1
|
Liu D, Huang J, Zhang Y, Shen H, Wang X, Huang Z, Chen X, Qiao Z, Hu C. Multimodal MRI-based radiomics models for the preoperative prediction of lymphovascular space invasion of endometrial carcinoma. BMC Med Imaging 2024; 24:252. [PMID: 39304802 DOI: 10.1186/s12880-024-01430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To evaluate the predictive capabilities of MRI-based radiomics for detecting lymphovascular space invasion (LVSI) in patients diagnosed with endometrial carcinoma (EC). MATERIALS AND METHODS A retrospective analysis was conducted on 160 female patients diagnosed with EC. The radiomics model including T2-weighted and dynamic contrast-enhanced MRI (DCE-MRI) images was established. Additionally, a conventional MRI model, which incorporated MRI-reported FIGO stage, deep myometrial infiltration (DMI), adnexal involvement, and vaginal/parametrial involvement, was established. Finally, a combined model was created by integrating the radiomics signature and conventional MRI characteristics. The predictive performance was validated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curves. A stratified analysis was conducted to compare the differences between the three models by Delong test. RESULTS In predicting LVSI, the radiomics model outperformed the clinical model in the training cohort (AUC: 0.899 vs. 0.8862) but not in the test cohort (AUC: 0.812 vs. 0.8758). The combined model demonstrated superior performance in both the training and test cohorts (training cohort: AUC = 0.934, 95% CI: 0.8807-0.9873; testing cohort: AUC = 0.905, 95% CI: 0.7679-1). CONCLUSIONS The combined model exhibited utility in preoperatively predicting LVSI in patients with EC, offering potential benefits for clinical decision-making.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinyu Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Zhang
- Department of Radiology, Luodian Hospital, Baoshan district, Shanghai, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medical, Suzhou, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhou Huang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Chen
- Department of Radiology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Zhenguo Qiao
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Chen X, Li M, Su D. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach. Medicine (Baltimore) 2024; 103:e39343. [PMID: 39151526 PMCID: PMC11332746 DOI: 10.1097/md.0000000000039343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
To develop machine learning models based on preoperative dynamic enhanced magnetic resonance imaging (DCE-MRI) radiomics and to explore their potential prognostic value in the differential diagnosis of human epidermal growth factor receptor 2 (HER2)-low from HER2-positive breast cancer (BC). A total of 233 patients with pathologically confirmed invasive breast cancer admitted to our hospital between January 2018 and December 2022 were included in this retrospective analysis. Of these, 103 cases were diagnosed as HER2-positive and 130 cases were HER2 low-expression BC. The Synthetic Minority Oversampling Technique is employed to address the class imbalance problem. Patients were randomly split into a training set (163 cases) and a validation set (70 cases) in a 7:3 ratio. Radiomics features from DCE-MRI second-phase imaging were extracted. Z-score normalization was used to standardize the radiomics features, and Pearson's correlation coefficient and recursive feature elimination were used to explore the significant features. Prediction models were constructed using 6 machine learning algorithms: logistic regression, random forest, support vector machine, AdaBoost, decision tree, and auto-encoder. Receiver operating characteristic curves were constructed, and predictive models were evaluated according to the area under the curve (AUC), accuracy, sensitivity, and specificity. In the training set, the AUC, accuracy, sensitivity, and specificity of all models were 1.000. However, in the validation set, the auto-encoder model's AUC, accuracy, sensitivity, and specificity were 0.994, 0.976, 0.972, and 0.978, respectively. The remaining models' AUC, accuracy, sensitivity, and specificity were 1.000. The DeLong test showed no statistically significant differences between the machine learning models in the training and validation sets (Z = 0, P = 1). Our study investigated the feasibility of using DCE-MRI-based radiomics features to predict HER2-low BC. Certain radiomics features showed associations with HER2-low BC and may have predictive value. Machine learning prediction models developed using these radiomics features could be beneficial for distinguishing between HER2-low and HER2-positive BC. These noninvasive preoperative models have the potential to assist in clinical decision-making for HER2-low breast cancer, thereby advancing personalized clinical precision.
Collapse
Affiliation(s)
- Xianfei Chen
- Department of Radiology, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Minghao Li
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Danke Su
- Department of Medical Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
3
|
Li W, Song Y, Qian X, Zhou L, Zhu H, Shen L, Dai Y, Dong F, Li Y. Radiomics analysis combining gray-scale ultrasound and mammography for differentiating breast adenosis from invasive ductal carcinoma. Front Oncol 2024; 14:1390342. [PMID: 39045562 PMCID: PMC11263089 DOI: 10.3389/fonc.2024.1390342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024] Open
Abstract
Objectives To explore the utility of gray-scale ultrasound (GSUS) and mammography (MG) for radiomic analysis in distinguishing between breast adenosis and invasive ductal carcinoma (IDC). Methods Data from 147 female patients with pathologically confirmed breast lesions (breast adenosis: 61 patients; IDC: 86 patients) between January 2018 and December 2022 were retrospectively collected. A training cohort of 113 patients (breast adenosis: 50 patients; IDC: 63 patients) diagnosed from January 2018 to December 2021 and a time-independent test cohort of 34 patients (breast adenosis: 11 patients; IDC: 23 patients) diagnosed from January 2022 to December 2022 were included. Radiomic features of lesions were extracted from MG and GSUS images. The least absolute shrinkage and selection operator (LASSO) regression was applied to select the most discriminant features, followed by logistic regression (LR) to construct clinical and radiomic models, as well as a combined model merging radiomic and clinical features. Model performance was assessed using receiver operating characteristic (ROC) analysis. Results In the training cohort, the area under the curve (AUC) for radiomic models based on MG features, GSUS features, and their combination were 0.974, 0.936, and 0.991, respectively. In the test cohort, the AUCs were 0.885, 0.876, and 0.949, respectively. The combined model, incorporating clinical and all radiomic features, and the MG plus GSUS radiomics model were found to exhibit significantly higher AUCs than the clinical model in both the training cohort and test cohort (p<0.05). No significant differences were observed between the combined model and the MG plus GSUS radiomics model in the training cohort and test cohort (p>0.05). Conclusion The effectiveness of radiomic features derived from GSUS and MG in distinguishing between breast adenosis and IDC is demonstrated. Superior discriminatory efficacy is shown by the combined model, integrating both modalities.
Collapse
Affiliation(s)
- Wen Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Ultrasound, Huadong Sanatorium, Wuxi, Jiangsu, China
| | - Ying Song
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xusheng Qian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Le Zhou
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huihui Zhu
- Department of Ultrasound, Huadong Sanatorium, Wuxi, Jiangsu, China
| | - Long Shen
- Department of Radiology, Suzhou Xiangcheng District Second People’s Hospital, Suzhou, Jiangsu, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Fenglin Dong
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Li L, Liang X, Yu Y, Mao R, Han J, Peng C, Zhou J. Radiomics-Based Machine Learning Classification Strategy for Characterization of Hepatocellular Carcinoma on Contrast-Enhanced Ultrasound in High-Risk Patients with LI-RADS Category M Nodules. Indian J Radiol Imaging 2024; 34:405-415. [PMID: 38912232 PMCID: PMC11188750 DOI: 10.1055/s-0043-1777993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Objective Accurate differentiation within the LI-RADS category M (LR-M) between hepatocellular carcinoma (HCC) and non-HCC malignancies (mainly intrahepatic cholangiocarcinoma [CCA] and combined hepatocellular and cholangiocarcinoma [cHCC-CCA]) is an area of active investigation. We aimed to use radiomics-based machine learning classification strategy for differentiating HCC from CCA and cHCC-CCA on contrast-enhanced ultrasound (CEUS) images in high-risk patients with LR-M nodules. Methods A total of 159 high-risk patients with LR-M nodules (69 HCC and 90 CCA/cHCC-CCA) who underwent CEUS within 1 month before pathologic confirmation from January 2006 to December 2019 were retrospectively included (111 patients for training set and 48 for test set). The training set was used to build models, while the test set was used to compare models. For each observation, six CEUS images captured at predetermined time points (T1, peak enhancement after contrast injection; T2, 30 seconds; T3, 45 seconds; T4, 60 seconds; T5, 1-2 minutes; and T6, 2-3 minutes) were collected for tumor segmentation and selection of radiomics features, which included seven types of features: first-order statistics, shape (2D), gray-level co-occurrence matrix, gray-level size zone matrix, gray-level run length matrix, neighboring gray tone difference matrix, and gray-level dependence matrix. Clinical data and key radiomics features were employed to develop the clinical model, radiomics signature (RS), and combined RS-clinical (RS-C) model. The RS and RS-C model were built using the machine learning framework. The diagnostic performance of these three models was calculated and compared. Results Alpha-fetoprotein (AFP), CA19-9, enhancement pattern, and time of washout were included as independent factors for clinical model (all p < 0.05). Both the RS and RS-C model performed better than the clinical model in the test set (area under the curve [AUC] of 0.698 [0.571-0.812] for clinical model, 0.903 [0.830-0.970] for RS, and 0.912 [0.838-0.977] for the RS-C model; both p < 0.05). Conclusions Radiomics-based machine learning classifiers may be competent for differentiating HCC from CCA and cHCC-CCA in high-risk patients with LR-M nodules.
Collapse
Affiliation(s)
- Lingling Li
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Liang
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yiwen Yu
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Rushuang Mao
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jing Han
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Chuan Peng
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lin JY, Ye JY, Chen JG, Lin ST, Lin S, Cai SQ. Prediction of Receptor Status in Radiomics: Recent Advances in Breast Cancer Research. Acad Radiol 2024; 31:3004-3014. [PMID: 38151383 DOI: 10.1016/j.acra.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a multifactorial heterogeneous disease and the leading cause of cancer-related deaths in women; its diagnosis and treatment require clinical sensitivity and a comprehensive disciplinary research approach. The expression of different receptors on tumor cells not only provides the basis for molecular typing of breast cancer but also has a decisive role in the diagnosis, treatment, and prognosis of breast cancer. To date, immunohistochemistry (IHC), which uses invasive histological sampling, has been extensively used in clinical practice to analyze the status of receptors and to make an accurate diagnosis of breast cancer. As an invasive assay, IHC can provide important biological information on tumors at a single point in time, but cannot predict future changes (due to treatment or tumor mutations) without additional invasive procedures. These issues highlight the need to develop a non-invasive method for predicting receptor status. The emerging field of radiomics may offer a non-invasive approach to identification of receptor status without requiring biopsy. In this paper, we present a review of the latest research results in radiomics for predicting the status of breast cancer receptors, with potential important clinical applications.
Collapse
Affiliation(s)
- Jun-Yuan Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jia-Yi Ye
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Jin-Guo Chen
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu-Ting Lin
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.)
| | - Shu Lin
- Center of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.Y., J.G.C., S.T.L., S.L.); Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia (S.L.)
| | - Si-Qing Cai
- Department of Radiology, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China (J.Y.L., S.Q.C.).
| |
Collapse
|
6
|
Floca R, Bohn J, Haux C, Wiestler B, Zöllner FG, Reinke A, Weiß J, Nolden M, Albert S, Persigehl T, Norajitra T, Baeßler B, Dewey M, Braren R, Büchert M, Fallenberg EM, Galldiks N, Gerken A, Götz M, Hahn HK, Haubold J, Haueise T, Große Hokamp N, Ingrisch M, Iuga AI, Janoschke M, Jung M, Kiefer LS, Lohmann P, Machann J, Moltz JH, Nattenmüller J, Nonnenmacher T, Oerther B, Othman AE, Peisen F, Schick F, Umutlu L, Wichtmann BD, Zhao W, Caspers S, Schlemmer HP, Schlett CL, Maier-Hein K, Bamberg F. Radiomics workflow definition & challenges - German priority program 2177 consensus statement on clinically applied radiomics. Insights Imaging 2024; 15:124. [PMID: 38825600 PMCID: PMC11144687 DOI: 10.1186/s13244-024-01704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/20/2024] [Indexed: 06/04/2024] Open
Abstract
OBJECTIVES Achieving a consensus on a definition for different aspects of radiomics workflows to support their translation into clinical usage. Furthermore, to assess the perspective of experts on important challenges for a successful clinical workflow implementation. MATERIALS AND METHODS The consensus was achieved by a multi-stage process. Stage 1 comprised a definition screening, a retrospective analysis with semantic mapping of terms found in 22 workflow definitions, and the compilation of an initial baseline definition. Stages 2 and 3 consisted of a Delphi process with over 45 experts hailing from sites participating in the German Research Foundation (DFG) Priority Program 2177. Stage 2 aimed to achieve a broad consensus for a definition proposal, while stage 3 identified the importance of translational challenges. RESULTS Workflow definitions from 22 publications (published 2012-2020) were analyzed. Sixty-nine definition terms were extracted, mapped, and semantic ambiguities (e.g., homonymous and synonymous terms) were identified and resolved. The consensus definition was developed via a Delphi process. The final definition comprising seven phases and 37 aspects reached a high overall consensus (> 89% of experts "agree" or "strongly agree"). Two aspects reached no strong consensus. In addition, the Delphi process identified and characterized from the participating experts' perspective the ten most important challenges in radiomics workflows. CONCLUSION To overcome semantic inconsistencies between existing definitions and offer a well-defined, broad, referenceable terminology, a consensus workflow definition for radiomics-based setups and a terms mapping to existing literature was compiled. Moreover, the most relevant challenges towards clinical application were characterized. CRITICAL RELEVANCE STATEMENT Lack of standardization represents one major obstacle to successful clinical translation of radiomics. Here, we report a consensus workflow definition on different aspects of radiomics studies and highlight important challenges to advance the clinical adoption of radiomics. KEY POINTS Published radiomics workflow terminologies are inconsistent, hindering standardization and translation. A consensus radiomics workflow definition proposal with high agreement was developed. Publicly available result resources for further exploitation by the scientific community.
