1
|
Tolue Ghasaban F, Moghbeli M. Long non-coding RNAs as the pivotal regulators of epithelial mesenchymal transition through WNT/β-catenin signaling pathway in tumor cells. Pathol Res Pract 2024; 263:155683. [PMID: 39471528 DOI: 10.1016/j.prp.2024.155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Tumor cell invasion is considered as one of the main therapeutic challenges in cancer patients, which leads to distant metastasis and reduced prognosis. Therefore, investigation of the factors involved in tumor cell invasion improves the therapeutic methods to reduce tumor metastasis. Epithelial-mesenchymal transition (EMT) process has a pivotal role in tumor cell invasion and metastasis, during which tumor cells gain the invasive ability by losing epithelial characteristics and acquiring mesenchymal characteristics. WNT/β-catenin signaling pathway has a key role in tumor cell invasion by regulation of EMT process. Long non-coding RNAs (lncRNAs) have also an important role in EMT process through the regulation of WNT/β-catenin pathway. Deregulation of lncRNAs is associated with tumor metastasis in different tumor types. Therefore, in the present review, we investigated the role of lncRNAs in EMT process and tumor cell invasion through the regulation of WNT/β-catenin pathway. It has been reported that lncRNAs mainly induced the EMT process and tumor cell invasion through the activation of WNT/β-catenin pathway. LncRNAs that regulate the WNT/β-catenin mediated EMT process can be introduced as the prognostic markers as well as suitable therapeutic targets to reduce the tumor metastasis in cancer patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Lin NC, Hsia SM, Vu Nguyen TH, Wang TH, Sun KT, Chiu KC, Shih YH, Shieh TM. The association between the expression level of nuclear paraspeckle assembly transcript 1 and the survival rate of head and neck cancer patients after treatment. J Dent Sci 2024; 19:2074-2081. [PMID: 39347098 PMCID: PMC11437243 DOI: 10.1016/j.jds.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose The long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exhibits diverse and complicated functions in cancer progression. Despite reports suggesting both tumor-suppressive and oncogenic effects in various cancers, its specific role in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study aimed to investigate the association between NEAT1 expression levels and survival outcomes in HNSCC patients. Materials and methods Paired tissue samples of tumor and non-cancerous matching tissues (NCMT) from 92 HNSCC patients were collected. NEAT1 expression was analyzed using RT-qPCR. Clinical characteristics, treatment received, and survival rates of the patients were assessed to determine the correlation with NEAT1 expression and explore its association with alcohol, betel quid, and cigarette use. Additionally, we examined the effect of arecoline on NEAT1 expression in normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). Results The study revealed a significant downregulation of NEAT1 expression in oral cancer tissues compared to NCMT. Meanwhile, arecoline increased NEAT1 expression in NHOK and NHOF cells. However, patients with downregulated NEAT1 expression exhibited higher overall survival rates, particularly in those who did not receive chemotherapy or radiotherapy. Conclusion NEAT1 expression levels are associated with survival outcomes in HNSCC patients, with upregulated expression indicating a worse prognosis, suggesting this lncRNA might contribute to cancer aggressiveness, especially in the absence of active treatment. These findings indicate NEAT1 may serve as a potential prognostic biomarker in HNSCC, but further research is required to elucidate its role in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Nan-Chin Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Thanh-Hien Vu Nguyen
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Ting Sun
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung, Taiwan
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Su M, Liang Z, Shan S, Gao Y, He L, Liu X, Wang A, Wang H, Cai H. Long non-coding RNA NEAT1 promotes aerobic glycolysis and progression of cervical cancer through WNT/β-catenin/PDK1 axis. Cancer Med 2024; 13:e7221. [PMID: 38733179 PMCID: PMC11087816 DOI: 10.1002/cam4.7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, β-catenin and downstream molecules of the WNT/β-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/β-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of β-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the β-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by β-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/β-catenin/PDK1 signaling axis.
Collapse
Affiliation(s)
- Min Su
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Shidong Shan
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Department of Urology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Li He
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Department of Radiation and Medical Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
| | - Xuelian Liu
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| |
Collapse
|
4
|
Almalki WH. NEAT1 in inflammatory infectious diseases: An integrated perspective on molecular modulation. Pathol Res Pract 2024; 254:154956. [PMID: 38218038 DOI: 10.1016/j.prp.2023.154956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The long non-coding RNA (lncRNA), NEAT1, has emerged as a central figure in the intricate network of molecular regulators in inflammatory infectious diseases (IIDs). The review initiates a comprehensive exploration of NEAT1's multifaceted roles and molecular interactions in the context of these complex diseases. The study begins by acknowledging the global health burden of IIDs, underscoring the urgency for innovative insights into their pathogenesis and therapeutic avenues. NEAT1 is introduced as a pivotal lncRNA with growing relevance in immune responses and inflammatory processes. The core of this review unravels the NEAT1 landscape, elucidating its involvement in the modulation of immune signalling pathways, regulation of inflammatory cytokines, and interactions with various immune cells during infection. It explores NEAT1's role in orchestrating immune responses and balancing host defence mechanisms with the risk of immunopathology. Furthermore, the review underscores the clinical significance of NEAT1 in infectious diseases, discussing its associations with disease severity, prognosis, and potential as a diagnostic and therapeutic target. It provides insights into ongoing research endeavours aimed at harnessing NEAT1 for innovative disease management strategies, including developing RNA-based therapeutics. Concluding on a forward-looking note, the review highlights the broader implications of NEAT1 in the context of emerging infectious diseases and the possibility for precision medicine approaches that leverage NEAT1's regulatory capacities. In summary, this review illuminates the pivotal role of NEAT1 in IIDs by navigating its complex landscape, offering profound insights into its implications for disease pathogenesis and the development of targeted therapies.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
5
|
Zhou Z, Zheng K, Zhou S, Yang Y, Chen J, Jin X. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies. J Mol Med (Berl) 2023; 101:1543-1565. [PMID: 37796337 DOI: 10.1007/s00109-023-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common squamous cell carcinomas of the head and neck, and Epstein-Barr virus (EBV) infection is one of the pathogenic factors involved in the oncogenetic development and progression of NPC. E3 ligases, which are key members of the ubiquitin proteasome system (UPS), specifically recognize various oncogenic factors and tumor suppressors and contribute to determining their fate through ubiquitination. Several studies have demonstrated that E3 ligases are aberrantly expressed and mutated in NPC and that these changes are closely associated with the occurrence and progression of NPC. Herein, we aim to thoroughly review the specific action mechanisms by which E3 ligases participate in NPC signaling pathways and discuss their functional relationship with EBV. Moreover, we describe the current progress in and limitations for targeted therapies against E3 ligases in NPC. KEY MESSAGES: • E3 ubiquitin ligases, as members of the UPS system, determine the fate of their substrates and may act either as oncogenic or anti-tumorigenic factors in NPC. • Mutations or dysregulated expression of E3 ubiquitin ligases is closely related to the occurrence, development, and therapeutic sensitivity of NPC, as they play important roles in several signaling pathways affected by EBV infection. • As promising therapeutic targets, E3 ligases may open new avenues for treatment and for improving the prognosis of NPC patients.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Shao Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China
| | - Youxiong Yang
- Department of Otolaryngology-Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo, 315199, China.
