1
|
Zhang L, Zhu Z, Zheng L, Liu X, Li H, Dai X, Zhang Z, Wang B, Huang X, Ren Q, Xu Y. Identification of a FOXO gene and its roles in anti-WSSV infection through regulation of Dicers and Argos in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109908. [PMID: 39299407 DOI: 10.1016/j.fsi.2024.109908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Forkhead box O (FOXO) proteins are a subgroup of the forkhead family of transcription factors that play important roles in the immune response. In this study, we cloned and identified a FOXO gene named MnFOXO from Macrobrachium nipponense. The full-length cDNA of MnFOXO is 2086 bp and contains a 1302 bp open reading frame, which encodes 433 amino acids. MnFOXO consists of five low-complexity regions and a conserved DNA-binding domain (forkhead domain). Evolutionary analyses indicate that MnFOXO proteins cluster with FOXO proteins from crustaceans. Tissue distribution analysis showed that MnFOXO was expressed in all detected tissues, with relatively higher expression levels in the intestine, eyestalks, stomach, and hemocytes than in the hepatopancreas, gills, and heart. The expression levels of MnFOXO in the hepatopancreas and intestine were significantly up-regulated in M. nipponense infected with white spot syndrome virus (WSSV) at 24 and 48 h. Furthermore, knockdown of MnFOXO increased the expression of WSSV envelope protein VP28 during WSSV infection. Further studies showed that knockdown of the MnFOXO gene in M. nipponense inhibited the synthesis of Dicers (MnDicer1, MnDicer2) and Argonautes (MnArgo1, MnArgo2) during WSSV invasion. These findings suggest that MnFOXO positively regulates the expression of Dicers and Argos, and inhibits the expression of VP28. This study provides new evidence for understanding the role of FOXO in antiviral innate immunity in crustaceans.
Collapse
Affiliation(s)
- Lihua Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Ziyue Zhu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Liangmin Zheng
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xiaohan Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Hao Li
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Zhaoqian Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Bingyan Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of information Science & Technology, Nanjing, Jiangsu Province, 210044, PR China.
| | - Yu Xu
- Key Laboratory of Genetic Breeding and cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| |
Collapse
|
2
|
Jin S, Zhou R, Gao X, Xiong Y, Zhang W, Qiao H, Wu Y, Jiang S, Fu H. Identification of the effects of alkalinity exposure on the gills of oriental river prawns, Macrobrachium nipponense. BMC Genomics 2024; 25:765. [PMID: 39107708 PMCID: PMC11304644 DOI: 10.1186/s12864-024-10659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Rong Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Xuanbin Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
| |
Collapse
|
3
|
Yu Y, You S, Feng C, Li X, Xing Y, Hu Q, Bao J, Jiang H. First report of Metschnikowia bicuspidata infection in the oriental river prawn (Macrobrachium nipponense, de Haan) in China. JOURNAL OF FISH DISEASES 2024:e13936. [PMID: 38421366 DOI: 10.1111/jfd.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
During breeding, some oriental river prawns (Macrobrachium nipponense, de Haan), an important aquaculture species in China, exhibit yellowish-brown body colouration, reduced appetite, and vitality. Diseased prawns revealed characteristic emulsifying disease signs, including whitened musculature, hepatopancreatic tissues, milky haemolymph, and non-coagulation. The present study investigated the causative agent of M. nipponense infection through isolation, histopathology, molecular sequencing, and infection experiments. The pathogenic strain exhibited distinctive white colonies on Bengal red medium, with microscopic examination confirming the presence of yeast cells. Histopathological analysis revealed prominent pathological alterations and yeast cell infiltration in muscles, hepatopancreas and gills. Additionally, 26S rDNA sequencing of the isolated yeast strain LNMN2022 revealed Metschnikowia bicuspidata (GenBank: OR518659) as the causative agent. This strain exhibited a 98.28% sequence homology with M. bicuspidata LNMB2021 (GenBank: OK094821) and 96.62% with M. bicuspidata LNES0119 (GenBank: OK073903). The pathogenicity test confirmed that M. bicuspidata elicited clinical signs in M. nipponense consistent with those observed in natural populations, and the median lethal concentration was determined to be 3.3 × 105 cfu/mL. This study establishes a foundation for further investigations into the host range and epidemiological characteristics of the pathogen M. bicuspidata in aquatic animals and provides an empirical basis for disease management in M. nipponense.