Collapse
Affiliation(s)
- Ralf Floca
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany.
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Radiation Research in Oncology NCRO, Heidelberg Institute for Radiation Oncology HIRO, Heidelberg, Germany.
| | - Jonas Bohn
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Medical Center Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christian Haux
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, TU Munich University Hospital, Munich, Germany
- TranslaTUM - Central Institute for Translational Cancer Research, TU Munich, Munich, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Annika Reinke
- Intelligent Medical Systems, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Weiß
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Marco Nolden
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Albert
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Tobias Norajitra
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Marc Dewey
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), and DKTK (German Cancer Consortium), both partner sites Berlin, Berlin, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine & Health, Ismaninger Str. 22, 81675, München, Germany
- Artificial Intelligence in Healthcare and Medicine, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich partner site, Heidelberg, Germany
| | - Martin Büchert
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Eva Maria Fallenberg
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine & Health, Ismaninger Str. 22, 81675, München, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich (FZJ), Juelich, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Bonn, Cologne & Duesseldorf, Germany
| | - Annika Gerken
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Michael Götz
- Division of Experimental Radiology, Department for Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Horst K Hahn
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Faculty 3, Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Tobias Haueise
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Andra-Iza Iuga
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University Cologne, Cologne, Germany
| | - Marco Janoschke
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Matthias Jung
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Lena Sophie Kiefer
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Tübingen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | | | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias Nonnenmacher
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benedict Oerther
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Ahmed E Othman
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Peisen
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Barbara D Wichtmann
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Wenzhao Zhao
- Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz-Peter Schlemmer
- German Cancer Research Center (DKFZ) Heidelberg, Division of Radiology, Heidelberg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| | - Klaus Maier-Hein
- German Cancer Research Center (DKFZ) Heidelberg, Division of Medical Image Computing, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Prinzi F, Orlando A, Gaglio S, Vitabile S. Interpretable Radiomic Signature for Breast Microcalcification Detection and Classification. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1038-1053. [PMID: 38351223 PMCID: PMC11169144 DOI: 10.1007/s10278-024-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 06/13/2024]
Abstract
Breast microcalcifications are observed in 80% of mammograms, and a notable proportion can lead to invasive tumors. However, diagnosing microcalcifications is a highly complicated and error-prone process due to their diverse sizes, shapes, and subtle variations. In this study, we propose a radiomic signature that effectively differentiates between healthy tissue, benign microcalcifications, and malignant microcalcifications. Radiomic features were extracted from a proprietary dataset, composed of 380 healthy tissue, 136 benign, and 242 malignant microcalcifications ROIs. Subsequently, two distinct signatures were selected to differentiate between healthy tissue and microcalcifications (detection task) and between benign and malignant microcalcifications (classification task). Machine learning models, namely Support Vector Machine, Random Forest, and XGBoost, were employed as classifiers. The shared signature selected for both tasks was then used to train a multi-class model capable of simultaneously classifying healthy, benign, and malignant ROIs. A significant overlap was discovered between the detection and classification signatures. The performance of the models was highly promising, with XGBoost exhibiting an AUC-ROC of 0.830, 0.856, and 0.876 for healthy, benign, and malignant microcalcifications classification, respectively. The intrinsic interpretability of radiomic features, and the use of the Mean Score Decrease method for model introspection, enabled models' clinical validation. In fact, the most important features, namely GLCM Contrast, FO Minimum and FO Entropy, were compared and found important in other studies on breast cancer.
Collapse
Affiliation(s)
- Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
- Department of Computer Science and Technology, University of Cambridge, CB2 1TN, Cambridge, United Kingdom.
| | - Alessia Orlando
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital "Paolo Giaccone", Palermo, Italy
| | - Salvatore Gaglio
- Department of Engineering, University of Palermo, Palermo, Italy
- Institute for High-Performance Computing and Networking, National Research Council (ICAR-CNR), Palermo, Italy
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Li K, Ji J, Li S, Yang M, Che Y, Xu Z, Zhang Y, Wang M, Fang Z, Luo L, Wu C, Lai X, Dong J, Zhang X, Zhao N, Liu Y, Wang W. Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics-Clinical Integration Approach. J Magn Reson Imaging 2024; 59:1206-1217. [PMID: 37526043 DOI: 10.1002/jmri.28900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. PURPOSE To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. STUDY TYPE Retrospective. POPULATION Two hundred forty-two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC - TLS group (N = 120). FIELD STRENGTH/SEQUENCE 3.0T; Caipirinha-Dixon-TWIST-volume interpolated breath-hold sequence for dynamic contrast-enhanced (DCE) MRI and inversion-recovery turbo spin echo sequence for T2-weighted imaging (T2WI). ASSESSMENT Three models for differentiating BC + TLS and BC - TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were compared to evaluate the prognostic value of TLSs. STATISTICAL TESTS LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan-Meier method was used to calculate the survival rate. RESULTS The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow-up time was 52 months. While there was no significant difference in 3-year OS (P = 0.22) between BC + TLS and BC - TLS patients, there were significant differences in 3-year DFS and 3-year DMFS between the two groups. DATA CONCLUSION The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long-term disease control rates and better prognoses than those without TLS. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kezhen Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Juan Ji
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Simin Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Man Yang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yurou Che
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu Xu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zengyi Fang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Lai
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Dong
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chest, Meishan Cancer Hospital, Meishan, China
| | - Xinlan Zhang
- Department of Breast Surgery, Chengdu Women's and Children's Hospital, Chengdu, China
| | - Na Zhao
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liu
- Department of Pathology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Prinzi F, Currieri T, Gaglio S, Vitabile S. Shallow and deep learning classifiers in medical image analysis. Eur Radiol Exp 2024; 8:26. [PMID: 38438821 PMCID: PMC10912073 DOI: 10.1186/s41747-024-00428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
An increasingly strong connection between artificial intelligence and medicine has enabled the development of predictive models capable of supporting physicians' decision-making. Artificial intelligence encompasses much more than machine learning, which nevertheless is its most cited and used sub-branch in the last decade. Since most clinical problems can be modeled through machine learning classifiers, it is essential to discuss their main elements. This review aims to give primary educational insights on the most accessible and widely employed classifiers in radiology field, distinguishing between "shallow" learning (i.e., traditional machine learning) algorithms, including support vector machines, random forest and XGBoost, and "deep" learning architectures including convolutional neural networks and vision transformers. In addition, the paper outlines the key steps for classifiers training and highlights the differences between the most common algorithms and architectures. Although the choice of an algorithm depends on the task and dataset dealing with, general guidelines for classifier selection are proposed in relation to task analysis, dataset size, explainability requirements, and available computing resources. Considering the enormous interest in these innovative models and architectures, the problem of machine learning algorithms interpretability is finally discussed, providing a future perspective on trustworthy artificial intelligence.Relevance statement The growing synergy between artificial intelligence and medicine fosters predictive models aiding physicians. Machine learning classifiers, from shallow learning to deep learning, are offering crucial insights for the development of clinical decision support systems in healthcare. Explainability is a key feature of models that leads systems toward integration into clinical practice. Key points • Training a shallow classifier requires extracting disease-related features from region of interests (e.g., radiomics).• Deep classifiers implement automatic feature extraction and classification.• The classifier selection is based on data and computational resources availability, task, and explanation needs.
Collapse
Affiliation(s)
- Francesco Prinzi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Tiziana Currieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Salvatore Gaglio
- Department of Engineering, University of Palermo, Palermo, Italy
- Institute for High-Performance Computing and Networking, National Research Council (ICAR-CNR), Palermo, Italy
| | - Salvatore Vitabile
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| |
Collapse
|
10
|
Su HZ, Huang M, Li ZY, Tu JH, Hong LC, Zhang ZB, Zhang XD. Ultrasound characteristics of breast fibromatosis mimicking carcinoma. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:144-151. [PMID: 37991026 DOI: 10.1002/jcu.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE To explore the value of ultrasound (US) characteristics in diagnosing breast fibromatosis (BF) and evaluate their differences from breast carcinoma. METHODS A total of 121 patients with BF (n = 24, 29 lesions) or invasive ductal carcinoma (IDC) (n = 97, 102 lesions) of the breast were included. Their clinical and US findings were recorded and analyzed. RESULTS The mean age of BF was younger than that of IDC (28.75 ± 5.55 vs. 50.19 ± 9.87, p < 0.001). The mean size of the BF was smaller than that of IDC (2.09 ± 0.91 vs. 2.71 ± 1.20, p = 0.011). Compared to IDC, BF had more frequency of posterior echo attenuation (p < 0.001), less frequency of peripheral hyperechoic halo (p = 0.002), calcification (p = 0.001), US reported axillary lymph node positive (p = 0.025), and grade 2-3 vascularity (p < 0.001). The Breast Imaging Reporting and Data System categorized BF at a lower level than IDC (p < 0.001). After adjusting for age, the peripheral hyperechoic halo, posterior echo feature, and vascularity could independently identify the differences between these two entities. CONCLUSION Some differences were observed between BF and IDC in terms of patient age, lesion size, and US characteristics.
Collapse
Affiliation(s)
- Huan-Zhong Su
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mei Huang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhi-Yong Li
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jin-Hua Tu
- Department of Pathology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long-Cheng Hong
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuo-Bing Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Dong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Yao J, Zhou W, Xu S, Jia X, Zhou J, Chen X, Zhan W. Machine Learning-Based Breast Tumor Ultrasound Radiomics for Pre-operative Prediction of Axillary Sentinel Lymph Node Metastasis Burden in Early-Stage Invasive Breast Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:229-236. [PMID: 37951821 DOI: 10.1016/j.ultrasmedbio.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE The aim of the work described here was to assess the application of ultrasound (US) radiomics with machine learning (ML) classifiers to the prediction of axillary sentinel lymph node metastasis (SLNM) burden in early-stage invasive breast cancer (IBC). METHODS In this study, 278 early-stage IBC patients with at least one SLNM (195 in the training set and 83 in the test set) were studied at our institution. Pathologic SLNM burden was used as the reference standard. The US radiomics features of breast tumors were extracted by using 3D-Slicer and PyRadiomics software. Four ML classifiers-linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF) and decision tree (DT)-were used to construct radiomics models for the prediction of SLNM burden. The combined clinicopathologic-radiomics models were also assessed with respect to sensitivity, specificity, accuracy and areas under the curve (AUCs). RESULTS Among the US radiomics models, the SVM classifier achieved better predictive performance with an AUC of 0.920 compared with RF (AUC = 0.874), LDA (AUC = 0.835) and DT (AUC = 0.800) in the test set. The clinicopathologic model had low efficacy, with AUCs of 0.678 and 0.710 in the training and test sets, respectively. The combined clinicopathologic (C) factors and SVM classifier (C + SVM) model improved the predictive ability with an AUC of 0.934, sensitivity of 86.7%, specificity of 89.9% and accuracy of 91.0% in the test set. CONCLUSION ML-based US radiomics analysis, as a novel and promising predictive tool, is conducive to a precise clinical treatment strategy.