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Sajeev A, BharathwajChetty B, Vishwa R, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Crosstalk between Non-Coding RNAs and Wnt/β-Catenin Signaling in Head and Neck Cancer: Identification of Novel Biomarkers and Therapeutic Agents. Noncoding RNA 2023; 9:63. [PMID: 37888209 PMCID: PMC10610319 DOI: 10.3390/ncrna9050063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Head and neck cancers (HNC) encompass a broad spectrum of neoplastic disorders characterized by significant morbidity and mortality. While contemporary therapeutic interventions offer promise, challenges persist due to tumor recurrence and metastasis. Central to HNC pathogenesis is the aberration in numerous signaling cascades. Prominently, the Wnt signaling pathway has been critically implicated in the etiology of HNC, as supported by a plethora of research. Equally important, variations in the expression of non-coding RNAs (ncRNAs) have been identified to modulate key cancer phenotypes such as cellular proliferation, epithelial-mesenchymal transition, metastatic potential, recurrence, and treatment resistance. This review aims to provide an exhaustive insight into the multifaceted influence of ncRNAs on HNC, with specific emphasis on their interactions with the Wnt/β-catenin (WBC) signaling axis. We further delineate the effect of ncRNAs in either exacerbating or attenuating HNC progression via interference with WBC signaling. An overview of the mechanisms underlying the interplay between ncRNAs and WBC signaling is also presented. In addition, we described the potential of various ncRNAs in enhancing the efficacy of chemotherapeutic and radiotherapeutic modalities. In summary, this assessment posits the potential of ncRNAs as therapeutic agents targeting the WBC signaling pathway in HNC management.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India; (A.S.); (B.B.); (R.V.)
| |
Collapse
|
7
|
Saklani N, Chauhan V, Akhtar J, Upadhyay SK, Sirdeshmukh R, Gautam P. In silico analysis to identify novel ceRNA regulatory axes associated with gallbladder cancer. Front Genet 2023; 14:1107614. [PMID: 36873948 PMCID: PMC9978489 DOI: 10.3389/fgene.2023.1107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Competitive endogenous RNA (ceRNA) networks are reported to play a crucial role in regulating cancer-associated genes. Identification of novel ceRNA networks in gallbladder cancer (GBC) may improve the understanding of its pathogenesis and might yield useful leads on potential therapeutic targets for GBC. For this, a literature survey was done to identify differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs) and proteins (DEPs) in GBC. Ingenuity pathway analysis (IPA) using DEMs, DEGs and DEPs in GBC identified 242 experimentally observed miRNA-mRNA interactions with 183 miRNA targets, of these 9 (CDX2, MTDH, TAGLN, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA) were reported at both mRNA and protein levels. Pathway analysis of 183 targets revealed p53 signaling among the top pathway. Protein-protein interaction (PPI) analysis of 183 targets using the STRING database and cytoHubba plug-in of Cytoscape software revealed 5 hub molecules, of which 3 of them (TP53, CCND1 and CTNNB1) were associated with the p53 signaling pathway. Further, using Diana tools and Cytoscape software, novel lncRNA-miRNA-mRNA networks regulating the expression of TP53, CCND1, CTNNB1, CDX2, MTDH, TOP2A, TSPAN8, EZH2, TAGLN2, LMNB1, and PTMA were constructed. These regulatory networks may be experimentally validated in GBC and explored for therapeutic applications.
Collapse
Affiliation(s)
- Neeraj Saklani
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Varnit Chauhan
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| | - Santosh Kumar Upadhyay
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital, Uttarakhand, India
| | - Ravi Sirdeshmukh
- Manipal Academy of Higher Education (MAHE), Manipal, India.,Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, New Delhi, India
| |
Collapse
|
8
|
De Palma FDE, Carbonnier V, Salvatore F, Kroemer G, Pol JG, Maiuri MC. Systematic Investigation of the Diagnostic and Prognostic Impact of LINC01087 in Human Cancers. Cancers (Basel) 2022; 14:cancers14235980. [PMID: 36497462 PMCID: PMC9738797 DOI: 10.3390/cancers14235980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Vincent Carbonnier
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Napoli, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e Loro Modelli Animali (Federico II, 80131, Napoli, Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), 80131 Napoli, Italy
| | - Guido Kroemer
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, 75004 Paris, France
| | - Jonathan G. Pol
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, 80131 Napoli, Italy
- Équipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Inserm U1138, Université Paris Cité, Sorbonne Université, Institut Universitaire de France, 75005 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
- Correspondence: (J.G.P.); (M.C.M.)
| |
Collapse
|
9
|
Zhang T, Jin Y, Luo X. Long non-coding RNA RGMB-AS1 represses nasopharyngeal carcinoma progression via binding to forkhead box A1. Bioengineered 2022; 13:5564-5580. [PMID: 35184697 PMCID: PMC8973592 DOI: 10.1080/21655979.2022.2039495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Long non-coding RNA RGMB-AS1 (RGMB antisense RNA 1) plays a crucial role in tumor progression. However, its underlying mechanism in nasopharyngeal carcinoma (NPC) remains unclear. In this study, we analyzed the clinical significance of lncRNA RGMB-AS1 as a possible potential marker in NPC, and investigated the effect and mechanism of lncRNA RGMB-AS1 on proliferation, migration and epithelial mesenchymal transformation (EMT) of NPC by directly binding Forkhead box A1 (FOXA1) in vitro and in vivo. In conclusion, LncRNA RGMB-AS1 inhibits malignant behaviors and EMT by regulating FOXA1, and lncRNA RGMB-AS1 may be an important indicator of clinical prognosis.