Collapse
Affiliation(s)
- Yingyue Yu
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Songyue You
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chengcheng Feng
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Reproductive Cultivation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Reproductive Cultivation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, China
| | - Yuenan Xing
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Reproductive Cultivation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, China
| | - Qingbiao Hu
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Reproductive Cultivation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, China
| | - Jie Bao
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Reproductive Cultivation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, China
| | - Hongbo Jiang
- Aquaculture Department, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Reproductive Cultivation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Tong Y, Yang J, Wang L, Chi X, Zhu C, Yin R, Zhang L, Li Y, Zhao C, Jia R. Effects of dietary supplementation of Anabaena sp. PCC7120 expressing VP28 protein on survival and histopathology after WSSV infection in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108865. [PMID: 37277048 DOI: 10.1016/j.fsi.2023.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Shrimp are especially susceptible to the White Spot Syndrome Virus (WSSV). Oral administration of the WSSV envelop protein VP28 is a promising approach to protect shrimp against WSSV. In this study, Macrobrachium nipponense (M. nipponense) were fed for 7 days with food supplemented with Anabaena sp. PCC 7120 (Ana7120) expressing VP28 and then challenged with WSSV. The survival rates of M. nipponense in three groups, including control, WSSV-challenged, and VP28-vaccinated, were subsequently determined. We also determined the WSSV content of different tissues and the tissue morphology in the absence of and after viral challenge. The survival rate of the positive control group (no vaccination and challenge, 10%) and empty vector group (fed with Ana7120 pRL-489 algae and challenged, 13.3%) was much lower than the survival rate of M. nipponense in wild type group (fed with Ana7120 and challenged, 18.9%), immunity group 1 (fed with 3.33% Ana7120 pRL-489-vp28 and challenged, 45.6%) or immunity group 2 (fed with 6.66% Ana7120 pRL-489-vp28 and challenged, 62.2%). RT-qPCR showed that WSSV content of the gill, hepatopancreas and muscle of immunity groups 1 and 2 were substantially lower than the positive control. Microscopic examination revealed that WSSV-challenged positive control exhibited large number of cell rupture, necrosis, nuclear exfoliation in gills and hepatopancreatic tissues. The gill and hepatopancreas of immunity group 1 showed partial symptoms of infection, yet the tissue was visibly healthier than that of the positive control group. No symptoms were visible in the gills and hepatopancreatic tissue of immunity group 2. The results demonstrate that the probability of M. nipponense infected by WSSV can be diminished by oral administration of cyanobacteria-expressed VP28. Such an approach could improve the disease resistance and delay the death of M. nipponense in the commercial production of this shrimp.
Collapse
Affiliation(s)
- Yupei Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoping Chi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chan Zhu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Le Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaru Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunyan Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
5
|
Zhao C, Wen H, Huang S, Weng S, He J. A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses. Antioxidants (Basel) 2022; 11:1491. [PMID: 36009210 PMCID: PMC9405353 DOI: 10.3390/antiox11081491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, "water bubble disease (WBD)", has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns.
