1
|
Li H, Ma H, Li J, Li X, Huang K, Cao J, Li J, Yan W, Chen X, Zhou X, Cui C, Yu X, Liu F, Huang J. Hourly personal temperature exposure and heart rate variability: A multi-center panel study in populations at intermediate to high-risk of cardiovascular disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160983. [PMID: 36535481 DOI: 10.1016/j.scitotenv.2022.160983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Several studies reported temperature exposure was associated with altered cardiac automatic function, while this effect of temperature on hourly heart rate variability (HRV) among populations with cardiovascular risks was seldom addressed. METHODS We conducted this panel study in four Chinese cities with three repeated visits among 296 participants at intermediate to high-risk of cardiovascular disease (CVD). Real-time temperature level and 24-h ambulatory electrocardiogram were monitored during each seasonal visit. Linear mixed-effects models were used to investigate associations between individual temperature and HRV parameters, and the seasonal effects and circadian effect were also evaluated. RESULTS We found the overall downward trend of hourly HRV associated with acute exposure to higher temperature. For each 1 °C increment in temperature of 1-3 h prior to HRV measurements (lag 1-3 h), hourly standard deviation of normal-to-normal intervals (SDNN) decreased by 0.38% (95% confidence interval [CI]: 0.22, 0.54), 0.28% (95% CI: 0.12, 0.44), and 0.20% (95% CI: 0.04, 0.36), respectively. Similar inverse associations between temperature and HRV were observed in stratified analyses by temperature level. Inverse associations for cold and warm seasons were also observed, despite some effects gradually decreased and reversed in the warm season as lag times extended. Moreover, HRV showed a more significant reduction with increased temperature during daytime than nighttime. Percent change of hourly SDNN was -0.41% (95% CI: -0.62, -0.21) with 1 °C increment of lag 1 h during daytime, while few obvious changes were revealed during nighttime. CONCLUSIONS Generally, increasing temperature was significantly associated with reduced HRV. Inverse relationships for cold and warm seasons were also observed. Associations during daytime were much more prominent than nighttime. Our findings clarified the relationship of temperature with HRV and provided evidence for prevention approaches to alleviate cardiac automatic dysfunction among populations at intermediate to high-risk of CVD.
Collapse
Affiliation(s)
- Hongfan Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Han Ma
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jinyue Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiahua Li
- Function Test Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Weili Yan
- Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaotian Chen
- Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chun Cui
- Primary Health Professional Committee, Shaanxi Province Health Care Association, Xi'an 710061, China
| | - Xianglai Yu
- Beilin District Dongguannanjie Community Health Service Center, Xi'an 710048, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China.
| |
Collapse
|
2
|
He F, Wei J, Dong Y, Liu C, Zhao K, Peng W, Lu Z, Zhang B, Xue F, Guo X, Jia X. Associations of ambient temperature with mortality for ischemic and hemorrhagic stroke and the modification effects of greenness in Shandong Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158046. [PMID: 35987239 DOI: 10.1016/j.scitotenv.2022.158046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Evidence is scant on the relative and attributable contributions of ambient temperature on stroke subtypes mortality. Few studies have examined modification effects of multiple greenness indicators on such contributions, especially in China. We quantified the associations between ambient temperature and overall, ischemic, and hemorrhagic stroke mortality; further examined whether the associations were modified by greenness. METHODS We conducted a multicenter time-series analysis from January 1, 2013 to December 31, 2019. we adopted a distributed lag non-linear model to evaluate county-specific temperature-stroke mortality associations. We then applied a random-effects meta-analysis to pool county-specific effects. Attributable mortality was calculated for cold and heat, defined as temperatures below and above the minimum mortality temperature (MMT). Finally, We conducted a multivariate meta-regression to determine associations between greenness and stroke mortality risks for cold and heat, using normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) as quantitative indicators of greenness exposure. RESULTS In the study period, 138,749 deaths from total stroke were reported: 86,873 ischemic and 51,876 hemorrhagic stroke. We observed significant W-shaped relationships between temperature and stroke mortality, with substantial differences among counties and regions. With MMT as the temperature threshold, 17.16 % (95 % empirical CI, 13.38 %-19.75 %) of overall, 20.05 % (95 % eCI, 16.46 %-22.70 %) of ischemic, and 12.55 % (95 % eCI, 5.59 %-16.24 %) of hemorrhagic stroke mortality were attributable to non-optimum temperature (combining cold and heat), more mortality was caused by cold (14.94 %; 95 % eCI, 11.57 %-17.34 %) than by heat (2.22 %; 95 % eCI, 1.54 %-2.72 %). Higher levels of NDVI, SAVI and EVI were related to mitigated effects of non-optimum temperatures-especially heat. CONCLUSIONS Exposure to non-optimum temperatures aggravated stroke mortality risks; increasing greenness could alleviate that risks. This evidence has important implications for local communities in developing adaptive strategies to minimize the health consequences of adverse temperatures.