Collapse
Affiliation(s)
- Tian Zhang
- Department of ENT and HN Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Ying Jin
- Department of ENT and HN Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Xiangmei Luo
- Department of ENT and HN Surgery, Central People’s Hospital of ZhanJiang, ZhanJiang, PR China
| |
Collapse
|
10
|
Zhou H, Wang Y, Liu Z, Zhang Z, Xiong L, Wen Y. Recent advances of NEAT1-miRNA interactions in cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:153-162. [PMID: 35538025 PMCID: PMC9827865 DOI: 10.3724/abbs.2021022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
With high incidence rate, cancer is the main cause of death in humans. Non-coding RNAs, as novel master regulators, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play important roles in the regulation of tumorigenesis. lncRNA NEAT1 has recently gained much attention, as it is dysregulated in a broad spectrum of cancers, where it acts as either an oncogene or a tumor suppressor gene. Accumulating evidence shows that NEAT1 is correlated with the process of carcinogenesis, including proliferation, invasion, survival, drug resistance, and metastasis. NEAT1 is considered to be a biomarker and a novel therapeutic target for the diagnosis and prognosis of different cancer types. The mechanisms by which NEAT1 plays a critical role in cancers are mainly via interactions with miRNAs. NEAT1-miRNA regulatory networks play significant roles in tumorigenesis, which has attracted much attention from researchers around the world. In this review, we summarize the interaction of NEAT1 with miRNAs in the regulation of protein-coding genes in cancer. A better understanding of the NEAT1-miRNA interactions in cancer will help develop new diagnostic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wen
- Correspondence address. Tel: +86-731-85294099; E-mail:
| |
Collapse
|
11
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. ceRNA Network of lncRNA/miRNA as Circulating Prognostic Biomarkers in Non-Hodgkin Lymphomas: Bioinformatic Analysis and Assessment of Their Prognostic Value in an NHL Cohort. Int J Mol Sci 2021; 23:ijms23010201. [PMID: 35008626 PMCID: PMC8745130 DOI: 10.3390/ijms23010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Research has been focusing on identifying novel biomarkers to better stratify non-Hodgkin lymphoma patients based on prognosis. Studies have demonstrated that lncRNAs act as miRNA sponges, creating ceRNA networks to regulate mRNA expression, and its deregulation is associated with lymphoma development. This study aimed to identify novel circulating prognostic biomarkers based on miRNA/lncRNA-associated ceRNA network for NHL. Herein, bioinformatic analysis was performed to construct ceRNA networks for hsa-miR-150-5p and hsa-miR335-5p. Then, the prognostic value of the miRNA–lncRNA pairs’ plasma levels was assessed in a cohort of 113 NHL patients. Bioinformatic analysis identified MALAT1 and NEAT1 as hsa-miR-150-5p and has-miR-335-5p sponges, respectively. Plasma hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 levels were significantly associated with more aggressive and advanced disease. The overall survival and progression-free survival analysis indicated that hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 pairs’ plasma levels were remarkably associated with NHL patients’ prognosis, being independent prognostic factors in a multivariate Cox analysis. Low levels of hsa-miR-150-5p and hsa-miR-335-5p combined with high levels of the respective lncRNA pair were associated with poor prognosis of NHL patients. Overall, the analysis of ceRNA network expression levels may be a useful prognostic biomarker for NHL patients and could identify patients who could benefit from more intensive treatments.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cohort Studies
- Computational Biology
- Disease-Free Survival
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Lymphoma, Non-Hodgkin/blood
- Lymphoma, Non-Hodgkin/genetics
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Prognosis
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5414)
| |
Collapse
|
13
|
Yuan T, Shi C, Xu W, Yang HL, Xia B, Tian C. Extracellular vesicles derived from T-cell acute lymphoblastic leukemia inhibit osteogenic differentiation of bone marrow mesenchymal stem cells via miR-34a-5p. Endocr J 2021; 68:1197-1208. [PMID: 34039781 DOI: 10.1507/endocrj.ej21-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reduced bone formation in patients with T-cell acute lymphoblastic leukemia (T-ALL) may be related to the interaction between tumour cells and bone marrow stromal cells (BMSCs). The miRNAs in extracellular vesicles derived from leukemia cells play an essential role in regulating the function of BMSCs; however, the regulatory mechanisms remain unclear. The expression of miR-34a-5p in T-ALL patients and cells was measured by quantitative real-time PCR. BMSCs were co-cultured with extracellular vesicles isolated from T-ALL cells in mineralization medium. The osteogenic differentiation of BMSCs was evaluated by Alizarin Red S staining, alkaline phosphatase (ALP) staining, and detection of osteogenic differentiation markers. A dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-34a-5p and Wnt family member 1 (WNT1). MiR-34a-5p expression was upregulated in T-ALL patients and Jurkat cells. After BMSCs were co-cultured with extracellular vesicles derived from T-ALL cells, osteogenic differentiation of BMSCs was inhibited, and bone mineralization and ALP activity were decreased compared to those of control cells. MiR-34a-5p knockdown in T-ALL cells restored osteogenic differentiation of BMSCs co-cultured with extracellular vesicles. In addition, miR-34a-5p targets and negatively regulates WNT1 expression. In conclusion, our results demonstrated that knockdown of miR-34a-5p in extracellular vesicles derived from T-ALL cells promoted osteogenic differentiation of BMSCs by regulating WNT1.
Collapse
Affiliation(s)
- Tian Yuan
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ce Shi
- Central Laboratory of Hematology and Oncology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, P.R. China
| | - Wen Xu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hong-Liang Yang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Bing Xia
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chen Tian
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
14
|
The Role of Long Non-coding RNA, Nuclear Enriched Abundant Transcript 1 (NEAT1) in Cancer and Other Pathologies. Biochem Genet 2021; 60:843-867. [PMID: 34689290 DOI: 10.1007/s10528-021-10138-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
Nuclear enriched abundant transcript 1 (NEAT1), consisting of two kinds of lncRNAs of 3.7 kB NEAT1-1 and 23 kB NEAT1-2, can be highly expressed in organs and tissues such as the ovary, prostate, colon, and pancreas, and is involved in paraspeckle formation and mRNA editing and gene expression. Therefore, NEAT1 is a potential biomarker for the treatment of a variety of diseases, which may be caused by two factors (isoforms of NEAT1 and NEAT1 sponging miRNA as ceRNA). However, there is still much confusion about the mechanism and downstream effector between the abnormal expression of NEAT1 and various diseases. This review summarizes recent research progress on NEAT1 in cancer and other pathologies and provides a more reliable theoretical basis for the treatment of related diseases.