Collapse
Affiliation(s)
- Jiejie Yao
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyan Xu
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaosong Chen
- Department of Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhan
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Campana A, Gandomkar Z, Giannotti N, Reed W. The use of radiomics in magnetic resonance imaging for the pre-treatment characterisation of breast cancers: A scoping review. J Med Radiat Sci 2023; 70:462-478. [PMID: 37534540 PMCID: PMC10715343 DOI: 10.1002/jmrs.709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Radiomics is an emerging field that aims to extract and analyse a comprehensive set of quantitative features from medical images. This scoping review is focused on MRI-based radiomic features for the molecular profiling of breast tumours and the implications of this work for predicting patient outcomes. A thorough systematic literature search and outcome extraction were performed to identify relevant studies published in MEDLINE/PubMed (National Centre for Biotechnology Information), EMBASE and Scopus from 2015 onwards. The following information was retrieved from each article: study purpose, study design, extracted radiomic features, machine learning technique(s), sample size/characteristics, statistical result(s) and implications on patient outcomes. Based on the study purpose, four key themes were identified in the included 63 studies: tumour subtype classification (n = 35), pathologically complete response (pCR) prediction (n = 15), lymph node metastasis (LNM) detection (n = 7) and recurrence rate prediction (n = 6). In all four themes, reported accuracies widely varied among the studies, for example, area under receiver characteristics curve (AUC) for detecting LNM ranged from 0.72 to 0.91 and the AUC for predicting pCR ranged from 0.71 to 0.99. In all four themes, combining radiomic features with clinical data improved the predictive models. Preliminary results of this study showed radiomics potential to characterise the whole tumour heterogeneity, with clear implications for individual-targeted treatment. However, radiomics is still in the pre-clinical phase, currently with an insufficient number of large multicentre studies and those existing studies are often limited by insufficient methodological transparency and standardised workflow. Consequently, the clinical translation of existing studies is currently limited.
Collapse
Affiliation(s)
- Annalise Campana
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Nicola Giannotti
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
13
|
Kim MY, Yoen H, Ji H, Park SJ, Kim SM, Han W, Cho N. Ultrafast MRI and T1 and T2 Radiomics for Predicting Invasive Components in Ductal Carcinoma in Situ Diagnosed With Percutaneous Needle Biopsy. Korean J Radiol 2023; 24:1190-1199. [PMID: 38016679 PMCID: PMC10700996 DOI: 10.3348/kjr.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the feasibility of ultrafast magnetic resonance imaging (MRI) and radiomic features derived from breast MRI for predicting the upstaging of ductal carcinoma in situ (DCIS) diagnosed using percutaneous needle biopsy. MATERIALS AND METHODS Between August 2018 and June 2020, 95 patients with 98 DCIS lesions who underwent preoperative breast MRI, including an ultrafast sequence, and subsequent surgery were included. Four ultrafast MRI parameters were analyzed: time-to-enhancement, maximum slope (MS), area under the curve for 60 s after enhancement, and time-to-peak enhancement. One hundred and seven radiomic features were extracted for the whole tumor on the first post-contrast T1WI and T2WI using PyRadiomics. Clinicopathological characteristics, ultrafast MRI findings, and radiomic features were compared between the pure DCIS and DCIS with invasion groups. Prediction models, incorporating clinicopathological, ultrafast MRI, and radiomic features, were developed. Receiver operating characteristic curve analysis and area under the curve (AUC) were used to evaluate model performance in distinguishing between the two groups using leave-one-out cross-validation. RESULTS Thirty-six of the 98 lesions (36.7%) were confirmed to have invasive components after surgery. Compared to the pure DCIS group, the DCIS with invasion group had a higher nuclear grade (P < 0.001), larger mean lesion size (P = 0.038), larger mean MS (P = 0.002), and different radiomic-related characteristics, including a more extensive tumor volume; higher maximum gray-level intensity; coarser, more complex, and heterogeneous texture; and a greater concentration of high gray-level intensity. No significant differences in AUCs were found between the model incorporating nuclear grade and lesion size (0.687) and the models integrating additional ultrafast MRI and radiomic features (0.680-0.732). CONCLUSION High nuclear grade, larger lesion size, larger MS, and multiple radiomic features were associated with DCIS upstaging. However, the addition of MS and radiomic features to the prediction model did not significantly improve the prediction performance.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Heera Yoen
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hye Ji
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Joon Park
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- MEDICALIP Co. Ltd., Seoul, Republic of Korea
| | - Sun Mi Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Wonshik Han
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Nguyen AA, McCarthy AM, Kontos D. Combining Molecular and Radiomic Features for Risk Assessment in Breast Cancer. Annu Rev Biomed Data Sci 2023; 6:299-311. [PMID: 37159874 DOI: 10.1146/annurev-biodatasci-020722-092748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Breast cancer risk is highly variable within the population and current research is leading the shift toward personalized medicine. By accurately assessing an individual woman's risk, we can reduce the risk of over/undertreatment by preventing unnecessary procedures or by elevating screening procedures. Breast density measured from conventional mammography has been established as one of the most dominant risk factors for breast cancer; however, it is currently limited by its ability to characterize more complex breast parenchymal patterns that have been shown to provide additional information to strengthen cancer risk models. Molecular factors ranging from high penetrance, or high likelihood that a mutation will show signs and symptoms of the disease, to combinations of gene mutations with low penetrance have shown promise for augmenting risk assessment. Although imaging biomarkers and molecular biomarkers have both individually demonstrated improved performance in risk assessment, few studies have evaluated them together. This review aims to highlight the current state of the art in breast cancer risk assessment using imaging and genetic biomarkers.
Collapse
Affiliation(s)
- Alex A Nguyen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne Marie McCarthy
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Despina Kontos
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
15
|
Siviengphanom S, Gandomkar Z, Lewis SJ, Brennan PC. Global Radiomic Features from Mammography for Predicting Difficult-To-Interpret Normal Cases. J Digit Imaging 2023; 36:1541-1552. [PMID: 37253894 PMCID: PMC10406750 DOI: 10.1007/s10278-023-00836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 06/01/2023] Open
Abstract
This work aimed to investigate whether global radiomic features (GRFs) from mammograms can predict difficult-to-interpret normal cases (NCs). Assessments from 537 readers interpreting 239 normal mammograms were used to categorise cases as 120 difficult-to-interpret and 119 easy-to-interpret based on cases having the highest and lowest difficulty scores, respectively. Using lattice- and squared-based approaches, 34 handcrafted GRFs per image were extracted and normalised. Three classifiers were constructed: (i) CC and (ii) MLO using the GRFs from corresponding craniocaudal and mediolateral oblique images only, based on the random forest technique for distinguishing difficult- from easy-to-interpret NCs, and (iii) CC + MLO using the median predictive scores from both CC and MLO models. Useful GRFs for the CC and MLO models were recognised using a scree test. The CC and MLO models were trained and validated using the leave-one-out-cross-validation. The models' performances were assessed by the AUC and compared using the DeLong test. A Kruskal-Wallis test was used to examine if the 34 GRFs differed between difficult- and easy-to-interpret NCs and if difficulty level based on the traditional breast density (BD) categories differed among 115 low-BD and 124 high-BD NCs. The CC + MLO model achieved higher performance (0.71 AUC) than the individual CC and MLO model alone (0.66 each), but statistically non-significant difference was found (all p > 0.05). Six GRFs were identified to be valuable in describing difficult-to-interpret NCs. Twenty features, when compared between difficult- and easy-to-interpret NCs, differed significantly (p < 0.05). No statistically significant difference was observed in difficulty between low- and high-BD NCs (p = 0.709). GRF mammographic analysis can predict difficult-to-interpret NCs.
Collapse
Affiliation(s)
- Somphone Siviengphanom
- Medical Image Optimisation and Perception Group, Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ziba Gandomkar
- Medical Image Optimisation and Perception Group, Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah J Lewis
- Medical Image Optimisation and Perception Group, Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Patrick C Brennan
- Medical Image Optimisation and Perception Group, Discipline of Medical Imaging Science, Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
16
|
Faraz K, Dauce G, Bouhamama A, Leporq B, Sasaki H, Bito Y, Beuf O, Pilleul F. Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches. J Pers Med 2023; 13:1062. [PMID: 37511674 PMCID: PMC10382057 DOI: 10.3390/jpm13071062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Determining histological subtypes, such as invasive ductal and invasive lobular carcinomas (IDCs and ILCs) and immunohistochemical markers, such as estrogen response (ER), progesterone response (PR), and the HER2 protein status is important in planning breast cancer treatment. MRI-based radiomic analysis is emerging as a non-invasive substitute for biopsy to determine these signatures. We explore the effectiveness of radiomics-based and CNN (convolutional neural network)-based classification models to this end. T1-weighted dynamic contrast-enhanced, contrast-subtracted T1, and T2-weighted MR images of 429 breast cancer tumors from 323 patients are used. Various combinations of input data and classification schemes are applied for ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, and IDC vs. ILC classification tasks. The best results were obtained for the ER+ vs. ER- and IDC vs. ILC classification tasks, with their respective AUCs reaching 0.78 and 0.73 on test data. The results with multi-contrast input data were generally better than the mono-contrast alone. The radiomics and CNN-based approaches generally exhibited comparable results. ER and IDC/ILC classification results were promising. PR and HER2 classifications need further investigation through a larger dataset. Better results by using multi-contrast data might indicate that multi-parametric quantitative MRI could be used to achieve more reliable classifiers.
Collapse
Affiliation(s)
- Khuram Faraz
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, 69621 Lyon, France
| | - Grégoire Dauce
- FUJIFILM Healthcare France S.A.S., 69800 Saint-Priest, France
| | - Amine Bouhamama
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, 69621 Lyon, France
- Department of Radiology, Centre Léon Bérard, 69008 Lyon, France
| | - Benjamin Leporq
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, 69621 Lyon, France
| | - Hajime Sasaki
- FUJIFILM Healthcare France S.A.S., 69800 Saint-Priest, France
- FUJIFILM Healthcare Corporation, Tokyo 107-0052, Japan
| | | | - Olivier Beuf
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, 69621 Lyon, France
| | - Frank Pilleul
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, 69621 Lyon, France
- Department of Radiology, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
17
|
Debbi K, Habert P, Grob A, Loundou A, Siles P, Bartoli A, Jacquier A. Radiomics model to classify mammary masses using breast DCE-MRI compared to the BI-RADS classification performance. Insights Imaging 2023; 14:64. [PMID: 37052738 PMCID: PMC10102264 DOI: 10.1186/s13244-023-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/29/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Recent advanced in radiomics analysis could help to identify breast cancer among benign mammary masses. The aim was to create a radiomics signature using breast DCE-MRI extracted features to classify tumors and to compare the performances with the BI-RADS classification. MATERIAL AND METHODS From September 2017 to December 2019 images, exams and records from consecutive patients with mammary masses on breast DCE-MRI and available histology from one center were retrospectively reviewed (79 patients, 97 masses). Exclusion criterion was malignant uncertainty. The tumors were split in a train-set (70%) and a test-set (30%). From 14 kinetics maps, 89 radiomics features were extracted, for a total of 1246 features per tumor. Feature selection was made using Boruta algorithm, to train a random forest algorithm on the train-set. BI-RADS classification was recorded from two radiologists. RESULTS Seventy-seven patients were analyzed with 94 tumors, (71 malignant, 23 benign). Over 1246 features, 17 were selected from eight kinetic maps. On the test-set, the model reaches an AUC = 0.94 95 CI [0.85-1.00] and a specificity of 33% 95 CI [10-70]. There were 43/94 (46%) lesions BI-RADS4 (4a = 12/94 (13%); 4b = 9/94 (10%); and 4c = 22/94 (23%)). The BI-RADS score reached an AUC = 0.84 95 CI [0.73-0.95] and a specificity of 17% 95 CI [3-56]. There was no significant difference between the ROC curves for the model or the BI-RADS score (p = 0.19). CONCLUSION A radiomics signature from features extracted using breast DCE-MRI can reach an AUC of 0.94 on a test-set and could provide as good results as BI-RADS to classify mammary masses.
