Kang KM, Lee JY, Kim H, Han JK, Choi BI. Gel phantom study with high-intensity focused ultrasound: influence of metallic stent containing either air or fluid. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2851-2856. [PMID: 25308944 DOI: 10.1016/j.ultrasmedbio.2014.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 06/04/2023]
Abstract
We aimed to investigate whether a cylindrical structure containing either air or fluid and with or without a metallic stent affects the volume and density of cavitation produced by high-intensity focused ultrasound via a gel phantom study. Sixteen tissue-mimicking phantoms based on a polyacrylamide gel mixed with bovine serum albumin with a cylindrical hole 1 cm in diameter and 7.5 cm in length were divided into four groups of four phantoms with air in the holes (group 1), four phantoms with fluid in the holes (group 2), four phantoms with air-containing metallic stents (group 3) and four phantoms with fluid-containing metallic stents (group 4). A pulsed high-intensity focused ultrasound beam (50% duty cycle, 40-Hz pulse repetition frequency) at 75 W of acoustic power was directed perpendicularly to the longitudinal axis of the hole, with its focus at the posterior wall of the hole. The size of the cavitation on the x-, y-, and z-axes was measured, and the volumes of cavitation and coagulation were calculated using the formula for the volume of an elliptical cone. The density of cavitation was measured in the tissue phantom anterior to the hole with a 1 × 1-cm square region of interest. For statistical analysis, the Kruskal-Wallis test and Mann-Whitney U-test were used. The phantoms with air-containing holes (groups 1 and 3) developed larger and denser cavitations anterior to the focus, without unnecessary coagulation posterior to the focus, compared with the phantoms with fluid-containing holes (groups 2 and 4), regardless of the presence of stents. All of the axes and volumes of the anterior cavitations were significantly larger than those of the posterior cavitations in groups 1 and 3 (all p-values <0.05). The results of this study might be applied to maximize cavitation to enhance drug delivery into tumors.
Collapse
Affiliation(s)
- Koung Mi Kang
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jae Young Lee
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Haeri Kim
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Byung-Ihn Choi
- Department of Radiology and the Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea; Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
33
|
Wu F. High intensity focused ultrasound: A noninvasive therapy for locally advanced pancreatic cancer. World J Gastroenterol 2014; 20:16480-16488. [PMID: 25469016 PMCID: PMC4248191 DOI: 10.3748/wjg.v20.i44.16480] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/08/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
The noninvasive ablation of pancreatic cancer with high intensity focused ultrasound (HIFU) energy is received increasingly widespread interest. With rapidly temperature rise to cytotoxic levels within the focal volume of ultrasound beams, HIFU can selectively ablate a targeted lesion of the pancreas without any damage to surrounding or overlying tissues. Preliminary studies suggest that this approach is technical safe and feasible, and can be used alone or in combination with systemic chemotherapy for the treatment of patients with locally advanced pancreatic cancer. It can effectively alleviate cancer-related abdominal pain, and may confer an additional survival benefit with few significant complications. This review provides a brief overview of HIFU, describes current clinical applications, summarizes characteristics of continuous and pulsed HIFU, and discusses future applications and challenges in the treatment of pancreatic cancer.