Collapse
|
15
|
Li K, Yao T, Zhang Y, Li W, Wang Z. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential. Int J Biol Sci 2021; 17:3428-3440. [PMID: 34512157 PMCID: PMC8416723 DOI: 10.7150/ijbs.62728] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA (lncRNA) that is upregulated in a variety of human cancer types. Increasing evidence has shown that the elevation of NEAT1 in cancer cells promotes cell growth, migration, and invasion and inhibits cell apoptosis. It is also known that lncRNAs act as a competing endogenous RNA (ceRNA) by sponging microRNAs (miRNAs) to alter the expression levels of their target genes in the development of cancers. Therefore, it is important to understand the molecular mechanisms underlying this observation. In this review, specific emphasis was placed on NEAT1's role in tumor development. We also summarize and discuss the feedback roles of NEAT1/miRNA/target network in the progression of various cancers. As our understanding of the role of NEAT1 during tumorigenesis improves, its therapeutic potential as a biomarker and/or target for cancer also becomes clearer.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Tongyue Yao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wen Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
16
|
Jiang S, Liu H, Zhang J, Zhang F, Fan J, Liu Y. MMP1 regulated by NEAT1/miR-361-5p axis facilitates the proliferation and migration of cutaneous squamous cell carcinoma via the activation of Wnt pathway. Cancer Biol Ther 2021; 22:381-391. [PMID: 34369270 DOI: 10.1080/15384047.2021.1941583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most malignant tumors worldwide. It has been validated that matrix metallopeptidase 1 (MMP1) expression was obviously up-regulated in CSCC tissues. However, its specific role in CSCC is still unclear. RT-qPCR analysis and western blot assays were used to measure the mRNA and protein expressions, respectively. MTT and colony formation assays were conducted to assess proliferative ability. Transwell assays were adopted to evaluate migratory and invasive abilities. Flow cytometry and caspase-3/8/9 activity assays were carried out to evaluate cell apoptosis. Relevant mechanism experiments were finally performed to delineate molecular relationship among genes. We found that the expression of MMP1 was up-regulated in CSCC cells, and knockdown of MMP1 suppressed cell proliferation and invasion in CSCC. Subsequently, miR-361-5p was validated to target MMP1. Moreover, miR-361-5p was proved to be sponged by nuclear paraspeckle assembly transcript 1 (NEAT1) in CSCC. We further demonstrated that NEAT1 could activate Wnt pathway to affect cell proliferation and invasion. Finally, miR-361-5p inhibition rescued the suppressing effects of NEAT1 depletion on cell proliferation, invasion as well as Wnt pathway in CSCC. In summary, MMP1 regulated by NEAT1/miR-361-5p axis facilitated CSCC malignant behaviors via Wnt pathway activation.
Collapse
Affiliation(s)
- Shiqiu Jiang
- Department of Cosmetic Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hairong Liu
- Department of Research Center, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Zhang
- Department of Cosmetic Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiawei Fan
- Department of Basic Medical College, Chengdu Medical College, Chengdu, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, Guangdong, China
| |
Collapse
|
17
|
Zhang S, Wang B, Zheng L, Fu Z, Fu Y, Huang W, Cheng A. Advances in research on microRNAs related to the invasion and metastasis of nasopharyngeal carcinoma. Curr Mol Pharmacol 2021; 15:463-474. [PMID: 34126919 DOI: 10.2174/1874467214666210614150720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC), which is associated with latent Epstein-Barr virus infection in most cases, is a unique epithelial malignancy arising from the nasopharyngeal mucosal lining. Accumulating evidence provides insights into the genetic and molecular aberrations that likely drive nasopharyngeal tumor development and progression. We review recent analyses of microRNAs (miRNAs), including Epstein-Barr virus-encoded miRNAs (EBV-encoded miRNAs) and dysregulated cellular miRNAs, that may be related to the metastasis of nasopharyngeal carcinoma. The studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC involving miRNAs, and they may provide new biological targets for clinical diagnosis and reveal the potential of microRNA therapeutics. However, much information remains to be uncovered.
Collapse
Affiliation(s)
- ShanShan Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - BaiQi Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - LuLu Zheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - ZhuQiong Fu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - YiTing Fu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - WeiGuo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - AiLan Cheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
18
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
19
|
Zhou L, Xu XL. Long Non-Coding RNA ARAP1-AS1 Facilitates the Progression of Cervical Cancer by Regulating miR-149-3p and POU2F2. Pathobiology 2021; 88:301-312. [PMID: 33965958 DOI: 10.1159/000507830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. METHODS Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. RESULTS The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. CONCLUSION ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Obstetrics and Gynecology, Liyang People's Hospital, Liyang, China
| | - Xiao-Li Xu
- Department of Obstetrics and Gynecology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Suzhou University), Changzhou, China
| |
Collapse
|
20
|
Down-regulating NEAT1 inhibited the viability and vasculogenic mimicry formation of sinonasal squamous cell carcinoma cells via miR-195-5p/VEGFA axis. Biosci Rep 2021; 40:226895. [PMID: 33146672 PMCID: PMC7677827 DOI: 10.1042/bsr20201373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
The role of long non-coding RNA nuclear-enriched abundant transcript 1 (lncRNA NEAT1) in sinonasal squamous cell carcinoma (SNSCC) remained obscure. Target genes and potential binding sites of NEAT1, microRNA (miR)-195-5p and VEGFA were predicted using StarBase and TargetScan, and confirmed by dual-luciferase reporter assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expressions of NEAT1, vascular endothelial growth factor A (VEGFA) and miR-195-5p. Pearson's correlation analysis of NEAT1, miR-195-5p and VEGFA was conducted. Cell viability, apoptosis and tube formation capability were assessed by MTT assay, flow cytometry and capillary-like tube formation assay, respectively. Expressions of VEGFA and proteins related to the phosphatidylinositide 3-kinase/Protein Kinase B (PI3K/AKT) pathway were measured by Western blot. In SNSCC tissues and cells, the expressions of NEAT1 and VEGFA were up-regulated while the expression of miR-195-5p was down-regulated, and NEAT1 was negatively correlated with miR-195-5p yet positively correlated with VEGFA. Overexpressed VEGFA promoted the viability and capillary-like tube formation of SNSCC cells yet suppressed their apoptosis, while silencing VEGFA led to the opposite results. MiR-195-5p could bind to NEAT1, and down-regulating miR-195-5p reversed the effects of silencing NEAT1 on the expressions of NEAT1 and miR-195-5p, cell viability, apoptosis and capillary-like tube formation as well as PI3K/AKT pathway activation. VEGFA was the target of miR-195-5p, and overexpressed VEGFA reversed the effects of miR-195-5p. Down-regulating NEAT1 inhibited the viability and vasculogenic mimicry formation of SNSCC cells yet promoted their apoptosis via the miR-195-5p/VEGFA axis, providing a possible therapeutic target for SNSCC treatment.
