Pöyhönen V, Thomisch K, Kovacs KM, Lydersen C, Ahonen H. High Arctic "hotspots" for sperm whales (Physeter macrocephalus) off western and northern Svalbard, Norway, revealed by multi-year Passive Acoustic Monitoring (PAM).
Sci Rep 2024;
14:5825. [PMID:
38461150 PMCID:
PMC10924940 DOI:
10.1038/s41598-024-56287-9]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
Despite the well-documented, broad global distribution of sperm whales (Physeter macrocephalus), their distributional patterns remain poorly known in Arctic regions, where year-round monitoring is challenging. Adult male sperm whales are known to migrate seasonally between nutrient-rich high latitude waters and low latitude breeding grounds. However, knowledge is limited regarding fine-scale distribution and seasonal presence at high latitudes. To investigate the acoustic occurrence of this vocally active species in the High Arctic of the Northeast Atlantic, this study combined automated and manual click detection methods to analyze passive acoustic data collected at eight locations around the Svalbard Archipelago, Norway, between 2012 and 2021. The results revealed the presence of sperm whales at six recording sites and demonstrated sperm whale "hotspots" in ice-free areas in eastern Fram Strait along the shelf break and close to the west coast of Spitsbergen from May-January, with some variation between years and locations. Although acoustic presence decreased with increasing latitude, even the northern-most location (81° N) recorded sperm whale vocal activity between August and January. This study provides a baseline for sperm whale acoustic presence in the High Arctic, which will be essential in the context of detecting future changes and also for predicting future distribution patterns in the rapidly changing Arctic marine environment.
Collapse