Collapse
Affiliation(s)
- Caiyuan Zhao
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
| | - Huagen Wen
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shengsheng Huang
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shaoping Weng
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| |
Collapse
|
6
|
Liu B, Wang H, Jiang Z, Qin W, Zhou C, Huang X, Huang Y, Ren Q. Identification of four Spätzle genes (MnSpz1, MnSpz2, MnSpz2-isoform, and MnSpz3) and their roles in the innate immunity of Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104254. [PMID: 34478777 DOI: 10.1016/j.dci.2021.104254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Spätzle, an extracellular ligand of the Toll receptor, is involved in the innate immunity of crustaceans. In this study, four Spätzle genes were cloned from Macrobrachium nipponense and designed as MnSpz1, MnSpz2, MnSpz2-isoform, and MnSpz3. The coding region of the four Spätzle genes all contained one intron and two exons, and they were predicted to be produced by gene duplication based on sequence similarities and phylogenetic tree. The predicted MnSpz1, MnSpz2, and MnSpz3 proteins all contained a signal peptide and a Spätzle domain. No signal peptide but a Spätzle domain existed in MnSpz2-isoform because of frameshift mutation caused by 50 bp nucleotide deletion compared with MnSpz2. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis showed that MnSpz1, MnSpz2, and MnSpz3 were expressed in all the detected tissues of M. nipponense, and MnSpz2 was found to be the major isoform in the heart, gills, stomach, and intestine. After stimulation by Vibrio parahaemolyticus, Staphylococcus aureus, or White spot syndrome virus (WSSV), the expression levels of MnSpz1, MnSpz2, and MnSpz3 changed. Given the high similarities among MnSpz1-3, RNA interference (RNAi) using dsRNA of MnSpz1 inhibited the expression of the three Spätzle genes (MnSpz1, MnSpz2 and MnSpz3). Silencing of MnSpz1-3 down-regulated the expression levels of nine antimicrobial peptide (AMP) genes in M. nipponense. After Knockdown of MnSpzs, the number of V. parahaemolyticus, S. aureus and WSSV copies in M. nipponense increased significantly in vivo. Our results suggest that Spätzles are involved in the innate immunity of M. nipponense. The expansion of MnSpz genes through gene duplication is beneficial to enhance the innate immune defense ability of M. nipponense.
Collapse
Affiliation(s)
- Beixiang Liu
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Hongyu Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zuosheng Jiang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Wei Qin
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chengxiang Zhou
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, People's Republic of China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
7
|
Huang Y, Ren Q. Innate immune responses against viral pathogens in Macrobrachium. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103966. [PMID: 33338519 DOI: 10.1016/j.dci.2020.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Some members of genus Macrobrachium are important economically prawns and valuable objects for studying the innate immune defense mechanism of crustaceans. Studies have focused on immune responses against bacterial and fungal infections and have expanded to include antiviral immunity over the past two decades. Similar to all living organisms, prawns are exposed to viruses, including white spot syndrome virus, Macrobrachium rosenbergii nodavirus, and Decapod iridescent virus 1 and develop effective defense mechanisms. Here, we review current understanding of the antiviral host defense in two species of Macrobrachium. The main antiviral defense of Macrobrachium is the activation of intracellular signaling cascades, leading to the activation of cellular responses (apoptosis) and humoral responses (immune-related signaling pathways, antimicrobial and antiviral peptides, lectins, and prophenoloxidase-activating system).
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
8
|
Wang K, Dai X, Zhang C, Cao X, Zhang R, Zhang Z, Huang X, Ren Q. Two Wnt genes regulate the expression levels of antimicrobial peptides during Vibrio infection in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 101:225-233. [PMID: 32247046 DOI: 10.1016/j.fsi.2020.