Collapse
|
21
|
Ming H, Li B, Zhou L, Goel A, Huang C. Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochim Biophys Acta Rev Cancer 2021; 1875:188519. [PMID: 33548345 DOI: 10.1016/j.bbcan.2021.188519] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cancer metastasis, defined by the epithelial to mesenchymal transition (EMT) of tumor cells, disseminates from the primary site to progressively colonize in distant tissues, and accounts for most cancer-associated deaths. However, studies on the molecular basis of cancer metastasis are still in their infancy. Besides genetic mutations, accumulating evidence indicates that epigenetic alterations also contribute in a major way to the refractory nature of cancer metastasis. Considered as one of the essential epigenetic regulators, long non-coding RNAs (lncRNAs) can act as signaling regulators, decoys, guides and scaffolds, modulating key molecules in every step of cancer metastasis including dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Although still having limited clinical application, it is encouraging to witness that several lncRNAs, including CCAT1 and HOTAIR, are under clinical evaluation as potential biomarkers for cancer staging and assessment of metastatic potential. In this review, we focus on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis and discuss their clinical potential as novel therapeutic targets as well as their diagnostic and prognostic significance for cancer treatment. Gaining clear insights into the detailed molecular basis underlying lncRNA-modulated cancer metastasis may provide previously unrecognized diagnostic and therapeutic strategies for metastatic patients.
Collapse
Affiliation(s)
- Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, 1218 S. Fifth Avenue, Suite 2226, Biomedical Research Center, Monrovia, CA 91016, USA.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
22
|
Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis 2021; 12:17. [PMID: 33414456 PMCID: PMC7791039 DOI: 10.1038/s41419-020-03327-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The epithelial-mesenchymal transition (EMT) plays a pivotal role in the differentiation of vertebrates and is critically important in tumorigenesis. Using this evolutionarily conserved mechanism, cancer cells become drug-resistant and acquire the ability to escape the cytotoxic effect of anti-cancer drugs. In addition, these cells gain invasive features and increased mobility thereby promoting metastases. In this respect, the process of EMT is critical for dissemination of solid tumors including breast cancer. It has been shown that miRNAs are instrumental for the regulation of EMT, where they play both positive and negative roles often as a part of a feed-back loop. Recent studies have highlighted a novel association of p53 and EMT where the mutation status of p53 is critically important for the outcome of this process. Interestingly, p53 has been shown to mediate its effects via the miRNA-dependent mechanism that targets master-regulators of EMT, such as Zeb1/2, Snail, Slug, and Twist1. This regulation often involves interactions of miRNAs with lncRNAs. In this review, we present a detailed overview of miRNA/lncRNA-dependent mechanisms that control interplay between p53 and master-regulators of EMT and their importance for breast cancer.
Collapse
|
23
|
Huang D, Zhu X, Wang Y, Yu H, Pu Y. Long non-coding RNA FAM133B-2 represses the radio-resistance of nasopharyngeal cancer cells by targeting miR-34a-5p/CDK6 axis. Aging (Albany NY) 2020; 12:16936-16950. [PMID: 32889799 PMCID: PMC7521541 DOI: 10.18632/aging.103600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play roles in various cancers, including nasopharyngeal carcinoma. In this study, we focused on the biological function of the lncRNA FAM133B-2 in the radio-resistance of nasopharyngeal carcinoma. The RNA-seq and qRT-PCR analysis showed that FAM133B-2 is highly expressed in the radio-resistant nasopharyngeal carcinoma cells. The following biochemical assays showed that FAM133B-2 represses the nasopharyngeal carcinoma radio-resistance and also affects the apoptosis and proliferation of nasopharyngeal carcinoma cells. Further investigations suggested that miR-34a-5p targets FAM133B-2 and also regulates the cyclin-dependent kinase 6 (CDK6). All these results suggested that the lncRNA FAM133B-2 might function as a competitive endogenous RNA (ceRNA) for miR-34a-5p in nasopharyngeal carcinoma radio-resistance, thus it may be regarded as a novel prognostic biomarker and therapeutic target in nasopharyngeal carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Dabing Huang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Xianhai Zhu
- Department of Interventional Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Yong Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Haobin Yu
- Department of Cancer Nutrition and Metabolic Therapy, No.3 Ward of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| |
Collapse
|
24
|
Xu C, Zhai J, Fu Y. Overexpression of Nuclear Enriched Autosomal Transcript 1 Facilitates Cell Proliferation, Migration Invasion, and Suppresses Apoptosis in Endometrial Cancer by Targeting MicroRNA-202-3p/T Cell Immunoglobulin and Mucin Domain 4 Axis. Cancer Biother Radiopharm 2020; 37:815-823. [PMID: 32882142 DOI: 10.1089/cbr.2020.3902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Endometrial cancer (EC) is an intractable gynecological cancer with increasing incidence and mortality worldwide. Accumulating studies indicated that long noncoding RNA nuclear enriched autosomal transcript 1 (NEAT1) was a novel oncogene implicated in a variety of cancers. However, whether NEAT1 could accelerate cell growth in EC is unclear. Methods: NEAT1, microRNA (miR)-202-3p, and T cell immunoglobulin and mucin domain 4 (TIMD4) levels were detected by quantitative real-time polymerase chain reaction. Cell proliferation and apoptosis were examined by cell counting kit-8 and flow cytometry. Transwell assay was employed for the evaluation of cell migration and invasion. The relationship between miR-202-3p and NEAT1 or TIMD4 was determined by luciferase reporter system. TIMD4 protein expression was assessed by Western blot assay. Results: NEAT1 was upregulated, whereas miR-202-3p was downregulated in EC tumors and cells. Depletion of NEAT1 restrained EC cell proliferation, migration, invasion, and improved apoptosis. MiR-202-3p was targeted by NEAT1 and could bind to TIMD4. Subsequently, it is observed that miR-202-3p inhibitor neutralized NEAT1 silencing mediated suppression on EC cell progression. Meanwhile, TIMD4 rescued miR-202-3p induced inhibition on cell progression in EC. Furthermore, it was obvious that NEAT1 facilitated TIMD4 expression by absorbing miR-202-3p in EC. Conclusions: Upregulation of NEAT1 accelerated EC cell progression through sponging miR-202-3p to facilitate TIMD4 expression, providing potential novel treatment method for EC.