Collapse
Affiliation(s)
- Kawtar Debbi
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Paul Habert
- Service de Radiologie, Hôpital Nord, Chemin des Bourrely, 13015, Marseille, France.
- LIIE, Aix Marseille Université, Marseille, France.
- CERIMED, Aix Marseille Université, Marseille, France.
| | - Anaïs Grob
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Anderson Loundou
- CEReSS UR3279-Health Service Research and Quality of Life Center, Aix-Marseille Université, Marseille, France
- Department of Public Health, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Pascale Siles
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Axel Bartoli
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
- UMR 7339, CNRS, CRMBM-CEMEREM (Centre de Résonance Magnétique Biologique et Médicale - Centre d'Exploration Métaboliques par Résonance Magnétique), Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, 13385, Marseille, France
| | - Alexis Jacquier
- Service de Radiologie, La Timone Hôpital, 264 Rue Saint Pierre, 13005, Marseille, France
- UMR 7339, CNRS, CRMBM-CEMEREM (Centre de Résonance Magnétique Biologique et Médicale - Centre d'Exploration Métaboliques par Résonance Magnétique), Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, 13385, Marseille, France
| |
Collapse
|
18
|
Kiser K, Zhang J, Kim SG. Textural Features of Mouse Glioma Models Measured by Dynamic Contrast-Enhanced MR Images with 3D Isotropic Resolution. Tomography 2023; 9:721-735. [PMID: 37104129 PMCID: PMC10141208 DOI: 10.3390/tomography9020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
This paper investigates the effect of anisotropic resolution on the image textural features of pharmacokinetic (PK) parameters of a murine glioma model using dynamic contrast-enhanced (DCE) MR images acquired with an isotropic resolution at 7T with pre-contrast T1 mapping. The PK parameter maps of whole tumors at isotropic resolution were generated using the two-compartment exchange model combined with the three-site-two-exchange model. The textural features of these isotropic images were compared with those of simulated, thick-slice, anisotropic images to assess the influence of anisotropic voxel resolution on the textural features of tumors. The isotropic images and parameter maps captured distributions of high pixel intensity that were absent in the corresponding anisotropic images with thick slices. A significant difference was observed in 33% of the histogram and textural features extracted from anisotropic images and parameter maps, compared to those extracted from corresponding isotropic images. Anisotropic images in different orthogonal orientations demonstrated 42.1% of the histogram and textural features to be significantly different from those of isotropic images. This study demonstrates that the anisotropy of voxel resolution needs to be carefully considered when comparing the textual features of tumor PK parameters and contrast-enhanced images.
Collapse
Affiliation(s)
- Karl Kiser
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
19
|
Chen H, Wang X, Lan X, Yu T, Li L, Tang S, Liu S, Jiang F, Wang L, Zhang J. A radiomics model development via the associations with genomics features in predicting axillary lymph node metastasis of breast cancer: a study based on a public database and single-centre verification. Clin Radiol 2023; 78:e279-e287. [PMID: 36623978 DOI: 10.1016/j.crad.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
AIM To evaluate the predictive performance of the radiomics model in predicting axillary lymph node (ALN) metastasis through the associations between radiomics features and genomic features in patients with breast cancer. MATERIALS AND METHODS Patients with breast cancer were enrolled retrospectively from a public database (111 patients as training group) and one hospital (15 patients as external validation group). The genomics features from transcriptome data and radiomics features from dynamic contrast-enhanced magnetic resonance imaging (MRI) were collected. Firstly, overlapping genes were identified using the Kyoto Encyclopedia of Genes and Genomes and differentially expressed gene analysis, while radiomics features were reduced using a data-driven method. Then, the associations between overlapping genes and retained radiomics features were assessed to obtain key pairs of radiomics-genomics features. Furthermore, the least absolute shrinkage and selection operator (LASSO) algorithm was used to detect the key-pairs features. Finally, radiomics and genomics models were constructed to predict ALN metastasis. RESULTS After using the hybrid data- and gene-driven selection method, key pairs of features were detected, which consisted of six radiomic features associated with four genomic features. The radiomics model exhibited comparable performance to the genomics model in predicting ALN metastasis (radiomic model: area under the curve [AUC] = 0.71, sensitivity = 77%, specificity = 56%; genomic model: AUC = 0.72, sensitivity = 85%, specificity = 74%). The four genomic features were enriched in six pathways and related to metabolism and human diseases. CONCLUSION The radiomics model established using the gene-driven hybrid selection method could predict ALN metastasis in breast cancer, which showed comparable performance to the genomics model.
Collapse
Affiliation(s)
- H Chen
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - X Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - X Lan
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - T Yu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - L Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - S Tang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - S Liu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - F Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - L Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China
| | - J Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing, PR China.
| |
Collapse
|
20
|
Yue X, He X, He S, Wu J, Fan W, Zhang H, Wang C. Multiparametric magnetic resonance imaging-based radiomics nomogram for predicting tumor grade in endometrial cancer. Front Oncol 2023; 13:1081134. [PMID: 36895487 PMCID: PMC9989162 DOI: 10.3389/fonc.2023.1081134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Background Tumor grade is associated with the treatment and prognosis of endometrial cancer (EC). The accurate preoperative prediction of the tumor grade is essential for EC risk stratification. Herein, we aimed to assess the performance of a multiparametric magnetic resonance imaging (MRI)-based radiomics nomogram for predicting high-grade EC. Methods One hundred and forty-three patients with EC who had undergone preoperative pelvic MRI were retrospectively enrolled and divided into a training set (n =100) and a validation set (n =43). Radiomic features were extracted based on T2-weighted, diffusion-weighted, and dynamic contrast-enhanced T1-weighted images. The minimum absolute contraction selection operator (LASSO) was implemented to obtain optimal radiomics features and build the rad-score. Multivariate logistic regression analysis was used to determine the clinical MRI features and build a clinical model. We developed a radiomics nomogram by combining important clinical MRI features and rad-score. A receiver operating characteristic (ROC) curve was used to evaluate the performance of the three models. The clinical net benefit of the nomogram was assessed using decision curve analysis (DCA), net reclassification index (NRI), and integrated discrimination index (IDI). Results In total, 35/143 patients had high-grade EC and 108 had low-grade EC. The areas under the ROC curves of the clinical model, rad-score, and radiomics nomogram were 0.837 (95% confidence interval [CI]: 0.754-0.920), 0.875 (95% CI: 0.797-0.952), and 0.923 (95% CI: 0.869-0.977) for the training set; 0.857 (95% CI: 0.741-0.973), 0.785 (95% CI: 0.592-0.979), and 0.914 (95% CI: 0.827-0.996) for the validation set, respectively. The radiomics nomogram showed a good net benefit according to the DCA. NRIs were 0.637 (0.214-1.061) and 0.657 (0.079-1.394), and IDIs were 0.115 (0.077-0.306) and 0.053 (0.027-0.357) in the training set and validation set, respectively. Conclusion The radiomics nomogram based on multiparametric MRI can predict the tumor grade of EC before surgery and yield a higher performance than that of dilation and curettage.
Collapse
Affiliation(s)
- Xiaoning Yue
- Department of CT&MRI, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Xiaoyu He
- Department of CT&MRI, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Shuaijie He
- Department of CT&MRI, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Jingjing Wu
- Department of CT&MRI, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Wei Fan
- Department of CT&MRI, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Haijun Zhang
- Department of Pathology, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| | - Chengwei Wang
- Department of CT&MRI, The First Affiliated Hospital of Medical College, Shihezi University, Shihezi, China
| |
Collapse
|
21
|
Cheng Y, Xu S, Wang H, Wang X, Niu S, Luo Y, Zhao N. Intra- and peri-tumoral radiomics for predicting the sentinel lymph node metastasis in breast cancer based on preoperative mammography and MRI. Front Oncol 2022; 12:1047572. [PMID: 36578933 PMCID: PMC9792138 DOI: 10.3389/fonc.2022.1047572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aims to investigate values of intra- and peri-tumoral regions in the mammography and magnetic resonance imaging (MRI) image for prediction of sentinel lymph node metastasis (SLNM) in invasive breast cancer (BC). Methods This study included 208 patients with invasive BC between Spe. 2017 and Apr. 2021. All patients underwent preoperative digital mammography (DM), digital breast tomosynthesis (DBT), dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DWI) scans. Radiomics features were extracted from manually outlined intratumoral regions, and automatically dilated peritumoral tumor regions in each modality. The least absolute shrinkage and selection operator (LASSO) regression was used to select key features from each region to develop radiomics signatures (RSs). Area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity and negative predictive value (NPV) were calculated to evaluate performance of the RSs. Results Intra- and peri-tumoral regions of BC can provide complementary information on the SLN status. In each modality, the Com-RSs derived from combined intra- and peri-tumoral regions always yielded higher AUCs than the Intra-RSs or Peri-RSs. A total of 10 and 11 features were identified as the most important predictors from mammography (DM plus DBT) and MRI (DCE-MRI plus DWI), respectively. The DCE-MRI plus DWI generated higher AUCs compared with DM plus DBT in the training (AUCs, DCE-MRI plus DWI vs. DM plus DBT, 0.897 vs. 0.846) and validation (AUCs, DCE-MRI plus DWI vs. DM plus DBT, 0.826 vs. 0.786) cohort. Conclusions Radiomics features from intra- and peri-tumoral regions can provide complementary information to identify the SLNM in both mammography and MRI. The DCE-MRI plus DWI generated lower specificity, but higher AUC, accuracy, sensitivity and negative predictive value compared with DM plus DBT.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shu Xu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Haotian Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Shuxian Niu
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yahong Luo
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Nannan Zhao
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China,*Correspondence: Nannan Zhao,
| |
Collapse
|
22
|
Rahmat K, Mumin NA, Hamid MTR, Hamid SA, Ng WL. MRI Breast: Current Imaging Trends, Clinical Applications, and Future Research Directions. Curr Med Imaging 2022; 18:1347-1361. [PMID: 35430976 DOI: 10.2174/1573405618666220415130131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
Abstract
Magnetic Resonance Imaging (MRI) is the most sensitive and advanced imaging technique in diagnosing breast cancer and is essential in improving cancer detection, lesion characterization, and determining therapy response. In addition to the dynamic contrast-enhanced (DCE) technique, functional techniques such as magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI), diffusion kurtosis imaging (DKI), and intravoxel incoherent motion (IVIM) further characterize and differentiate benign and malignant lesions thus, improving diagnostic accuracy. There is now an increasing clinical usage of MRI breast, including screening in high risk and supplementary screening tools in average-risk patients. MRI is becoming imperative in assisting breast surgeons in planning breast-conserving surgery for preoperative local staging and evaluation of neoadjuvant chemotherapy response. Other clinical applications for MRI breast include occult breast cancer detection, investigation of nipple discharge, and breast implant assessment. There is now an abundance of research publications on MRI Breast with several areas that still remain to be explored. This review gives a comprehensive overview of the clinical trends of MRI breast with emphasis on imaging features and interpretation using conventional and advanced techniques. In addition, future research areas in MRI breast include developing techniques to make MRI more accessible and costeffective for screening. The abbreviated MRI breast procedure and an area of focused research in the enhancement of radiologists' work with artificial intelligence have high impact for the future in MRI Breast.