Collapse
Affiliation(s)
- Fenfen He
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Yilin Dong
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Chao Liu
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Ke Zhao
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China
| | - Wenjia Peng
- School of Public Health, Fudan University, Shanghai, China
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Healthcare Big Data Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Xianjie Jia
- Department of Epidemiology and Statistics, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
3
|
Kuzmenko NV, Galagudza MM. Dependence of seasonal dynamics of hemorrhagic and ischemic strokes on the climate of a region: A meta-analysis. Int J Stroke 2021; 17:226-235. [PMID: 33724111 DOI: 10.1177/17474930211006296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cardiovascular events occur more often in winter than in summer; however, the dependence of strokes on various meteorological factors remains unclear. AIMS The purpose of this meta-analysis was to determine the dependence of the circannual dynamics of hospitalizations for hemorrhagic stroke and ischemic stroke on seasonal fluctuations in meteorological factors. SUMMARY OF REVIEW AND CONCLUSIONS For our meta-analysis, we selected 20 and 26 publications examining the seasonal dynamics of hemorrhagic stroke and ischemic stroke, respectively . The meta-analysis showed that hemorrhagic stroke is less likely to occur in summer than in other seasons and does not depend on a region's climate. The seasonal dynamics of ischemic stroke are not clearly expressed and are determined by the characteristics of a region's climate. In a climate without pronounced seasonal dynamics of atmospheric pressure and in wet winters, the vector of ischemic stroke incidents will not be expressed or slightly shifted toward winter. Low atmospheric pressure in summer is associated with an increased likelihood of ischemic stroke during this season compared to winter. There was also a relation between ischemic stroke risk with high relative humidity and a significant decrease in ρO2 in summer, but there is not enough evidence regarding this association. We did not reveal dependence of the seasonal dynamics of strokes on the amplitude of annual fluctuations in air temperature.