Collapse
Affiliation(s)
- Caiyan Xu
- Department of Gynecologic and Obstetric, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jianjun Zhai
- Department of Gynecologic and Obstetric, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujing Fu
- Department of Gynecologic and Obstetric, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Jiang C, Cheng Z, Jiang T, Xu Y, Wang B. MicroRNA-34a inhibits cell invasion and epithelial-mesenchymal transition via targeting AXL/PI3K/AKT/Snail signaling in nasopharyngeal carcinoma. Genes Genomics 2020; 42:971-978. [PMID: 32648233 DOI: 10.1007/s13258-020-00963-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/29/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND MicroRNA-34a (miR-34a) has been reported to inhibit TGF-β (transforming growth factor-β)-induced epithelial-mesenchymal transition (EMT) in nasopharyngeal carcinoma (NPC). However, the underlying mechanism remain unclear. Using the bioinformatics, we found that the AXL receptor tyrosine kinase (AXL) is a predicted target of miR-34a. OBJECTIVE we aimed to reveal the relationship between miR-34a and AXL, and investigate the effect and mechanism of miR-34a in NPC progression. METHODS The expression patterns of miR-34a and AXL in 30 paired NPC tissues and the adjacent tissues were examined by quantitative real time PCR (qRT-PCR). The target relationship between miR-34a and AXL was evaluated by the luciferase gene reporter assay. Cell migration and invasion were assessed by wound healing and transwell chamber assays, respectively. RESULTS miR-34a level was dramatically decreased in the NPC tissues compared to the adjacent tissues, while AXL expression was increased. Overexpression of miR-34a significantly reduced the luciferase activity of the luciferase vector of AXL (pGL3-AXL-WT), whereas this effect was abrogated when binding sites between miR-34a and AXL were mutated. In addition, ectopic expression of miR-34a dramatically inhibited Sune-1 cell migration and invasion abilities, decreased the levels of N-cadherin and Vimentin and increased E-cadherin and γ-catenin expressions, as well as induced significant reductions in the expressions of p-AKT and Snail. However, these effects were attenuated when the cells were treated with recombinant human AXL protein. CONCLUSIONS Our results demonstrate that miR-34a/AXL can inhibit NPC cell migration, invasion and EMT through inhibition of AKT/Snail signaling.
Collapse
Affiliation(s)
- Chengyi Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China.
| | - Zhongqiang Cheng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| | - Tao Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| | - Yajia Xu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| | - Bin Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu City, 233004, Anhui Province, China
| |
Collapse
|
26
|
Zhao L, Bi M, Zhang H, Shi M. Downregulation of NEAT1 Suppresses Cell Proliferation, Migration, and Invasion in NSCLC Via Sponging miR-153-3p. Cancer Biother Radiopharm 2020; 35:362-370. [PMID: 32380843 DOI: 10.1089/cbr.2019.3119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to play a promotive role in nonsmall cell lung cancer (NSCLC) progression through microRNAs (miRNAs). However, the exact influence and mechanism of NEAT1 were unsatisfied. Methods: Quantitative real-time polymerase chain reaction was applied to examine the expression of NEAT1 and miR-153-3p. The cell proliferation ability, apoptosis rate, migration, and invasion were measured by Cell Counting Kit-8 (CCK8) assay, flow cytometry, and transwell assay, respectively. The epithelial-mesenchymal transition process and Wnt/β-catenin signaling pathway were verified by Western blot. The interaction between NEAT1 and miR-153-3p was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. Results: These data showed that NEAT1 is highly expressed in NSCLC tissues and cell lines. Knockdown of NEAT1 suppresses cell proliferation, invasion, migration, and induces the cell apoptosis in NSCLC cell lines. At the same time, NEAT1 directly interacts with miR-153-3p in NSCLC. In addition, upregulation of miR-153-3p inhibits the cell progression, and miR-153-3p inhibitor recovers the inhibition effect of si-NEAT1 in NSCLC cell lines. Subsequently, si-NEAT1 inhibits Wnt/β-catenin signaling pathway, which is reactivated by miR-153-3p inhibitor. Conclusions: Knockdown of NEAT1 could suppress cell proliferation, migration, and invasion of NSCLC while promoting cell apoptosis through sponging miR-153-3p.
Collapse
Affiliation(s)
- Lun Zhao
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Minghong Bi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Haoran Zhang
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mohan Shi
- Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
27
|
Shao K, Xi L, Cang Z, Chen C, Huang S. Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways. J Cell Physiol 2020; 235:9361-9369. [PMID: 32356340 DOI: 10.1002/jcp.29740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/21/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is complication resulted from Type 2 diabetes mellitus. Accumulating evidence has proved the functions of long noncoding RNAs (lncRNAs) in the progression of DR. Recent reports exert the numerous regulatory functions of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in various diseases. However, its implications in DR remain barely known. Therefore, this study was carried out to explore the role of NEAT1 in high-glucose (HG)-triggered injury of human retinal endothelial cells (hRECs). Here, we found the NEAT1 level was significantly elevated in patients with DR, in the retina of diabetic rats and mice. Meanwhile, hRECs under HG stimuli also exhibited an increase of NEAT1. Moreover, the loss of NEAT1 enhanced hRECs proliferation and repressed HG-induced apoptosis, which was accompanied by an upregulation of Bcl-2 and a downregulation of Bax. Subsequently, the knockdown of NEAT1 obviously reduced HG-triggered oxidative stress injury in hRECs. It was reflected that intracellular reactive oxygen species and malondialdehyde level induced by HG were repressed by NEAT1 downregulation, while superoxide dismutase activity was increased. In addition, decreased NEAT1 repressed the inflammatory processes effectively as indicated by the inactivation of inflammatory cytokines Cox-2, interleukin-6, and tumor necrosis factor-α. Furthermore, vascular endothelial growth factor A (VEGF) and transforming growth factor-β1 (TGF-β1) expression in patients with DR, DR rats, and HG-incubated hRECs was obviously increased. The silence of NEAT1 could reduce the enhanced expression of VEGF and TGF-β1 induced by HG. Hence, we concluded NEAT1 might contribute to the development of DR through activating TGF-β1 and VEGF.
Collapse
Affiliation(s)
- Kan Shao
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuqing Xi
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Cang
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai, China
| | - Shan Huang
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
MYC-regulated lncRNA NEAT1 promotes B cell proliferation and lymphomagenesis via the miR-34b-5p-GLI1 pathway in diffuse large B-cell lymphoma. Cancer Cell Int 2020; 20:87. [PMID: 32206038 PMCID: PMC7081629 DOI: 10.1186/s12935-020-1158-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/29/2020] [Indexed: 12/28/2022] Open
Abstract
Background LncRNA NEAT1 has been identified as a tumour driver in many human cancers. However, the underlying mechanism of lncRNA NEAT1 in diffuse large B-cell lymphoma (DLBCL) progression is unclear. Methods The expression levels of NEAT1, GLI1 and miR-34b-5p were detected by RT-qPCR and Western blotting in DLBCL tissues and cell lines. MTT and colony formation assays were performed to examine cell proliferation, while annexin-V staining and TUNEL assays were performed to measure cell apoptosis. The effect of NEAT1, GLI1 and miR-34b-5p on cell cycle-associated proteins was evaluated by Western blotting. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were employed to investigate the interaction between NEAT1 and miR-34b-5p or GLI1 and miR-34b-5p. Moreover, chromatin immunoprecipitation (ChIP) was performed to demonstrate the interaction between MYC and NEAT1. Results NEAT1 and GLI1 were upregulated while miR-34b-5p was downregulated in DLBCL tissues and cell lines compared to normal controls. Knockdown of NEAT1 or overexpression of miR-34b-5p inhibited cell proliferation but promoted cell apoptosis. Overexpression of NEAT1 reversed GLI1-knockdown induced attenuation of cell proliferation. In other words, NEAT1 acted as a competing endogenous RNA (ceRNA), regulating the miR-34b-5p-GLI1 axis, further affecting the proliferation of DLBCL. Moreover, MYC modulated NEAT1 transcription by directly binding to the NEAT1 promoter. Conclusion We revealed that MYC-regulated NEAT1 promoted DLBCL proliferation via the miR-34b-5p-GLI1 pathway, which could provide a novel therapeutic target for DLBCL.