Collapse
Affiliation(s)
- Kartini Rahmat
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur, Malaysia
| | - Nazimah Ab Mumin
- Department of Radiology, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Marlina Tanty Ramli Hamid
- Department of Radiology, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Shamsiah Abdul Hamid
- Department of Radiology, Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Wei Lin Ng
- Department of Biomedical Imaging, University Malaya Research Imaging Centre, Faculty of Medicine, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Differentiating Glioblastoma Multiforme from Brain Metastases Using Multidimensional Radiomics Features Derived from MRI and Multiple Machine Learning Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2016006. [PMID: 36212721 PMCID: PMC9534611 DOI: 10.1155/2022/2016006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Due to different treatment strategies, it is extremely important to differentiate between glioblastoma multiforme (GBM) and brain metastases (MET). It often proves difficult to distinguish between GBM and MET using MRI due to their similar appearance on the imaging modalities. Surgical methods are still necessary for definitive diagnosis, despite the importance of magnetic resonance imaging in detecting, characterizing, and monitoring brain tumors. We introduced an accurate, convenient, and user-friendly method to differentiate between GBM and MET through routine MRI sequence and radiomics analyses. We collected 91 patients from one institution, including 50 with GBM and 41 with MET, which were proven pathologically. The tumors separately were segmented on all MRI images (T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (T1C), T2-weighted imaging (T2WI), and fluid-attenuated inversion recovery (FLAIR)) to form the volume of interest (VOI). Eight ML models and feature reduction strategies were evaluated using routine MRI sequences (T1W, T2W, T1-CE, and FLAIR) in two methods with (second model) and without wavelet transform (first model) radiomics. The optimal model was selected based on each model’s accuracy, AUC-roc, and F1-score values. In this study, we have achieved the result of 0.98, 0.99, and 0.98 percent for accuracy, AUC-roc, and F1-score, respectively, which have yielded a better result than the first model. In most investigated models, there were significant improvements in the multidimensional wavelets model compared to the non-multidimensional wavelets model. Multidimensional discrete wavelet transform can analyze hidden features of the MRI from a different perspective and generate accurate features which are highly correlated with the model accuracy.
Collapse
|
24
|
Santucci D, Faiella E, Gravina M, Cordelli E, de Felice C, Beomonte Zobel B, Iannello G, Sansone C, Soda P. CNN-Based Approaches with Different Tumor Bounding Options for Lymph Node Status Prediction in Breast DCE-MRI. Cancers (Basel) 2022; 14:cancers14194574. [PMID: 36230497 PMCID: PMC9558949 DOI: 10.3390/cancers14194574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Breast cancer represents the most frequent cancer in women in the world. The state of the axillary lymph node is considered an independent prognostic factor and is currently evaluated only with invasive methods. Deep learning approaches, especially the ones based on convolutional neural networks, offer a valid, non-invasive alternative, allowing extraction of large amounts of the quantitative data that are used to build predictive models. The aim of our work is to evaluate the influence of the peritumoral parenchyma through different bounding box techniques on the prediction of the axillary lymph node in breast cancer patients using a deep learning artificial intelligence approach. Abstract Background: The axillary lymph node status (ALNS) is one of the most important prognostic factors in breast cancer (BC) patients, and it is currently evaluated by invasive procedures. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), highlights the physiological and morphological characteristics of primary tumor tissue. Deep learning approaches (DL), such as convolutional neural networks (CNNs), are able to autonomously learn the set of features directly from images for a specific task. Materials and Methods: A total of 155 malignant BC lesions evaluated via DCE-MRI were included in the study. For each patient’s clinical data, the tumor histological and MRI characteristics and axillary lymph node status (ALNS) were assessed. LNS was considered to be the final label and dichotomized (LN+ (27 patients) vs. LN− (128 patients)). Based on the concept that peritumoral tissue contains valuable information about tumor aggressiveness, in this work, we analyze the contributions of six different tumor bounding options to predict the LNS using a CNN. These bounding boxes include a single fixed-size box (SFB), a single variable-size box (SVB), a single isotropic-size box (SIB), a single lesion variable-size box (SLVB), a single lesion isotropic-size box (SLIB), and a two-dimensional slice (2DS) option. According to the characteristics of the volumes considered as inputs, three different CNNs were investigated: the SFB-NET (for the SFB), the VB-NET (for the SVB, SIB, SLVB, and SLIB), and the 2DS-NET (for the 2DS). All the experiments were run in 10-fold cross-validation. The performance of each CNN was evaluated in terms of accuracy, sensitivity, specificity, the area under the ROC curve (AUC), and Cohen’s kappa coefficient (K). Results: The best accuracy and AUC are obtained by the 2DS-NET (78.63% and 77.86%, respectively). The 2DS-NET also showed the highest specificity, whilst the highest sensibility was attained by the VB-NET based on the SVB and SIB as bounding options. Conclusion: We have demonstrated that a selective inclusion of the DCE-MRI’s peritumoral tissue increases accuracy in the lymph node status prediction in BC patients using CNNs as a DL approach.
Collapse
Affiliation(s)
- Domiziana Santucci
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
- Department of Radiology, Sant’Anna Hospital, Via Ravona, 22042 Como, Italy
- Correspondence:
| | - Eliodoro Faiella
- Department of Radiology, Sant’Anna Hospital, Via Ravona, 22042 Como, Italy
| | - Michela Gravina
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80131 Naples, Italy
| | - Ermanno Cordelli
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo de Felice
- Department of Radiology, University of Rome “Sapienza”, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Bruno Beomonte Zobel
- Department of Radiology, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Giulio Iannello
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Sansone
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Universitetstorget, 490187 Umeå, Sweden
| |
Collapse
|
25
|
Lee J, Kim SH, Kim Y, Park J, Park GE, Kang BJ. Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers (Basel) 2022; 14:cancers14184461. [PMID: 36139620 PMCID: PMC9497155 DOI: 10.3390/cancers14184461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to predict early breast cancer recurrence in women under 40 years of age using radiomics signature and clinicopathological information. We retrospectively investigated 155 patients under 40 years of age with invasive breast cancer who underwent MRI and surgery. Through stratified random sampling, 111 patients were assigned as the training set, and 44 were assigned as the validation set. Recurrence-associated factors were investigated based on recurrence within 5 years during the total follow-up period. A Rad-score was generated through texture analysis (3D slicer, ver. 4.8.0) of breast MRI using the least absolute shrinkage and selection operator Cox regression model. The Rad-score showed a significant association with disease-free survival (DFS) in the training set (p = 0.003) and validation set (p = 0.020) in the Kaplan–Meier analysis. The nomogram was generated through Cox proportional hazards models, and its predictive ability was validated. The nomogram included the Rad-score and estrogen receptor negativity as predictive factors and showed fair DFS predictive ability in both the training and validation sets (C-index 0.63, 95% CI 0.45–0.79). In conclusion, the Rad-score can predict the disease recurrence of invasive breast cancer in women under 40 years of age, and the Rad-score-based nomogram showed reasonably high DFS predictive ability, especially within 2 years of surgery.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Sung Hun Kim
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6250
| | - Yelin Kim
- Department of Statistics and Data Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 06591, Korea
| | - Jaewoo Park
- Department of Statistics and Data Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 06591, Korea
- Department of Applied Statistics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 06591, Korea
| | - Ga Eun Park
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Bong Joo Kang
- Department of Radiology, College of Medicine, Seoul Saint Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
26
|
Varghese BA, Lee S, Cen S, Talebi A, Mohd P, Stahl D, Perkins M, Desai B, Duddalwar VA, Larsen LH. Characterizing breast masses using an integrative framework of machine learning and CEUS-based radiomics. J Ultrasound 2022; 25:699-708. [PMID: 35040103 PMCID: PMC9402818 DOI: 10.1007/s40477-021-00651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS We evaluated the performance of contrast-enhanced ultrasound (CEUS) based on radiomics analysis to distinguish benign from malignant breast masses. METHODS 131 women with suspicious breast masses (BI-RADS 4a, 4b, or 4c) who underwent CEUS examinations (using intravenous injection of perflutren lipid microsphere or sulfur hexafluoride lipid-type A microspheres) prior to ultrasound-guided biopsies were retrospectively identified. Post biopsy pathology showed 115 benign and 16 malignant masses. From the cine clip of the CEUS exams obtained using the built-in GE scanner software, breast masses and adjacent normal tissue were then manually segmented using the ImageJ software. One frame representing each of the four phases: precontrast, early, peak, and delay enhancement were selected post segmentation from each CEUS clip. 112 radiomic metrics were extracted from each segmented tissue normalized breast mass using custom Matlab® code. Linear and nonlinear machine learning (ML) methods were used to build the prediction model to distinguish benign from malignant masses. tenfold cross-validation evaluated model performance. Area under the curve (AUC) was used to quantify prediction accuracy. RESULTS Univariate analysis found 35 (38.5%) radiomic variables with p < 0.05 in differentiating between benign from malignant masses. No feature selection was performed. Predictive models based on AdaBoost reported an AUC = 0.72 95% CI (0.56, 0.89), followed by Random Forest with an AUC = 0.71 95% CI (0.56, 0.87). CONCLUSIONS CEUS based texture metrics can distinguish between benign and malignant breast masses, which can, in turn, lead to reduced unnecessary breast biopsies.
Collapse
Affiliation(s)
- Bino A Varghese
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA.
| | - Sandy Lee
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Steven Cen
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Amir Talebi
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Passant Mohd
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Daniel Stahl
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Melissa Perkins
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Bhushan Desai
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Vinay A Duddalwar
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| | - Linda H Larsen
- Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Ground Floor, G360, Los Angeles, CA, 90033, USA
| |
Collapse
|
27
|
Wang S, Liu H, Yang T, Huang M, Zheng B, Wu T, Han L, Zhang Y, Ren J. Machine learning based on automated breast volume scanner ( ABVS) radiomics for differential diagnosis of benign and malignant BI‐RADS 4 lesions. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2022; 32:1577-1587. [DOI: 10.1002/ima.22724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/25/2022] [Indexed: 09/11/2023]
Abstract
AbstractBI‐RADS category 4 represents possibly malignant lesions and biopsy is recommended to distinguish benign and malignant. However, studies revealed that up to 67%–78% of BI‐RADS 4 lesions proved to be benign, but received unnecessary biopsies, which may cause unnecessary anxiety and discomfort to patients and increase the burden on the healthcare system. In this prospective study, machine learning (ML) based on the emerging breast ultrasound technology‐automated breast volume scanner (ABVS) was constructed to distinguish benign and malignant BI‐RADS 4 lesions and compared with different experienced radiologists. A total of 223 pathologically confirmed BI‐RADS 4 lesions were recruited and divided into training and testing cohorts. Radiomics features were extracted from axial, sagittal, and coronal ABVS images for each lesion. Seven feature selection methods and 13 ML algorithms were used to construct different ML pipelines, of which the DNN‐RFE (combination of recursive feature elimination and deep neural networks) had the best performance in both training and testing cohorts. The AUC value of the DNN‐RFE was significantly higher than less experienced radiologist at Delong's test (0.954 vs. 0.776, p = 0.004). Additionally, the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the DNN‐RFE were 88.9%, 83.3%, 95.2%, 83.3%, and 95.2%, which also significantly better than less experienced radiologist at McNemar's test (p = 0.043). Therefore, ML based on ABVS radiomics may be a potential method to non‐invasively distinguish benign and malignant BI‐RADS 4 lesions.