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The Wnt signal transduction pathway is involved in a wide variety of cellular processes, including cell proliferation, differentiation, apoptosis, and immunity against microbial infection. In the current study, we cloned and characterized two Wnt homologues (Mn-Wnt4 and Mn-Wnt16) in Macrobrachium nipponense. The full length cDNA of Mn-Wnt4 was 3144 bp with a 1074 bp open reading frame (ORF) that encoded a protein containing 358 amino acid residues. The full length cDNA of Mn-Wnt16 transcript was 2893 bp with a 1281 bp ORF that encoded a 427 amino acid protein. Mn-Wnt4 and Mn-Wnt16 proteins contained a highly conserved WNT1 domain. Tissue distribution analysis showed that Mn-Wnt4 and Mn-Wnt16 were highly expressed in the stomach. The transcriptional levels of Mn-Wnt4 and Mn-Wnt16 in the stomach were upregulated at most tested time points after bacterial (Staphylococcus aureus and Vibrio parahaemolyticus) and viral (White spot syndrome virus) infection. Moreover, the expression levels of some antimicrobial peptides (AMPs) (including anti-lipopolysaccharide factor [ALF] and crustin [CRU]) were upregulated after V. parahaemolyticus infection. We further used dsRNA-mediated RNA interference technology to explore the relationship between these two Wnt genes and the expression levels of AMPs during V. parahaemolyticus infection. Mn-Wnt4 knockdown could significantly inhibit the expression of ALF1 and CRU4 in the stomach of V. parahaemolyticus-injected prawns, whereas Mn-Wnt16 silencing could result in the inhibition of the expression level of CRU3 and CRU4 in the stomach of V. parahaemolyticus-infected prawns. These findings indicated that the Wnt gene family might participate in the body's innate immune response to Vibrio infection by regulating the synthesis of a variety of AMPs. Our study will help to understand the role of the Wnt signaling pathway in the immune response of crustaceans.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhuoxing Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
9
|
Zhu C, Shi D, Liao S, He P, Jia R. Effects of Synechococcus sp. PCC 7942 harboring vp19, vp28, and vp (19 + 28) on the survival and immune response of Litopenaeus vannamei infected WSSV. FISH & SHELLFISH IMMUNOLOGY 2020; 99:1-8. [PMID: 31968267 DOI: 10.1016/j.fsi.2020.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to assess the effect of oral administration of Synechococcus sp. PCC 7942 harboring vp19, vp28, and vp(19 + 28)against infection by white spot syndrome virus (WSSV) on juveniles of Litopenaeus vannamei. L. vannamei was orally administrated by feeding with different mutants of Synechococcus for 10 days, and then challenged with WSSV. The cumulative mortality of vp19, vp28, vp (19 + 28) groups was lower than that of the positive control group (57.8%, 62.2%, 71.1%, respectively); vp (19 + 28) group had a better protection rate than vp19 and vp28 groups. The analysis of shrimp immunological parameters showed that, after WSSV injection, the activity of superoxide dismutase, phenol oxidase, catalase, and lysozyme in the hepatopancreas of vp19, vp28, and vp (19 + 28) groups was higher than in the positive group; at the same time, growth performances of L. vannamei of experimental groups were better than control groups. Results showed that the Synechococcus mutants harboring vp19, vp28, and vp (19 + 28) could be used both as drug and feed to also enhance the defensive ability of juvenile shrimp against WSSV infection by increasing the activity of immune related enzymes.
Collapse
Affiliation(s)
- Chan Zhu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Dingji Shi
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shengyu Liao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
10
|
Xu S, Jing M, Liu WY, Dong H, Kong DM, Wang YR, Zhang HH, Yue Z, Li YJ, Jiao F, Xie SY. Identification and characterization of a novel L-type lectin (MjLTL2) from kuruma shrimp (Marsupenaeus japonicus). FISH & SHELLFISH IMMUNOLOGY 2020; 98:354-363. [PMID: 31945483 PMCID: PMC7111285 DOI: 10.1016/j.fsi.2020.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
L-type lectins (LTLs) belong to the lectin family and are characterized by a conserved structural motif in their carbohydrate recognition domain. LTLs are homologous to leguminous lectins. In this study, we identified and functionally characterized an LTL from kuruma shrimp Marsupenaeus japonicus. We designated this LTL as MjLTL2. MjLTL2 contains a signal peptide, a Lectin_leg domain, a coiled coil, and transmembrane domain. MjLTL2 is distributed in hemocytes, heart, hepatopancreas, gill, stomach, and intestine; higher expression levels are seen in hemocytes and the hepatopancreas than in other tissues. MjLTL2 was upregulated following challenge of shrimp with Vibrio anguillarum and white spot syndrome virus (WSSV). MjLTL2 can agglutinate several bacteria without Ca2+. In addition, MjLTL2 could bind to several Gram-positive and -negative bacteria by binding to their lipopolysaccharide and peptidoglycan. However, MjLTL2 could not enhance the clearance of V. anguillarum in vivo. In the presence of WSSV infection, MjLTL2 knockdown by RNA interference resulted in a 7-day lower cumulative mortality of M. japonicus. Moreover, less VP19, VP24, VP26, and VP28 mRNAs were extracted from the hemocytes of MjLTL2 knockdown shrimp than from the control. These results suggest that MjLTL2 is involved in immune responses in shrimp.