Collapse
|
29
|
Han L, Li Z, Jiang Y, Jiang Z, Tang L. SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:345. [PMID: 31889897 PMCID: PMC6924063 DOI: 10.1186/s12935-019-1057-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background Glioblastoma has been seen as the most common malignancy of brain tumor. Emerging reports has claimed that SNHG29 (LRRC75A-AS1) was involved in several biological processes via modulation of signaling pathway, and served as an malignant facilitatorin osteosarcoma. However, the specific role of SNHG29 in glioblastoma remains unknown. Methods RT-qPCR and microarray were operated to measure genes expression. Western blot was performed to examine protein expression. CCK-8 and colony formation assays were used to evaluate cell proliferation. Cell migration was tested by transwell assay. Nuclear-cytoplasmic fractionation was conducted to locate SNHG29. The binding capacity of miR-223-3p to SNHG29 or CTNND1 3′UTR was verified by RIP and luciferase reporter assay. Results SNHG29 presented high expression in glioblastoma to boost cell proliferation, migration and EMT process. In addition, miR-223-3p was validated to bind with SNHG29 after prediction and screening. Furthermore, miR-223-3p was proved to be a negative regulator for its target CTNND1. Then, the inhibition on cell proliferation, migration and EMT process resulted from SNHG29 knockdown was recovered by CTNND1 overexpression. At last, the inhibitive impacts on cell proliferation, migration and EMT process of CTNND1 deficiency was abrogated by LiCl. Conclusions In conclusion, SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/β-catenin signaling pathway, offering a potential therapeutic point for glioblastoma patients.
Collapse
Affiliation(s)
- Lizhang Han
- 1Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua West Road, Lixia District, Jinan, 250012 Shandong People's Republic of China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, People's Republic of China
| | - Zhonggang Li
- 3Department of Neurosurgery, Linyi People's Hospital, 27 Jiefang Road East Section, Lanshan District, Linyi, Shandong China
| | - Yuquan Jiang
- 1Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua West Road, Lixia District, Jinan, 250012 Shandong People's Republic of China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, People's Republic of China
| | - Zheng Jiang
- 1Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua West Road, Lixia District, Jinan, 250012 Shandong People's Republic of China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, People's Republic of China
| | - Ling Tang
- 4Department of Pediatrics, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 People's Republic of China
| |
Collapse
|
30
|
Li YF, Zhang J, Yu L. Circular RNAs Regulate Cancer Onset and Progression via Wnt/β-Catenin Signaling Pathway. Yonsei Med J 2019; 60:1117-1128. [PMID: 31769242 PMCID: PMC6881706 DOI: 10.3349/ymj.2019.60.12.1117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer remains to be a major challenge for public health providers, and is the second leading cause of death worldwide. Therefore, it is imperative to explore the mechanisms underlying cancer initiation and development, and design novel diagnostics and therapeutics. Circular RNAs (circRNAs), which exhibit a covalently closed loop structure, are involved in a variety of diseases, including cancer. The aberrant expression of circRNAs contributes to the initiation and development of various cancers by disrupting the interplay of specific signaling pathways, including the Wnt/β-catenin pathway, which controls a plethora of cellular processes that drive cancer development. The interactions between circRNAs (specifically expressed in different cancer tissues) and Wnt/β-catenin signaling pathway presents potential diagnostic biomarkers and novel therapeutic targets. In this review, we have summarized research discoveries on the functions of Wnt/β-catenin pathway-related circRNAs in the modulation of oncogenesis and progression of different types of cancer. We anticipate that our findings will contribute to the improvement or development of circRNAs-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Yun Feng Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Chen M, Xu Z, Zhang Y, Zhang X. LINC00958 Promotes The Malignancy Of Nasopharyngeal Carcinoma By Sponging microRNA-625 And Thus Upregulating NUAK1. Onco Targets Ther 2019; 12:9277-9290. [PMID: 31819474 PMCID: PMC6842770 DOI: 10.2147/ott.s216342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The aberrant expression of long noncoding RNAs (lncRNAs) indicates progression of various diseases. LINC00958 has been well studied in several types of human cancer; however, the expression profile, functions, and potential mechanism of action of this lncRNA in nasopharyngeal carcinoma (NPC) remain largely unclear and still need to be elucidated. In the present study, we aimed to measure LINC00958 expression in NPC, determine its clinical value, and explore its roles in NPC progression as well as the mechanisms behind these processes. Methods The expression profile of LINC00958 in NPC was evaluated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). A series of functional assays, including the Cell Counting Kit-8 assay, flow cytometry, a Transwell assay, and an in vivo nude mouse model, were utilized to determine the participation of LINC00958 in the malignancy of NPC. Results LINC00958 was found to be upregulated in NPC tissue specimens and cell lines. The LINC00958 overexpression significantly correlated with tumor size, lymph node status, TNM stage, and worse overall survival among NPC patients. Downregulation of LINC00958 suppressed NPC cell proliferation, migration, and invasion and induced apoptosis in vitro. Additionally, the LINC00958 knockdown impaired tumor growth in vivo. Mechanistically, LINC00958 was found to serve as a molecular sponge of microRNA-625 (miR-625), thereby upregulating NUAK family SNF1-like kinase 1 (NUAK1) in NPC cells. Lastly, rescue experiments validated the involvement of the miR-625–NUAK1 axis in LINC00958-mediated biological functions in NPC. Conclusion Our results demonstrated that LINC00958 works as an oncogene in NPC and plays a key role in the malignant phenotype of NPC cells by sponging miR-625 and increasing NUAK1 expression. The LINC00958–miR-625–NUAK1 pathway might be a target for anticancer therapy in patients with NPC.