Collapse
Affiliation(s)
- Shi‐jie Wang
- Department of Medical Ultrasonics The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Hua‐qing Liu
- Artificial Intelligence Innovation Center Research Institute of Tsinghua Guangzhou China
| | - Tao Yang
- Department of Ultrasound The Affiliated Hospital of Southwest Medical University Sichuan China
| | - Ming‐quan Huang
- Department of Breast Surgery The Affiliated Hospital of Southwest Medical University Sichuan China
| | - Bo‐wen Zheng
- Department of Medical Ultrasonics The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Tao Wu
- Department of Medical Ultrasonics The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Lan‐qing Han
- Artificial Intelligence Innovation Center Research Institute of Tsinghua Guangzhou China
| | - Yong Zhang
- Department of Nuclear Medicine The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Jie Ren
- Department of Medical Ultrasonics The Third Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
28
|
Kim SY, Cho N. Breast Magnetic Resonance Imaging for Patients With Newly Diagnosed Breast Cancer: A Review. J Breast Cancer 2022; 25:263-277. [PMID: 36031752 PMCID: PMC9411024 DOI: 10.4048/jbc.2022.25.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite the high sensitivity and widespread use of preoperative magnetic resonance imaging (MRI), the American Cancer Society and the National Comprehensive Cancer Network guidelines do not recommend the routine use of preoperative MRI owing to the conflicting results and lack of clear benefit to the surgical outcome (reoperation and mastectomy) and long-term clinical outcomes (local recurrence and metachronous contralateral breast cancer). Preoperative MRI detects additional cancers that are occult at mammography and ultrasound but increases the rate of mastectomy. Concerns about overdiagnosis and overtreatment of preoperative MRI might be mitigated by adjusting the confounding factors when conducting studies, using the state-of-the-art image-guided biopsy technique, applying the radiologists’ cumulative experiences in interpreting MRI findings, and performing multiple lumpectomies in patients with multicentric cancer. Among the various imaging methods, dynamic contrast-enhanced MRI has the highest accuracy in predicting pathologic complete response after neoadjuvant chemotherapy. Prospective trials aimed at applying the MRI information to the de-escalation of surgical or radiation treatments are underway. In this review, current studies on the clinical outcomes of preoperative breast MRI are updated, and circumstances in which MRI may be useful for surgical planning are discussed.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Nariya Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
29
|
Zheng X, Xu S, Wu J. Cervical Cancer Imaging Features Associated With ADRB1 as a Risk Factor for Cerebral Neurovascular Metastases. Front Neurol 2022; 13:905761. [PMID: 35903112 PMCID: PMC9315067 DOI: 10.3389/fneur.2022.905761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bioinformatics tools are used to create a clinical prediction model for cervical cancer metastasis and to investigate the neurovascular-related genes that are involved in brain metastasis of cervical cancer. One hundred eighteen patients with cervical cancer were divided into two groups based on the presence or absence of metastases, and the clinical data and imaging findings of the two groups were compared retrospectively. The nomogram-based model was successfully constructed by taking into account four clinical characteristics (age, stage, N, and T) as well as one imaging characteristic (original_glszm_GrayLevelVariance Rad-score). In patients with cervical cancer, headaches and vomiting were more often reported in the brain metastasis group than in the other metastasis groups. According to the TCGA data, mRNA differential gene expression analysis of patients with cervical cancer revealed an increase in the expression of neurovascular-related gene Adrenoceptor Beta 1 (ADRB1) in the brain metastasis group. An analysis of the correlation between imaging features and ADRB1 expression revealed that ADRB1 expression was significantly higher in the low Rad-score group compared with the high Rad-score group (P = 0.025). Therefore, ADRB1 expression in cervical cancer was correlated with imaging features and was associated as a risk factor for cerebral neurovascular metastases. This study developed a nomogram prediction model for cervical cancer metastasis using age, stage, N, T and original_glszm_GrayLevelVariance. As a risk factor associated with the development of cerebral neurovascular metastases of cervical cancer, ADRB1 expression was significantly higher in brain metastases from cervical cancer.
Collapse
Affiliation(s)
- Xingju Zheng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shilin Xu
- Department of Oncology, Xichang People's Hospital, Liangshan High-Tech Tumor Hospital, Xichang, China
| | - JiaYing Wu
- Department of Gynaecology and Obstetrics, Zhejiang Xinda Hospital, Huzhou, China
- *Correspondence: JiaYing Wu
| |
Collapse
|
30
|
Yan G, Yan G, Li H, Liang H, Peng C, Bhetuwal A, McClure MA, Li Y, Yang G, Li Y, Zhao L, Fan X. Radiomics and Its Applications and Progress in Pancreatitis: A Current State of the Art Review. Front Med (Lausanne) 2022; 9:922299. [PMID: 35814756 PMCID: PMC9259974 DOI: 10.3389/fmed.2022.922299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics involves high-throughput extraction and analysis of quantitative information from medical images. Since it was proposed in 2012, there are some publications on the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain (functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3) identifying CP and normal pancreas, and CP risk factors and complications. In this review, we aim to systematically summarize the applications and progress of radiomics in pancreatitis and it associated situations, so as to provide reference for related research.
Collapse
Affiliation(s)
- Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gaowen Yan
- Department of Radiology, The First Hospital of Suining, Suining, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Peng
- Department of Gastroenterology, The First Hospital of Suining, Suining, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongmei Li
| | - Guoqing Yang
- Department of Radiology, Suining Central Hospital, Suining, China
- Guoqing Yang
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining, China
- Yong Li
| | - Linwei Zhao
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Xiaoping Fan
- Department of Radiology, Suining Central Hospital, Suining, China
| |
Collapse
|
31
|
Xu A, Chu X, Zhang S, Zheng J, Shi D, Lv S, Li F, Weng X. Prediction Breast Molecular Typing of Invasive Ductal Carcinoma Based on Dynamic Contrast Enhancement Magnetic Resonance Imaging Radiomics Characteristics: A Feasibility Study. Front Oncol 2022; 12:799232. [PMID: 35664741 PMCID: PMC9160981 DOI: 10.3389/fonc.2022.799232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the feasibility of radiomics in predicting molecular subtype of breast invasive ductal carcinoma (IDC) based on dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods A total of 303 cases with pathologically confirmed IDC from January 2018 to March 2021 were enrolled in this study, including 223 cases from Fudan University Shanghai Cancer Center (training/test set) and 80 cases from Shaoxing Central Hospital (validation set). All the cases were classified as HR+/Luminal, HER2-enriched, and TNBC according to immunohistochemistry. DCE-MRI original images were treated by semi-automated segmentation to initially extract original and wavelet-transformed radiomic features. The extended logistic regression with least absolute shrinkage and selection operator (LASSO) penalty was applied to identify the optimal radiomic features, which were then used to establish predictive models combined with significant clinical risk factors. Receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis were adopted to evaluate the effectiveness and clinical benefit of the models established. Results Of the 223 cases from Fudan University Shanghai Cancer Center, HR+/Luminal cancers were diagnosed in 116 cases (52.02%), HER2-enriched in 71 cases (31.84%), and TNBC in 36 cases (16.14%). Based on the training set, 788 radiomic features were extracted in total and 8 optimal features were further identified, including 2 first-order features, 1 gray-level run length matrix (GLRLM), 4 gray-level co-occurrence matrices (GLCM), and 1 3D shape feature. Three multi-class classification models were constructed by extended logistic regression: clinical model (age, menopause, tumor location, Ki-67, histological grade, and lymph node metastasis), radiomic model, and combined model. The macro-average areas under the ROC curve (macro-AUC) for the three models were 0.71, 0.81, and 0.84 in the training set, 0.73, 0.81, and 0.84 in the test set, and 0.76, 0.82, and 0.83 in the validation set, respectively. Conclusion The DCE-MRI-based radiomic features are significant biomarkers for distinguishing molecular subtypes of breast cancer noninvasively. Notably, the classification performance could be improved with the fusion analysis of multi-modal features.
Collapse
Affiliation(s)
- Aqiao Xu
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Xiufeng Chu
- Department of Surgical, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Shengjian Zhang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Zheng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Dabao Shi
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Shasha Lv
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| | - Feng Li
- Department of Research Collaboration, Research & Development Center (R&D), Beijing Deepwise & League of Doctor of Philosophy (PHD) Technology Co., Ltd, Beijing, China
| | - Xiaobo Weng
- Department of Radiology, The Central Hospital Affiliated to Shaoxing University (Shaoxing Central Hospital), Shaoxing, China
| |
Collapse
|
32
|
Sun Y, Wang S, Liu Z, You C, Li R, Mao N, Duan S, Lynn HS, Gu Y. Identifying factors that may influence the classification performance of radiomics models using contrast-enhanced mammography (CEM) images. Cancer Imaging 2022; 22:22. [PMID: 35550658 PMCID: PMC9101829 DOI: 10.1186/s40644-022-00460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Radiomics plays an important role in the field of oncology. Few studies have focused on the identification of factors that may influence the classification performance of radiomics models. The goal of this study was to use contrast-enhanced mammography (CEM) images to identify factors that may potentially influence the performance of radiomics models in diagnosing breast lesions. Methods A total of 157 women with 161 breast lesions were included. Least absolute shrinkage and selection operator (LASSO) regression and the random forest (RF) algorithm were employed to construct radiomics models. The classification result for each lesion was obtained by using 100 rounds of five-fold cross-validation. The image features interpreted by the radiologists were used in the exploratory factor analyses. Univariate and multivariate analyses were performed to determine the association between the image features and misclassification. Additional exploratory analyses were performed to examine the findings. Results Among the lesions misclassified by both LASSO and RF ≥ 20% of the iterations in the cross-validation and those misclassified by both algorithms ≤5% of the iterations, univariate analysis showed that larger lesion size and the presence of rim artifacts and/or ripple artifacts were associated with more misclassifications among benign lesions, and smaller lesion size was associated with more misclassifications among malignant lesions (all p < 0.050). Multivariate analysis showed that smaller lesion size (odds ratio [OR] = 0.699, p = 0.002) and the presence of air trapping artifacts (OR = 35.568, p = 0.025) were factors that may lead to misclassification among malignant lesions. Additional exploratory analyses showed that benign lesions with rim artifacts and small malignant lesions (< 20 mm) with air trapping artifacts were misclassified by approximately 50% more in rate compared with benign and malignant lesions without these factors. Conclusions Lesion size and artifacts in CEM images may affect the diagnostic performance of radiomics models. The classification results for lesions presenting with certain factors may be less reliable. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-022-00460-8.
Collapse
Affiliation(s)
- Yuqi Sun
- Department of Biostatistics, Key Laboratory on Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Simin Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, China
| | - Ziang Liu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, China
| | - Ruimin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Shandong, 264000, China
| | - Shaofeng Duan
- GE Healthcare China, No. 1 Huatuo Road, Shanghai, 210000, China
| | - Henry S Lynn
- Department of Biostatistics, Key Laboratory on Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, No. 270 Dongan Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, Shanghai, 200032, China.
| |
Collapse
|
33
|
Elkady RM. Radiomics Analysis in Evaluation of Cervical Cancer: A Further Step on the Road. Acad Radiol 2022; 29:1141-1142. [PMID: 35307261 DOI: 10.1016/j.acra.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/19/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Reem M Elkady
- Department of radiology, Faculty of medicine, Assiut University, Assiut, Egypt & Department of radiology and medical imaging, College of medicine, Taibah University, Madinah, Saudi Arabia.
| |
Collapse
|
34
|
Yin XX, Hadjiloucas S, Zhang Y, Tian Z. MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106510. [PMID: 34852935 DOI: 10.1016/j.cmpb.2021.106510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE This paper aims to overview multidimensional mining algorithms in relation to Magnetic Resonance Imaging (MRI) radiogenomics for computer aided detection and diagnosis of breast tumours. The work also aims to address a new problem in radiogenomics mining: how to combine structural radiomics information with non-structural genomics information for improving the accuracy and efficacy of Neoadjuvant Chemotherapy (NAC). METHODS This requires the automated extraction of parameters from non-structural breast radiomics data, and finding feature vectors with diagnostic value, which then are combined with genomics data. In order to address the problem of weakly labelled tumour images, a Generative Adiversarial Networks (GAN) based deep learning strategy is proposed for the classification of tumour types; this has significant potential for providing accurate real-time identification of tumorous regions from MRI scans. In order to efficiently integrate in a deep learning framework different features from radiogenomics datasets at multiple spatio-temporal resolutions, pyramid structured and multi-scale densely connected U-Nets are proposed. A bidirectional gated recurrent unit (BiGRU) combined with an attention based deep learning approach is also proposed. RESULTS The aim is to accurately predict NAC responses by combining imaging and genomic datasets. The approaches discussed incorporate some of the latest developments in of current signal processing and artificial intelligence and have significant potential in advancing and provide a development platform for future cutting-edge biomedical radiogenomics analysis. CONCLUSIONS The association of genotypic and phenotypic features is at the core of the emergent field of Precision Medicine. It makes use of advances in biomedical big data analysis, which enables the correlation between disease-associated phenotypic characteristics, genetics polymorphism and gene activation to be revealed.