Collapse
Affiliation(s)
- Sen Xu
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Ming Jing
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Wen-Ying Liu
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - He Dong
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - De-Min Kong
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Ya-Ru Wang
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Han-Han Zhang
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhen Yue
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Fei Jiao
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Clinical Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
11
|
Vogt G. Cytopathology and immune response in the hepatopancreas of decapod crustaceans. DISEASES OF AQUATIC ORGANISMS 2020; 138:41-88. [PMID: 32103822 DOI: 10.3354/dao03443] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hepatopancreas of decapod crustaceans is used as an example to illustrate the range of cytopathologies, detoxification mechanisms, and immune responses that environmental toxicants and pathogens can induce in a single organ. The hepatopancreas is the central metabolic organ of decapods and consists of hundreds of blindly-ending tubules and intertubular spaces. The tubular epithelium contains 5 structurally and functionally different cell types, and the interstitium contains haemolymph, haemocytes, connective tissue, and fixed phagocytes. Some physiological conditions such as moulting and starvation cause marked but reversible ultrastructural alterations of the epithelial cells. Environmental toxicants induce either detoxification mechanisms or structural damage in cells, depending on toxicant and concentration. The hepatopancreas is also a main target organ for pathogens, mainly viruses, bacteria, and protists that enter the body via the digestive tract and gills and replicate in the hepatopancreatocytes. The cytopathologies caused by toxicants and pathogens affect single cell types specifically or, more often, several cell types simultaneously. Pathogenesis often begins in a certain cell organelle such as the nucleus, mitochondrion, or endoplasmic reticulum, spreads to other organelles, and ends with death of the infected cell. Fixed phagocytes in the interstitium capture and degrade pathogens that move from the infected tubules into the intertubular spaces or enter the hepatopancreas via circulation. Relatively few disease agents elicit the melanisation and encapsulation reaction that encloses infected tubules by a rigid melanised capsule and kills the entrapped pathogens.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Qiu L, Chen X, Zhao RH, Li C, Gao W, Zhang QL, Huang J. Description of a Natural Infection with Decapod Iridescent Virus 1 in Farmed Giant Freshwater Prawn, Macrobrachium rosenbergii. Viruses 2019; 11:E354. [PMID: 30999644 PMCID: PMC6521035 DOI: 10.3390/v11040354] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022] Open
Abstract
Macrobrachium rosenbergii is a valuable freshwater prawn in Asian aquaculture. In recent years, a new symptom that was generally called "white head" has caused high mortality in M. rosenbergii farms in China. Samples of M. rosenbergii, M. nipponense, Procambarus clarkii, M. superbum, Penaeus vannamei, and Cladocera from a farm suffering from white head in Jiangsu Province were collected and analyzed in this study. Pathogen detection showed that all samples were positive for Decapod iridescent virus 1 (DIV1). Histopathological examination revealed dark eosinophilic inclusions and pyknosis in hematopoietic tissue, hepatopancreas, and gills of M. rosenbergii and M. nipponense. Blue signals of in situ digoxigenin-labeled loop-mediated isothermal amplification appeared in hematopoietic tissue, hemocytes, hepatopancreatic sinus, and antennal gland. Transmission electron microscopy of ultrathin sections showed a large number of DIV1 particles with a mean diameter about 157.9 nm. The virogenic stromata and budding virions were observed in hematopoietic cells. Quantitative detection with TaqMan probe based real-time PCR of different tissues in naturally infected M. rosenbergii showed that hematopoietic tissue contained the highest DIV1 load with a relative abundance of 25.4 ± 16.9%. Hepatopancreas and muscle contained the lowest DIV1 loads with relative abundances of 2.44 ± 1.24% and 2.44 ± 2.16%, respectively. The above results verified that DIV1 is the pathogen causing white head in M. rosenbergii. M. nipponense and Pr. clarkii are also species susceptible to DIV1.
Collapse
Affiliation(s)
- Liang Qiu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
| | - Xing Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
- Shanghai Ocean University, Shanghai 201306, China.
| | - Ruo-Heng Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
- Dalian Ocean University, Dalian 116023, China.
| | - Chen Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
| | - Wen Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
- Shanghai Ocean University, Shanghai 201306, China.
| | - Qing-Li Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
- Shanghai Ocean University, Shanghai 201306, China.