Collapse
|
34
|
Kim JH, Kim H, Kim YJ, Lee JY, Han JK, Choi BI. Dynamic contrast-enhanced ultrasonographic (DCE-US) assessment of the early response after combined gemcitabine and HIFU with low-power treatment for the mouse xenograft model of human pancreatic cancer. Eur Radiol 2014; 24:2059-68. [PMID: 24962825 DOI: 10.1007/s00330-014-3260-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/20/2014] [Accepted: 05/21/2014] [Indexed: 01/06/2023]
Abstract
PURPOSE To assess therapeutic efficacy of gemcitabine and HIFU for a mouse model of pancreatic cancer, and the role of DCE-US for predicting early treatment response compared with pathology. MATERIALS AND METHODS In 48 PANC-1- nude mice (G1, HIFU_higher power [n = 14]; G2, gemcitabine [n = 12]; G3, combined gemcitabine and HIFU_low power [n = 12]; and G4, control [n = 10]), pulsed HIFU or gemcitabine therapy was used. DCE-US was performed 1 day before and after first treatment. Seven DCE-US perfusion parameters were obtained. Therapeutic efficacy was estimated using necrotic fraction and apoptosis. Correlation between tumour size and US perfusion parameters was analysed. RESULTS Pathology results showed that combined gemcitabine and HIFU using low-power treatment had a more effective response than other treatments, including in the control group, i.e. necrotic fraction: 40.5 ± 4.9 vs. 16.9 ± 8.0, p = 0.000 and apoptosis: 44.3 ± 29.4 vs. 7.9 ± 4.9, p = 0.002. In this group, US perfusion parameters, including peak intensity (22.6 ± 22.6 vs. 9.6 ± 6.3, p = 0.002), AUC (961.8 ± 96.9 vs. 884.4 ± 91.4, p = 0.000), and AUCout (799.9 ± 75.6 vs. 747.1 ± 77.9, p = 0.000), had significantly decreased 1 day following first treatment (p < 0.05). In addition, peak intensity, AUC, and AUCout showed a tendency to decrease in treated groups. Alternatively, peak intensity, AUC, and AUCout showed a tendency to increase in control group. CONCLUSION Gemcitabine and HIFU were more effective and safer than other treatments. US perfusion parameters were useful for predicting early therapeutic response 1 day following treatment. KEY POINTS Recently, treatment of pancreatic cancer has changed based on a multidisciplinary approach. Combined gemcitabine_HIFU demonstrated more effective therapeutic response than other treatments. DCE-US is useful for predicting early therapeutic response 1 day after treatment. In the combined group, PI, AUC, and AUC (out) decreased 1 day after treatment.
Collapse
Affiliation(s)
- Jung Hoon Kim
- Department of Radiology, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 110-744, Republic of Korea,
| | | | | | | | | | | |
Collapse
|
35
|
Systematic review of minimally invasive ablation treatment for locally advanced pancreatic cancer. Radiol Med 2014; 119:483-98. [DOI: 10.1007/s11547-014-0417-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/30/2014] [Indexed: 12/17/2022]
|
36
|
High-intensity focused ultrasound treatment for advanced pancreatic cancer. Gastroenterol Res Pract 2014; 2014:205325. [PMID: 25053938 PMCID: PMC4099025 DOI: 10.1155/2014/205325] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU) is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS) score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.
Collapse
|
37
|
Kim KW, Lee JY, Lee JM, Jeon YS, Choi YS, Park J, Kim H, Han JK, Choi BI. High-intensity Focused Ultrasound Ablation of Soft-tissue Tumors and Assessment of Treatment Response with Multiparametric Magnetic Resonance Imaging: Preliminary Study Using Rabbit VX2 Tumor Model. J Med Ultrasound 2014. [DOI: 10.1016/j.jmu.2014.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
38
|
Xiaoping L, Leizhen Z. Advances of high intensity focused ultrasound (HIFU) for pancreatic cancer. Int J Hyperthermia 2014; 29:678-82. [PMID: 24102396 DOI: 10.3109/02656736.2013.837199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High intensity focused ultrasound (HIFU) is a novel therapeutic modality. Several preclinical and clinical studies have investigated the safety and efficacy of HIFU for treating solid tumours, including pancreatic cancer. Preliminary studies suggest that HIFU may be useful for the palliative therapy of cancer-related pain in patients with unresectable pancreatic cancer. This review provides a brief overview of HIFU, describes current clinical applications of HIFU for pancreatic cancer, and discusses future applications and challenges.