Collapse
Affiliation(s)
- Meijuan Chen
- Department of Ophthalmology and Otorhinolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Zhina Xu
- Department of Ophthalmology and Otorhinolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Yingyao Zhang
- Department of Ophthalmology and Otorhinolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, People's Republic of China
| | - Xiujuan Zhang
- Weifang People's Hospital, Weifang, Shandong 262737, People's Republic of China
| |
Collapse
|
32
|
Xie Z, Li X, Chen H, Zeng A, Shi Y, Tang Y. The lncRNA-DLEU2/miR-186-5p/PDK3 axis promotes the progress of glioma cells. Am J Transl Res 2019; 11:4922-4934. [PMID: 31497209 PMCID: PMC6731438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) have great value in research on tumour targeted therapy, including for glioma. In the present study, we investigated the role of the lncRNA deleted in lymphocytic leukaemia 2 (lncRNA-DLEU2) in glioma. First, we found that lncRNA-DLEU2 is highly expressed in glioma tissues and cell lines. Next, experiments in cells showed that lncRNA-DLEU2 knockdown inhibited, whereas lncRNA-DLEU2 overexpression promoted, the clone formation, migration and invasion of glioma cells. A luciferase reporter assay and an RNA immunoprecipitation assay demonstrated that lncRNA-DLEU2 acts as a sponge for miR-186-5p in glioma cells. Further, studies suggested that miR-186-5p inhibits the expression of PDK3, which is an oncogene in glioma. Moreover, with rescue experiments, we demonstrated that lncRNA-DLEU2 regulates the expression of PDK3 and the progression of glioma in a miR-186-5p-dependent manner. Finally, we also showed that lncRNA-DLEU2 promotes glioma growth in a manner that is related to miR-186-5p and PDK3 in vivo. In conclusion, our study reported for the first time that lncRNA-DLEU2 promotes glioma progression by targeting the miR-186-5p/PDK3 axis. These findings provide novel strategies for the gene therapy treatment of glioma.
Collapse
Affiliation(s)
- Zuochang Xie
- Department of Neurosurgery, The First People’s Hospital of Tianmen CityTianmen 431700, Hubei, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Hua Chen
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical SchoolBoston 02115, MA, USA
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Yong Tang
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| |
Collapse
|
33
|
Luo Y, Hao T, Zhang J, Zhang M, Sun P, Wu L. MicroRNA-592 suppresses the malignant phenotypes of thyroid cancer by regulating lncRNA NEAT1 and downregulating NOVA1. Int J Mol Med 2019; 44:1172-1182. [PMID: 31524231 DOI: 10.3892/ijmm.2019.4278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/05/2019] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have demonstrated that various microRNAs (miRs) are aberrantly expressed in thyroid cancer and play critical roles in thyroid cancer malignancy. The aberrant expression of miR‑592 has frequently been reported in multiple human cancer types; however, its expression profile and functions in thyroid cancer remain poorly understood. Reverse transcription‑quantitative polymerase chain reaction was carried out to determine the expression profile of miR‑592 in thyroid cancer tissues and cell lines. The regulatory effects of miR‑592 upregulation on thyroid cancer cell proliferation, migration, and invasion in vitro, and tumor growth in vivo were investigated using a CCK‑8 assay, migration and invasion assays, and a xenograft tumor model, respectively. Furthermore, the mechanisms underlying miR‑592‑mediated suppression of the aggressive phenotypes of thyroid cancer cells were explored in detail. The results indicated that miR‑592 was significantly downregulated in thyroid cancer samples, and its downregulation was associated with lymph node metastasis and tumor‑node‑metastasis stage. Patients with thyroid cancer and low miR‑592 expression exhibited shorter overall survival than patients with high miR‑592 expression. Overexpression of miR‑592 resulted in decreased cell proliferation, migration, and invasion in thyroid cancer. In addition, neuro‑oncological ventral antigen 1 (NOVA1) was identified as a novel target gene of miR‑592 in thyroid cancer cells. Furthermore, ectopic NOVA1 expression may effectively abolish the tumor‑suppressing effects of miR‑592 overexpression in thyroid cancer cells. Notably, the lncRNA NEAT1 was proposed to function as a sponge of miR‑592 in thyroid cancer cells, thereby regulating NOVA1 expression. Finally, resuming miR‑592 expression significantly impaired thyroid cancer tumor growth in vivo. The results indicated that the NEAT1/miR‑592/NOVA1 pathway may play regulatory roles in thyroid cancer malignancy in vitro and in vivo. Our findings may provide novel insight into the pathogenesis of thyroid cancer. Therefore, this pathway may be an effective target for treating patients with this disease.
Collapse
Affiliation(s)
- Yiqiang Luo
- Department of Breast and Thyroid Surgery, Jilin Central General Hospital, Chuanying, Jilin 132000, P.R. China
| | - Tianwei Hao
- Department of Breast and Thyroid Surgery, Jilin Central General Hospital, Chuanying, Jilin 132000, P.R. China
| | - Jian Zhang
- Department of Breast and Thyroid Surgery, Jilin Central General Hospital, Chuanying, Jilin 132000, P.R. China
| | - Ming Zhang
- Department of Breast and Thyroid Surgery, Jilin Central General Hospital, Chuanying, Jilin 132000, P.R. China
| | - Peng Sun
- Department of Breast and Thyroid Surgery, Jilin Central General Hospital, Chuanying, Jilin 132000, P.R. China
| | - Lei Wu
- Department of Breast and Thyroid Surgery, Jilin Central General Hospital, Chuanying, Jilin 132000, P.R. China
| |
Collapse
|
34
|
Huang Z, Zhang S, Wang J, Sun H, Zhang Y, Li X, Song X. miR-373 inhibits nasopharyngeal carcinoma cell migration and invasion by targeting MARCH5. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2646-2652. [PMID: 31934093 PMCID: PMC6949538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
The abnormal expression of microRNAs (miRNAs) is critical for the development of human cancers. However, the functions of many miRNAs remain to be elucidated. miR-373 was reported to involve the tumorigenesis of multiple cancers, but its role in nasopharyngeal carcinoma (NPC) is not clear. Quantitative real-time PCR was performed to analyze miR-373 expression in NPC cell lines. The connection between membrane associated ring-CH-type finger 5 (MARCH5) and miR-373 was analyzed using a luciferase activity reporter assay and western blot. A cell counting kit-8 assay, a colony formation assay, and a wound-healing assay were performed to investigate the biological functions of miR-373 and MARCH5. We showed miR-373 expression is downregulated, and MARCH5 expression is upregulated, in NPC cells. MARCH5 was validated as a direct target of miR-373. miR-373 regulates NPC cell proliferation, colony formation, and cell migration by regulating MARCH5. In conclusion, our study showed that miR-373 has a tumor suppressive role in NPC by targeting MARCH5. This may provide novel therapeutic targets for NPC.
Collapse
Affiliation(s)
- Zehao Huang
- Department of Head & Neck Surgery, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical ScienceBeijing, P. R. China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Hehua Sun
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Yue Zhang
- Department of Cardiology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Xiao Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| | - Xiang Song
- Department of Oncology, The Second Hospital of Shanxi Medical UniversityTaiyuan, P. R. China
| |
Collapse
|