Collapse
Affiliation(s)
- N V Kuzmenko
- Department for Experimental Physiology and Pharmacology, 123488Almazov National Medical Research Centre, St. Petersburg, Russia.,Laboratory of Biophysics of Blood Circulation, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - M M Galagudza
- Department for Experimental Physiology and Pharmacology, 123488Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
4
|
Yang H, Chen Z, Fan Y, Xiang L, Hu X, Wu T, Xiao B, Feng L, Zhao Z, Chi Y, Zhang M. Difficulties and Countermeasures in Hospital Emergency Management for Fast-Lane Treatment of Acute Stroke During the COVID-19 Epidemic Prevention and Control. Front Neurol 2020; 11:604907. [PMID: 33329365 PMCID: PMC7728798 DOI: 10.3389/fneur.2020.604907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) has a long incubation period and a high degree of infectivity. Patients may not show specific signs or symptoms of upper respiratory tract infection, and the age of onset is similar to that of stroke. Furthermore, an increase in neurological conditions, specifically acute cerebrovascular disease, has been detected. Providing emergency treatment for acute stroke in accordance with the strict epidemic control measures is currently one of the main challenges, as acute stroke is rapid onset and a major cause of death and disability globally. We aimed to evaluate the emergency treatment system for acute stroke during the epidemic control period to provide a reference and basis for informing government and medical institutions on improving patient treatment rates during this period. Methods: Difficulties faced in providing emergency treatment for stroke during an epidemic were investigated and combined with medical educational resources and clinical management experiences to construct an emergency treatment framework for acute stroke during the epidemic. Findings: Currently, emergency treatment measures for acute stroke during the epidemic control period are limited because the main focus is on identifying COVID-19 comorbidities during the critical period. Establishing standards for patients in the neurological outpatient consultation rooms and emergency observation and resuscitation zones; implementing a fast-lane system for the emergency treatment of patients with acute stroke, and strengthening ward management and medicine popularization, can improve the treatment efficiency for stroke patients during the epidemic and provide a reference for peers in clinical practice. Interpretation: Emergency treatment for acute stroke during COVID-19 epidemic control period requires a joint promotion of clinical, popularization, and teaching resources.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Lan Xiang
- Department of Neurology, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | - Xinhang Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Tong Wu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Zhihong Zhao
- Department of Neurology, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | | | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Chang LL, Li C, Li ZL, Wei ZL, Jia XB, Pang ST, An YQ, Gu JF, Feng L. Carthamus tinctorius L. Extract ameliorates cerebral ischemia-reperfusion injury in rats by regulating matrix metalloproteinases and apoptosis. Indian J Pharmacol 2020; 52:108-116. [PMID: 32565598 PMCID: PMC7282686 DOI: 10.4103/ijp.ijp_400_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/05/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
We investigate the protective effect of Carthamus tinctorius L. (CTL, also known as Honghua in China or Safflower) on cerebral ischemia-reperfusion and explored the possible mechanisms on regulating apoptosis and matrix metalloproteinases (MMPs). High-performance liquid chromatography method with diode array detection analysis was established to analyze the components of CTL. Middle cerebral artery occlusion rats model was established to evaluate Neurological Function Score and hematoxylin-eosin staining, as well as triphenyltetrazolium was used to examine the infarction area ratio. Transferase-mediated dUTP nick-end labeling was performed for the apoptosis. Apoptosis-related factors, including B-cell lymphoma-2 (Bcl-2), Bax and Caspase3, and MMPs-related MMP2, MMP9, tissue inhibitor of metalloproteinases 1 (TIMP1) in ischemic brain, were assayed by Western blot, reverse transcription polymerase chain reaction, and immunohistochemistry. The data showed that CTL (2, 4 g crude drug/kg/d) treatment could significantly reduce the ischemic damage in brain tissue and improve a significant neurological function score. In addition, CTL could also attenuate apoptosis degree of brain tissues and regulate Bcl-2, Bax, and Caspase 3 and also have a significant decrease on MMP-9 expression, followed by a significant increase of TIMP1 protein expression. These findings indicated that regulation of CTL on apoptosis and MMPs contributed to its protective effect on ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Li-Li Chang
- School of Animal Engineering, Xuzhou Vocational College of Bioengineering, Xuzhou, China
| | - Chao Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China.,Jumpcan Pharmaceutical Co., Ltd, Jiangsu Taixing, Nanjing, China
| | - Zhi-Li Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China.,College of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zi-Lun Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiao-Bin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China
| | - Shi-Ting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China
| | - Yi-Qiang An
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Fei Gu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Jiangsu Taixing, Nanjing, China.,Jumpcan Pharmaceutical Co., Ltd, Jiangsu Taixing, Nanjing, China.,College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Salam A, Kamran S, Bibi R, Korashy HM, Parray A, Mannai AA, Ansari AA, Kanikicharla KK, Gashi AZ, Shuaib A. Meteorological Factors and Seasonal Stroke Rates: A Four-year Comprehensive Study. J Stroke Cerebrovasc Dis 2019; 28:2324-2331. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/05/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022] Open
|