Collapse
Affiliation(s)
- Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China.
| | - Sillas Hadjiloucas
- Department of Biomedical Engineering, The University of Reading, RG6 6AY, UK
| | - Yanchun Zhang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
| | - Zhihong Tian
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
35
|
Tang Y, Liang M, Tao L, Deng M, Li T. Machine learning-based diagnostic evaluation of shear-wave elastography in BI-RADS category 4 breast cancer screening: a multicenter, retrospective study. Quant Imaging Med Surg 2022; 12:1223-1234. [PMID: 35111618 DOI: 10.21037/qims-21-341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ultrasound is commonly used in breast cancer screening but lacks quantification ability and diagnostic power due to its low specificity, which can lead to overdiagnosis and unnecessary biopsies. This study evaluated the diagnostic efficacy and clinical utility of adding shear-wave elastography (SWE) to the screening of the Breast Imaging Reporting and Data System (BI-RADS) category 4 breast cancer. METHODS A machine learning-based diagnostic model was constructed using data retrospectively collected from 3 independent cohorts with features selected using lasso regression and support vector machine-recursive feature elimination algorithms. Propensity score matching (PSM) was used to preclude confounding baseline characteristics between malignant and benign lesions. A decision curve analysis (DCA) was used to evaluate the clinical benefit of the diagnostic model in identifying high-risk tumor patients for intervention while simultaneously avoiding overtreatment of low-risk patients with integrative evaluation using a net benefit value and treatment reduction rate. RESULTS In our training center, a total of 122 patients were enrolled, and 577 breast tumors were collected. The comparison between malignant and benign lesions revealed significant differences in patient age, tumor size, resistance index (RI), and elasticity values. The maximum elasticity value (Emax) was identified as an independent diagnostic feature and was included in the diagnostic model. The combination of Emax with BI-RADS category 4 demonstrated a significantly better diagnostic efficacy than the BI-RADS category alone [BI-RADS+Emax: AUC =0.908, 95% confidence interval (CI): 0.842-0.974; BI-RADS: AUC =0.862, 95% CI: 0.784-0.94; P=0.024] and significantly increased the clinical benefit for patients and policy makers by effectively reducing overdiagnosis and biopsy rates. In the BI-RADS category 4A subgroup, adding Emax to breast cancer screening benefited patients and showed a greater absolute benefit than did the BI-RADS category alone when used for patients with a higher probability of cancer (>0.403), demonstrating a 50% overtreatment reduction. CONCLUSIONS Adding Emax to BI-RADS category 4 breast cancer screening using SWE significantly reduced overdiagnosis and biopsy rates compared with the BI-RADS category alone, especially for BI-RADS 4A patients.
Collapse
Affiliation(s)
- Yi Tang
- Department of Medical Technology, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangdong Second Hospital of Traditional Chinese Medicine, Guangzhou, China.,Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Minjie Liang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Li Tao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Minjun Deng
- Department of Medical Technology, Guangdong Key Laboratory of Traditional Chinese Medicine Research and Development, Guangdong Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Tianfu Li
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Mireștean CC, Volovăț C, Iancu RI, Iancu DPT. Radiomics in Triple Negative Breast Cancer: New Horizons in an Aggressive Subtype of the Disease. J Clin Med 2022; 11:jcm11030616. [PMID: 35160069 PMCID: PMC8836903 DOI: 10.3390/jcm11030616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the analysis of the medical images has evolved significantly, applications and tools capable to extract quantitative characteristics of the images beyond the discrimination capacity of the investigator's eye being developed. The applications of this new research field, called radiomics, presented an exponential growth with direct implications in the diagnosis and prediction of response to therapy. Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with a severe prognosis, despite the aggressive multimodal treatments applied according to the guidelines. Radiomics has already proven the ability to differentiate TNBC from fibroadenoma. Radiomics features extracted from digital mammography may also distinguish between TNBC and non-TNBC. Recent research has identified three distinct subtypes of TNBC using IRM breast images voxel-level radiomics features (size/shape related features, texture features, sharpness). The correlation of these TNBC subtypes with the clinical response to neoadjuvant therapy may lead to the identification of biomarkers in order to guide the clinical decision. Furthermore, the variation of some radiomics features in the neoadjuvant settings provides a tool for the rapid evaluation of treatment efficacy. The association of radiomics features with already identified biomarkers can generate complex predictive and prognostic models. Standardization of image acquisition and also of radiomics feature extraction is required to validate this method in clinical practice.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Department of Surgery, Railways Clinical Hospital, 700506 Iasi, Romania
| | - Constantin Volovăț
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (D.P.T.I.)
- Euroclinic Oncological Hospital, 700110 Iasi, Romania
| | - Roxana Irina Iancu
- Department of Oral Pathology, Faculty of Dentistry, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Laboratory Department, “St. Spiridon” Emergency Hospital, 700111 Iasi, Romania
- Correspondence: ; Tel.: +40-232-301-603
| | - Dragoș Petru Teodor Iancu
- Department of Medical Oncology-Radiotherapy, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.V.); (D.P.T.I.)
- Department of Radiotherapy, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
37
|
Kim YS, Lee SE, Chang JM, Kim SY, Bae YK. Ultrasonographic morphological characteristics determined using a deep learning-based computer-aided diagnostic system of breast cancer. Medicine (Baltimore) 2022; 101:e28621. [PMID: 35060538 PMCID: PMC8772632 DOI: 10.1097/md.0000000000028621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023] Open
Abstract
To investigate the correlations between ultrasonographic morphological characteristics quantitatively assessed using a deep learning-based computer-aided diagnostic system (DL-CAD) and histopathologic features of breast cancer.This retrospective study included 282 women with invasive breast cancer (<5 cm; mean age, 54.4 [range, 29-85] years) who underwent surgery between February 2016 and April 2017. The morphological characteristics of breast cancer on B-mode ultrasonography were analyzed using DL-CAD, and quantitative scores (0-1) were obtained. Associations between quantitative scores and tumor histologic type, grade, size, subtype, and lymph node status were compared.Two-hundred and thirty-six (83.7%) tumors were invasive ductal carcinoma, 18 (6.4%) invasive lobular carcinoma, and 28 (9.9%) micropapillary, apocrine, and mucinous. The mean size was 1.8 ± 1.0 (standard deviation) cm, and 108 (38.3%) cases were node positive. Irregular shape score was associated with tumor size (P < .001), lymph nodes status (P = .001), and estrogen receptor status (P = .016). Not-circumscribed margin (P < .001) and hypoechogenicity (P = .003) scores correlated with tumor size, and non-parallel orientation score correlated with histologic grade (P = .024). Luminal A tumors exhibited more irregular features (P = .048) with no parallel orientation (P = .002), whereas triple-negative breast cancer showed a rounder/more oval and parallel orientation.Quantitative morphological characteristics of breast cancers determined using DL-CAD correlated with histopathologic features and could provide useful information about breast cancer phenotypes.
Collapse
Affiliation(s)
- Young Seon Kim
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Seung Eun Lee
- Department of Radiology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Min Chang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University Hospital, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|
38
|
A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses. Diagnostics (Basel) 2022; 12:diagnostics12010187. [PMID: 35054354 PMCID: PMC8774734 DOI: 10.3390/diagnostics12010187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
We developed a machine learning model based on radiomics to predict the BI-RADS category of ultrasound-detected suspicious breast lesions and support medical decision-making towards short-interval follow-up versus tissue sampling. From a retrospective 2015–2019 series of ultrasound-guided core needle biopsies performed by four board-certified breast radiologists using six ultrasound systems from three vendors, we collected 821 images of 834 suspicious breast masses from 819 patients, 404 malignant and 430 benign according to histopathology. A balanced image set of biopsy-proven benign (n = 299) and malignant (n = 299) lesions was used for training and cross-validation of ensembles of machine learning algorithms supervised during learning by histopathological diagnosis as a reference standard. Based on a majority vote (over 80% of the votes to have a valid prediction of benign lesion), an ensemble of support vector machines showed an ability to reduce the biopsy rate of benign lesions by 15% to 18%, always keeping a sensitivity over 94%, when externally tested on 236 images from two image sets: (1) 123 lesions (51 malignant and 72 benign) obtained from two ultrasound systems used for training and from a different one, resulting in a positive predictive value (PPV) of 45.9% (95% confidence interval 36.3–55.7%) versus a radiologists’ PPV of 41.5% (p < 0.005), combined with a 98.0% sensitivity (89.6–99.9%); (2) 113 lesions (54 malignant and 59 benign) obtained from two ultrasound systems from vendors different from those used for training, resulting into a 50.5% PPV (40.4–60.6%) versus a radiologists’ PPV of 47.8% (p < 0.005), combined with a 94.4% sensitivity (84.6–98.8%). Errors in BI-RADS 3 category (i.e., assigned by the model as BI-RADS 4) were 0.8% and 2.7% in the Testing set I and II, respectively. The board-certified breast radiologist accepted the BI-RADS classes assigned by the model in 114 masses (92.7%) and modified the BI-RADS classes of 9 breast masses (7.3%). In six of nine cases, the model performed better than the radiologist did, since it assigned a BI-RADS 3 classification to histopathology-confirmed benign masses that were classified as BI-RADS 4 by the radiologist.
Collapse
|
39
|
Frankhouser DE, Dietze E, Mahabal A, Seewaldt VL. Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging. FRONTIERS IN RADIOLOGY 2021; 1:735567. [PMID: 37492179 PMCID: PMC10364989 DOI: 10.3389/fradi.2021.735567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/11/2021] [Indexed: 07/27/2023]
Abstract
Angiogenesis is a key step in the initiation and progression of an invasive breast cancer. High microvessel density by morphological characterization predicts metastasis and poor survival in women with invasive breast cancers. However, morphologic characterization is subject to variability and only can evaluate a limited portion of an invasive breast cancer. Consequently, breast Magnetic Resonance Imaging (MRI) is currently being evaluated to assess vascularity. Recently, through the new field of radiomics, dynamic contrast enhanced (DCE)-MRI is being used to evaluate vascular density, vascular morphology, and detection of aggressive breast cancer biology. While DCE-MRI is a highly sensitive tool, there are specific features that limit computational evaluation of blood vessels. These include (1) DCE-MRI evaluates gadolinium contrast and does not directly evaluate biology, (2) the resolution of DCE-MRI is insufficient for imaging small blood vessels, and (3) DCE-MRI images are very difficult to co-register. Here we review computational approaches for detection and analysis of blood vessels in DCE-MRI images and present some of the strategies we have developed for co-registry of DCE-MRI images and early detection of vascularization.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Eric Dietze
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Ashish Mahabal
- Department of Astronomy, Division of Physics, Mathematics, and Astronomy, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Victoria L. Seewaldt
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
40
|
Lee HJ, Nguyen AT, Ki SY, Lee JE, Do LN, Park MH, Lee JS, Kim HJ, Park I, Lim HS. Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning. Front Oncol 2021; 11:744460. [PMID: 34926256 PMCID: PMC8679659 DOI: 10.3389/fonc.2021.744460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
ObjectiveThis study was conducted in order to investigate the feasibility of using radiomics analysis (RA) with machine learning algorithms based on breast magnetic resonance (MR) images for discriminating malignant from benign MR-detected additional lesions in patients with primary breast cancer.Materials and MethodsOne hundred seventy-four MR-detected additional lesions (benign, n = 86; malignancy, n = 88) from 158 patients with ipsilateral primary breast cancer from a tertiary medical center were included in this retrospective study. The entire data were randomly split to training (80%) and independent test sets (20%). In addition, 25 patients (benign, n = 21; malignancy, n = 15) from another tertiary medical center were included for the external test. Radiomics features that were extracted from three regions-of-interest (ROIs; intratumor, peritumor, combined) using fat-saturated T1-weighted images obtained by subtracting pre- from postcontrast images (SUB) and T2-weighted image (T2) were utilized to train the support vector machine for the binary classification. A decision tree method was utilized to build a classifier model using clinical imaging interpretation (CII) features assessed by radiologists. Area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, and specificity were used to compare the diagnostic performance.ResultsThe RA models trained using radiomics features from the intratumor-ROI showed comparable performance to the CII model (accuracy, AUROC: 73.3%, 69.6% for the SUB RA model; 70.0%, 75.1% for the T2 RA model; 73.3%, 72.0% for the CII model). The diagnostic performance increased when the radiomics and CII features were combined to build a fusion model. The fusion model that combines the CII features and radiomics features from multiparametric MRI data demonstrated the highest performance with an accuracy of 86.7% and an AUROC of 91.1%. The external test showed a similar pattern where the fusion models demonstrated higher levels of performance compared with the RA- or CII-only models. The accuracy and AUROC of the SUB+T2 RA+CII model in the external test were 80.6% and 91.4%, respectively.ConclusionOur study demonstrated the feasibility of using RA with machine learning approach based on multiparametric MRI for quantitatively characterizing MR-detected additional lesions. The fusion model demonstrated an improved diagnostic performance over the models trained with either RA or CII alone.