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology (Qingdao); Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao 266071, China.
- Shanghai Ocean University, Shanghai 201306, China.
- Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
13
|
Validation and Evaluation of Reference Genes for Quantitative Real-Time PCR in Macrobrachium Nipponense. Int J Mol Sci 2018; 19:ijms19082258. [PMID: 30071669 PMCID: PMC6121487 DOI: 10.3390/ijms19082258] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 02/02/2023] Open
Abstract
Quantitative real-time PCR (qPCR) is widely used in molecular biology, although the accuracy of the quantitative results is determined by the stability of the reference genes used. Recent studies have investigated suitable reference genes for some crustaceans under various conditions, but studies in Macrobrachium nipponense are currently lacking. In this study, we selected the following seven genes from among 35 commonly used housekeeping genes as candidate qPCR reference genes for temporal and spatial expression: EIF (eukaryotic translation initiation factor 5A), 18S (18S ribosomal RNA), EF-1α (elongation factor-1α), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), TUB (α-tubulin), β-act (β-actin), and RPL18 (Ribosomal protein L18). The stability of each reference gene was evaluated by GeNorm, NormFinder, BestKeeper, and comparative ∆C t methods, and was comprehensively ranked using RefFinder. RPL18 was shown to be the most suitable reference gene for adult M. nipponense tissues, while EIF was the most stable in different ovarian and embryo stages and in white spot syndrome virus infection, and β-act was the most stable reference gene under hypoxia stress. The reliability of the rankings was confirmed by RNA interference experiments. To the best of our knowledge, this represents the first systematic analysis of reference genes for qPCR experiments in M. nipponense, and the results will provide invaluable information for future research in closely related crustaceans.
Collapse
|
14
|
Zhao C, Fu H, Sun S, Qiao H, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y. A transcriptome study on Macrobrachium nipponense hepatopancreas experimentally challenged with white spot syndrome virus (WSSV). PLoS One 2018; 13:e0200222. [PMID: 29979781 PMCID: PMC6034857 DOI: 10.1371/journal.pone.0200222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is one of the most devastating pathogens of cultured shrimp, responsible for massive loss of its commercial products worldwide. The oriental river prawn Macrobrachium nipponense is an economically important species that is widely farmed in China and adult prawns can be infected by WSSV. However, the molecular mechanisms of the host pathogen interaction remain unknown. There is an urgent need to learn the host pathogen interaction between M. nipponense and WSSV which will be able to offer a solution in controlling the spread of WSSV. Next Generation Sequencing (NGS) was used in this study to determin the transcriptome differences by the comparison of control and WSSV-challenged moribund samples, control and WSSV-challenged survived samples of hepatopancreas in M. nipponense. A total of 64,049 predicted unigenes were obtained and classified into 63 functional groups. Approximately, 4,311 differential expression genes were identified with 3,308 genes were up-regulated when comparing the survived samples with the control. In the comparison of moribund samples with control, 1,960 differential expression genes were identified with 764 genes were up-regulated. In the contrast of two comparison libraries, 300 mutual DEGs with 95 up-regulated genes and 205 down-regulated genes. All the DEGs were performed GO and KEGG analysis, overall a total of 85 immune-related genes were obtained and these gene were groups into 13 functions and 4 KEGG pathways, such as protease inhibitors, heat shock proteins, oxidative stress, pathogen recognition immune receptors, PI3K/AKT/mTOR pathway, MAPK signaling pathway and Ubiquitin Proteasome Pathway. Ten genes that valuable in immune responses against WSSV were selected from those DEGs to furture discuss the response of host to WSSV. Results from this study contribute to a better understanding of the immune response of M. nipponense to WSSV, provide information for identifying novel genes in the absence of genome of M. nipponense. Furthermore, large number of transcripts obtained from this study could provide a strong basis for future genomic research on M. nipponense.
Collapse
Affiliation(s)
- Caiyuan Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail:
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| |
Collapse
|