Collapse
Affiliation(s)
- Li Xiaoping
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University , Shanghai 200092 , China
| | | |
Collapse
|
39
|
Choi JW, Lee JY, Hwang EJ, Hwang I, Woo S, Lee CJ, Park EJ, Choi BI. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs. Ultrasonography 2014; 33:191-9. [PMID: 25038809 PMCID: PMC4104954 DOI: 10.14366/usg.14008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/26/2014] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. METHODS To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. RESULTS In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. CONCLUSION Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Keane MG, Bramis K, Pereira SP, Fusai GK. Systematic review of novel ablative methods in locally advanced pancreatic cancer. World J Gastroenterol 2014; 20:2267-78. [PMID: 24605026 PMCID: PMC3942832 DOI: 10.3748/wjg.v20.i9.2267] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 02/06/2023] Open
Abstract
Unresectable locally advanced pancreatic cancer with or without metastatic disease is associated with a very poor prognosis. Current standard therapy is limited to chemotherapy or chemoradiotherapy. Few regimens have been shown to have a substantial survival advantage and novel treatment strategies are urgently needed. Thermal and laser based ablative techniques are widely used in many solid organ malignancies. Initial studies in the pancreas were associated with significant morbidity and mortality, which limited widespread adoption. Modifications to the various applications, in particular combining the techniques with high quality imaging such as computed tomography and intraoperative or endoscopic ultrasound has enabled real time treatment monitoring and significant improvements in safety. We conducted a systematic review of the literature up to October 2013. Initial studies suggest that ablative therapies may confer an additional survival benefit over best supportive care but randomised studies are required to validate these findings.
Collapse
|
41
|
Lee ES, Lee JY, Kim H, Choi Y, Park J, Han JK, Choi BI. Pulsed high-intensity focused ultrasound enhances apoptosis of pancreatic cancer xenograft with gemcitabine. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1991-2000. [PMID: 23972483 DOI: 10.1016/j.ultrasmedbio.2013.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/08/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
We sought to investigate whether concurrent exposure to pulsed high-intensity focused ultrasound (HIFU) and the chemotherapeutic drug gemcitabine would enhance apoptosis in pancreatic cancer. A pancreatic cancer xenograft model was established using BALB/c nude mice and human pancreatic cancer cells (PANC-1). In the first study, mice were randomly allocated into one of four groups: control (n = 4), HIFU alone (n = 4), gemcitabine (GEM) alone (n = 28) and concurrent treatment with HIFU and gemcitabine (HIGEM) (n = 28). The GEM and HIGEM groups were subdivided into four subgroups (16 mice) according to the drug dose injected (50-200 mg/kg) and another four subgroups (16 mice) according to the time interval between drug injection and HIFU treatment (each subgroup, n = 4). Apoptosis rates were evaluated using the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) assay and percentage of necrosis, as evaluated with Harris' hematoxylin solution and eosin Y stain, 3 d after treatment. The second study was performed to evaluate tumor growth rates of the four groups. Each group was treated weekly for 3 wk, and tumor size was periodically measured for up to 4 wk from the beginning of treatment. In the first study, overall rates of apoptosis were significantly higher in the HIGEM group than in the GEM group (p = 0.02). In a subgroup analysis, HIGEM was superior to GEM in enhancing apoptosis at gemcitabine dosages of 150-200 mg/kg gemcitabine and intervals between gemcitabine and HIFU less than 2 h (p = 0.01). In the second study, HIGEM treatment resulted in the slowest tumor growth. However, despite a visible distinction, none of the differences found between the HIGEM and GEM groups were statistically significant (p > 0.05). Treatment with both HIFU and gemcitabine might enhance cell apoptosis and reduce tumor growth in pancreatic carcinoma. For this concurrent treatment, a high dosage of gemcitabine and a short-term delay before HIFU are recommended to maximize the therapeutic effect.
Collapse
Affiliation(s)
- Eun Sun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
New clinical application of high-intensity focused ultrasound: local control of synovial sarcoma. World J Surg Oncol 2013; 11:265. [PMID: 24103491 PMCID: PMC3851998 DOI: 10.1186/1477-7819-11-265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/22/2013] [Indexed: 01/08/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is playing an increasingly important role in cancer therapy. Primary synovial sarcomas of the chest wall are extremely rare. We report the first case of noninvasive HIFU therapy for the control of synovial sarcoma. A 51-year-old man was diagnosed with spindle cell sarcoma on the left chest wall through lumpectomy. After four cycles of chemotherapy, local recurrence of the sarcoma was detected. Subsequent extended resection confirmed synovial sarcoma. After five cycles of a new chemotherapy option, the sarcoma relapsed again. Then the patient received five courses of HIFU; this completely ablated the sarcoma without complications. No chemotherapy, radiotherapy, or biological therapy has been applied since. Now the patient is stable and has a high quality of life.
Collapse
|