Collapse
Affiliation(s)
- Hyo-jae Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Anh-Tien Nguyen
- Department of Radiology, Chonnam National University Hospital, Gwangju, South Korea
| | - So Yeon Ki
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun-gun, South Korea
| | - Jong Eun Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Luu-Ngoc Do
- Department of Radiology, Chonnam National University, Gwangju, South Korea
| | - Min Ho Park
- Department of Radiology, Chonnam National University, Gwangju, South Korea
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun-gun, South Korea
| | - Ji Shin Lee
- Department of Radiology, Chonnam National University, Gwangju, South Korea
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun-gun, South Korea
| | - Hye Jung Kim
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Hospital, Gwangju, South Korea
- Department of Radiology, Chonnam National University, Gwangju, South Korea
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, South Korea
- *Correspondence: Ilwoo Park, ; Hyo Soon Lim,
| | - Hyo Soon Lim
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun-gun, South Korea
- Department of Radiology, Chonnam National University, Gwangju, South Korea
- *Correspondence: Ilwoo Park, ; Hyo Soon Lim,
| |
Collapse
|
41
|
Siviengphanom S, Gandomkar Z, Lewis SJ, Brennan PC. Mammography-based Radiomics in Breast Cancer: A Scoping Review of Current Knowledge and Future Needs. Acad Radiol 2021; 29:1228-1247. [PMID: 34799256 DOI: 10.1016/j.acra.2021.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Breast cancer is a highly complex heterogeneous disease. Current validated prognostic factors (e.g., histological grade, lymph node involvement, receptor status, and proliferation index), as well as multigene tests (e.g., Oncotype DX and PAM50) are helpful to describe breast cancer characteristics and predict the chance of recurrence risk and survival. Nevertheless, they are invasive and cannot capture a complete heterogeneity of the entire breast tumor resulting in up to 30% of patients being either over- or under-treated for breast cancer. Furthermore, multigene testings are time consuming and expensive. Radiomics is emerging as a reliable, accurate, non-invasive, and cost-effective approach of using quantitative image features to classify breast cancer characteristics and predict patient outcomes. Several recent radiomics reviews have been conducted in breast cancer, however, specific mammography-based radiomics studies have not been well discussed. This scoping review aims to assess and summarize the current evidence on the potential usefulness of mammography-based (i.e., digital mammography, digital breast tomosynthesis, and contrast-enhanced mammography) radiomics in predicting factors that describe breast cancer characteristics, recurrence, and survival. MATERIALS AND METHODS PubMed database and eligible text reference were searched using relevant keywords to identify studies published between 2015 and December 19, 2020. Studies collected were screened and assessed based on the inclusion and exclusion criteria. RESULTS Eighteen eligible studies were included and organized into three main sections: radiomics predicting breast cancer characteristics, radiomics predicting breast cancer recurrence and survival, and radiomics integrating with clinical data. Majority of publications reported retrospective studies while three studies examined prospective cohorts. Encouraging results were reported, suggesting the potential clinical value of mammography-based radiomics. Further efforts are required to standardize radiomics approaches and catalogue reproducible and relevant mammographic radiomic features. The role of integrating radiomics with other information is discussed. CONCLUSION The potential role of mammography-based radiomics appears promising but more efforts are required to further evaluate its reliability as a routine clinical tool.
Collapse
Affiliation(s)
- Somphone Siviengphanom
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia..
| | - Ziba Gandomkar
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Sarah J Lewis
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Patrick C Brennan
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| |
Collapse
|
42
|
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021; 127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.
Collapse
Affiliation(s)
- Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
43
|
Park SH, Han K, Park SY. Mistakes to Avoid for Accurate and Transparent Reporting of Survival Analysis in Imaging Research. Korean J Radiol 2021; 22:1587-1593. [PMID: 34431251 PMCID: PMC8484160 DOI: 10.3348/kjr.2021.0579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| |
Collapse
|
44
|
Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11101796. [PMID: 34679494 PMCID: PMC8534713 DOI: 10.3390/diagnostics11101796] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evaluation of the efficacy of different therapies is of paramount importance for the patients and the clinicians in oncology, and it is usually possible by performing imaging investigations that are interpreted, taking in consideration different response evaluation criteria. In the last decade, texture analysis (TA) has been developed in order to help the radiologist to quantify and identify parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye, that can be correlated with different endpoints, including cancer prognosis. The aim of this work is to analyze the impact of texture in the prediction of response and in prognosis stratification in oncology, taking into consideration different pathologies (lung cancer, breast cancer, gastric cancer, hepatic cancer, rectal cancer). Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used. This paper contains a narrative report and a critical discussion of radiomics approaches related to cancer prognosis in different fields of diseases.
Collapse
|
45
|
Wang B, Hamal P, Meng X, Sun K, Yang Y, Sun Y, Sun X. Evaluation of the Radiomics Method for the Prediction of Atypical Adenomatous Hyperplasia in Patients With Subcentimeter Pulmonary Ground-Glass Nodules. Front Oncol 2021; 11:698053. [PMID: 34422651 PMCID: PMC8374940 DOI: 10.3389/fonc.2021.698053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives We aimed to develop a prediction model to distinguish atypical adenomatous hyperplasia (AAH) from early lung adenocarcinomas in patients with subcentimeter pulmonary ground-glass nodules (GGNs), which may help avoid aggressive surgical resection for patients with AAH. Methods Surgically confirmed cases of AAH and lung adenocarcinomas manifesting as GGNs of less than 1 cm were retrospectively collected. A prediction model based on radiomics and clinical features identified from a training set of cases was built to differentiate AAH from lung adenocarcinomas and tested on a validation set. Results Four hundred and eighty-five eligible cases were included and randomly assigned to the training (n = 339) or the validation sets (n = 146). The developed radiomics prediction model showed good discrimination performance to distinguish AAH from adenocarcinomas in both the training and the validation sets, with, respectively, 84.1% and 82.2% of accuracy, and AUCs of 0.899 (95% CI: 0.867–0.931) and 0.881 (95% CI: 0.827–0.936). Conclusion The prediction model based on radiomics and clinical features can help differentiate AAH from adenocarcinomas manifesting as subcentimeter GGNs and may prevent aggressive resection for AAH patients, while reserving this treatment for adenocarcinomas.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Preeti Hamal
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue Meng
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Sun
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yangyang Sun
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiwen Sun
- Department of Radiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Park SY, Park JE, Kim H, Park SH. Review of Statistical Methods for Evaluating the Performance of Survival or Other Time-to-Event Prediction Models (from Conventional to Deep Learning Approaches). Korean J Radiol 2021; 22:1697-1707. [PMID: 34269532 PMCID: PMC8484151 DOI: 10.3348/kjr.2021.0223] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
The recent introduction of various high-dimensional modeling methods, such as radiomics and deep learning, has created a much greater diversity in modeling approaches for survival prediction (or, more generally, time-to-event prediction). The newness of the recent modeling approaches and unfamiliarity with the model outputs may confuse some researchers and practitioners about the evaluation of the performance of such models. Methodological literacy to critically appraise the performance evaluation of the models and, ideally, the ability to conduct such an evaluation would be needed for those who want to develop models or apply them in practice. This article intends to provide intuitive, conceptual, and practical explanations of the statistical methods for evaluating the performance of survival prediction models with minimal usage of mathematical descriptions. It covers from conventional to deep learning methods, and emphasis has been placed on recent modeling approaches. This review article includes straightforward explanations of C indices (Harrell's C index, etc.), time-dependent receiver operating characteristic curve analysis, calibration plot, other methods for evaluating the calibration performance, and Brier score.
Collapse
Affiliation(s)
- Seo Young Park
- Department of Statistics and Data Science, Korea National Open University, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyungjin Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
47
|
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021; 28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
Collapse
|
48
|
Daimiel Naranjo I, Gibbs P, Reiner JS, Lo Gullo R, Sooknanan C, Thakur SB, Jochelson MS, Sevilimedu V, Morris EA, Baltzer PAT, Helbich TH, Pinker K. Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11060919. [PMID: 34063774 PMCID: PMC8223779 DOI: 10.3390/diagnostics11060919] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this multicenter retrospective study was to evaluate radiomics analysis coupled with machine learning (ML) of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) radiomics models separately and combined as multiparametric MRI for improved breast cancer detection. Consecutive patients (Memorial Sloan Kettering Cancer Center, January 2018-March 2020; Medical University Vienna, from January 2011-August 2014) with a suspicious enhancing breast tumor on breast MRI categorized as BI-RADS 4 and who subsequently underwent image-guided biopsy were included. In 93 patients (mean age: 49 years ± 12 years; 100% women), there were 104 lesions (mean size: 22.8 mm; range: 7-99 mm), 46 malignant and 58 benign. Radiomics features were calculated. Subsequently, the five most significant features were fitted into multivariable modeling to produce a robust ML model for discriminating between benign and malignant lesions. A medium Gaussian support vector machine (SVM) model with five-fold cross validation was developed for each modality. A model based on DWI-extracted features achieved an AUC of 0.79 (95% CI: 0.70-0.88), whereas a model based on DCE-extracted features yielded an AUC of 0.83 (95% CI: 0.75-0.91). A multiparametric radiomics model combining DCE- and DWI-extracted features showed the best AUC (0.85; 95% CI: 0.77-0.92) and diagnostic accuracy (81.7%; 95% CI: 73.0-88.6). In conclusion, radiomics analysis coupled with ML of multiparametric MRI allows an improved evaluation of suspicious enhancing breast tumors recommended for biopsy on clinical breast MRI, facilitating accurate breast cancer diagnosis while reducing unnecessary benign breast biopsies.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Department of Radiology, Breast Imaging Service, Guy’s and St. Thomas’ NHS Trust, Great Maze Pond, London SE1 9RT, UK
- Correspondence: (I.D.N.); (P.G.)
| | - Peter Gibbs
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Correspondence: (I.D.N.); (P.G.)
| | - Jeffrey S. Reiner
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Caleb Sooknanan
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Sunitha B. Thakur
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxine S. Jochelson
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Varadan Sevilimedu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA;
| | - Elizabeth A. Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
| | - Pascal A. T. Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Wien 1090, Austria; (P.A.T.B.); (T.H.H.)
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Wien 1090, Austria; (P.A.T.B.); (T.H.H.)
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (J.S.R.); (R.L.G.); (S.B.T.); (M.S.J.); (E.A.M.); (K.P.)
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Wien 1090, Austria; (P.A.T.B.); (T.H.H.)
| |
Collapse
|
49
|
Grimm LJ. Radiomics: A Primer for Breast Radiologists. JOURNAL OF BREAST IMAGING 2021; 3:276-287. [PMID: 38424774 DOI: 10.1093/jbi/wbab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 03/02/2024]
Abstract
Radiomics has a long-standing history in breast imaging with computer-aided detection (CAD) for screening mammography developed in the late 20th century. Although conventional CAD had widespread adoption, the clinical benefits for experienced breast radiologists were debatable due to high false-positive marks and subsequent increased recall rates. The dramatic growth in recent years of artificial intelligence-based analysis, including machine learning and deep learning, has provided numerous opportunities for improved modern radiomics work in breast imaging. There has been extensive radiomics work in mammography, digital breast tomosynthesis, MRI, ultrasound, PET-CT, and combined multimodality imaging. Specific radiomics outcomes of interest have been diverse, including CAD, prediction of response to neoadjuvant therapy, lesion classification, and survival, among other outcomes. Additionally, the radiogenomics subfield that correlates radiomics features with genetics has been very proliferative, in parallel with the clinical validation of breast cancer molecular subtypes and gene expression assays. Despite the promise of radiomics, there are important challenges related to image normalization, limited large unbiased data sets, and lack of external validation. Much of the radiomics work to date has been exploratory using single-institution retrospective series for analysis, but several promising lines of investigation have made the leap to clinical practice with commercially available products. As a result, breast radiologists will increasingly be incorporating radiomics-based tools into their daily practice in the near future. Therefore, breast radiologists must have a broad understanding of the scope, applications, and limitations of radiomics work.
Collapse
Affiliation(s)
- Lars J Grimm
- Duke University, Department of Radiology, Durham, NC, USA
| |
Collapse
|
50
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|